
© 1996, Virgil Bistriceanu

Control Structures in MIPS

Objectives
After completing this lab you will:

• know how conditional and unconditional branches work in MIPS

• better understand the advantages of having fixed size instructions

• be able to use conditional and unconditional branches in your programs

Introduction
Except for some very simple programs all others use instructions that control the program flow. In a high level
language they may be called if (with its associated then and else), goto (which fans of structured programming
hate), for, while, do. In assembly language they may be called branch, jump, call, return. They all have the
fundamental property that they change the order in which instructions are executed. They allow the program-
mer to specify different sequences of instructions to be executed based on the input and/or results calculated
earlier in the program.

The pointer to the present instruction is the Program Counter (PC). PC is normally updated as to point to the
next sequential instruction to execute. Control instructions that may change the PC based on testing some con-
dition are called conditional (or more often branches). Control instructions that always change the PC are
called unconditional (or jumps).

Any branch must indicate the condition which is tested as to decide whether the branch is taken (change the
PC) or not (continue with the next sequential instruction). Any branch instruction must also indicate where
to start fetching instructions in case the branch is taken. In other words the instruction must also provide the
target).

Since branches are usually used to implement loops, and because loops tend to have a small number of
instructions, the target is in most cases close to the current instruction. In other words, the difference between
the target address and the current PC is small in absolute value. There is no need to include the absolute value
of the target in the instruction1. What the instruction can specify instead, is the distance in bytes from the cur-
rent instruction to the target. This distance (offset) can be positive (for forward branches) or negative
(backward branch). If the branch is taken, then the offset is added to the current PC to obtain the address from
which the next instruction will be fetched. This is called PC-relative addressing.

1. In particular this would not be possible in MIPS (nor in other RISC architectures) since all instructions have the same
size (32 bits) as an address.

3

© 1996, Virgil Bistriceanu

Aside from the fact that PC-relative addressing allows for a better instruction encoding, it has also the prop-
erty that it allows the code to run independent of where it is loaded in memory. This position-independence
can eliminate some work when the program is loaded in memory.

Jumps, on the other hand, may reach instructions that are far away from the currently executing instruction.
Since a jump is an unconditional change of PC, there is no need to specify anything else in the instruction but
the opcode and the address of the target (no, jumps are not PC-relative). Of course an instruction that is 32
bit wide can not hold an address that is 32 bit itself. The field in the jump instruction that specifies the address
is 26 bit wide.

The architecture also allows for the function call/return mechanism through a set of dedicated jump
instructions.

A brief summary of branches and jumps in the native MIPS instruction set is given below.

In this table label and jlabel mean:

• a symbolic name (i.e. a label in the program) in the user’s program

• a 16 bit offset for a branch in the binary code. In this case PC ← label stands for PC-relative
addressing

• a 26 bit address for a jump in the binary code. In this case PC ← jlabel means that this 26 bit
address replaces the PC during the execution of that jump instruction1.

This laboratory is focused on branches and the regular jump (j). The other jumps (jr, jal, jalr) will
be studied in a different lab session.

1. In reality the process is a little bit more complicated and will be described in detail in the Inlab section of Lab #3.

Instruction Effect

beq Rs, Rt, label if (Rs == Rt) PC ← label

bne Rs, Rt, label if (Rs != Rt) PC ← label

bltz Rs, label if (Rs < 0) PC ← label

blez Rs, label if (Rs <= 0) PC ← label

bgtz Rs, label if (Rs > 0) PC ← label

bgez Rs, label if (Rs >= 0) PC ← label

j jlabel PC ← jlabel

jr Rs PC ← Rs

jal jlabel $ra ← PC+4, PC ← jlabel

jalr Rs $ra ← PC+4, PC ← Rs

Laboratory 3: Prelab Control Structures in MIPS

© 1996, Virgil Bistriceanu

Laboratory 3: Prelab

Date Section

Name

Introduction
Let’s have a closer look at the branch instructions and how they work. In particular we want to know in detail
how

• branches are encoded

• the target address is calculated

Branch encoding
The size of the offset field is 16 bits (the least significant bits in the instruction). Since instructions are of fixed
size (four bytes each), specifying the offset in bytes would be wasteful: the offset would always be a multiple
of four number. Instead, the offset indicates the number of words (1 word = 4 bytes) to the target.

The offset may be positive or negative. Negative numbers use 2’s complement representation.

Caveat: to be efficient, any real implementation of MIPS is pipelined. This means a new instruction is fetched
every clock cycle. Therefore the PC must point to a new instruction every clock cycle, a few clock cycles
before an instruction is complete. This means that PC is updated (PC ← PC+4) very early in an instruction
to point to the next one. Hence, when it comes to branches, the offset is actually relative to the next instruction
(PC+4) as opposed to the current one (PC). The SPIM simulator hides this complexity from the user. When
you inspect the memory you will see the offsets relative to the current instruction.

Computing the target
The following happen inside the CPU when the target of a branch is calculated:

• the offset (16 bits) is left-shifted with two bits (which is equivalent to multiplying by 4) as to express
the distance to the target in bytes.

• the offset (18 bits now) is then sign-extended to 32 bits; if the offset is positive (the most significant
bit of the offset is 0), then 0’s will be padded on the most significant positions up to 32 bits, otherwise,
if the offset is negative (the most significant bit of the offset is 1), 1’s will be padded. Sign-extension
does not change the number.

• add the offset (32 bits) to the PC (32 bits) and obtain the target address.

The three steps described above are logical steps. It does not take threee clock cycles to calculate the target
address.

Laboratory 3: Prelab Control Structures in MIPS

© 1996, Virgil Bistriceanu

Implementing if-then-else
The if-then-else is one of the fundamental programming constructs. The following example indicates how
such a construct would be translated in assembly language. Note that then is not a keyword in C. However,
the construct presented below is of the type ‘if-then-else’, where the block of code #1 corresponds to the
‘then’ part.

Ex 1:
if (var1 == var2) {

.... /* block of code #1 */
}
else {

.... /* block of code #2 */
}

Let’s assume that the values of variables var1 and var2 are in registers $t0 and $t1. Then, this piece of C
code would be translated as:

bne $t0, $t1, Else # go to Else if $t0 != $t1
.... # code for block #1
beq $0, $0, Exit # go to Exit (skip code for block #2)

Else:
.... # code for block #2

Exit: # exit the if-else

The instruction beq $0, $0, Exit is equivalent to an unconditional jump since the test always succeeds
(you could substitute any register name in place of $0 but then it wouldn’t be that obvious what you want to
do). The same effect would be obtained by using j Exit (unconditionally jump to label ‘Exit’). ■

Step 1
Create a program called lab3.1.asm as follows:

• reserve space in memory for three variables called var1 through var3 of size word. The initial values
of var1 and var2 will be the first and the second digit of your SSN respectively. var3 will be initialized
to minus the number of this year.

• the program will implement the piece of C code described below. tmp is a local variable for which
you may use any of the registers $t0 through $t9.

• use only branches found in the native instruction set.

if (var1 == var2) {
var1 = var3; /* change the values of var1 and .. */
var2 = var3; /* var2 to the value of var3 */

}
else { /* execute when var1 != var2 */

tmp = var1; /* swap the values of var1 and var2 */
var1 = var2;
var2 = tmp;

}

Laboratory 3: Prelab Control Structures in MIPS

© 1996, Virgil Bistriceanu

Q 1:
What values do you expect for var1 and var2 after executing this code?

Step 2
Load lab3.1.asm. Fill out the ‘Before run’ section of the table below. Use print to look in the memory for

the values of var1 and var2.

Run the program and fill out the ‘After run’ section of the same table. Compare the expected values for var1
and var2 with the values you get after running the program.

Step 3
For each branch in your program calculate by hand the target address. Use step to find out what is the cur-
rent PC and the offset in the branch instructions.

Step 4
In the C code presented at Step 1, replace the equality test (==) by greater than (>). Create a program called
lab3.2.asm (use lab3.1.asm as a skeleton) which implements the modified C code. As you can easily see there
is no native branch that uses the greater than condition. The reason is that such a comparison would lenghten
the time it takes a branch to decide whether it is taken or not.

To implement such a test, two instructions are required, a set followed by a branch.

Variable Expected value

var1

var2

Variable Before run After run

var1

var2

Instruction Offset
Shifted and sign
extended offset

Current PC Target address

Laboratory 3: Prelab Control Structures in MIPS

© 1996, Virgil Bistriceanu

Ex 2:
slt $t0, $t1, $t2 # if ($t1 < $t2) $t0 = 1; else $t0 = 0;
bgtz $t0, label # jump at label if $t0 is greater than zero

■

Q 2:
What values do you expect for var1 and var2 after executing this code in lab3.2.asm?

Step 5
Load lab3.2.asm. Fill out the ‘Before run’ section of the table below: Use print to look in the memory for

the values of var1 and var2.

Run the program and fill out the ‘After run’ section of the same table. Compare the expected values for var1
and var2 with the values you get after running the program.

Q 3:
What sequence of instructions would you use to implement the test

if (var1 >= var2)

Assume that var1 and var2 are in registers $t0 and $t1 respectively.

Variable Expected value

var1

var2

Variable Before run After run

var1

var2

Laboratory 3: Inlab Control Structures in MIPS

© 1996, Virgil Bistriceanu

Laboratory 3: Inlab

Date Section

Name

Branches (cont’d)
We continue exploring the branches in MIPS and we introduce the jump (j) instruction.

Q 1:
How far away can a branch go from the current PC? Use the value furnished by your lab instructor for the
current PC.

Implementing a for loop
The following is a typical for loop in C:

Ex 1:
for (i=begin; i<limit; i++) {

.... /* for body */
}

The for loop is equivalent to

i = begin; /* initialize the loop index */
while (i < limit) { /* test for termination */

.... /* for body */
i++; /* prepare i for next iteration */

}

Assuming that the initial value (begin) for the loop index is in register $a0, the limit is in $a1, and that
the loop index i is in register $t0, then the for loop could be implemented as:

move $t0, $a0 # i is in $t0
Loop: ble $a1, $t0, Exit # exit if limit <= i

Current PC Most positive offset

Target address for a
forward branch with

the most positive
offset

Most negative offset

Target address for a
backward branch

with the most
negative offset

Laboratory 3: Inlab Control Structures in MIPS

© 1996, Virgil Bistriceanu

.... # body of the for loop
addi $t0, $t0, 1 # i = i+1
j Loop

Exit: # this is outside the loop ■

Step 1
Create a program called lab3.3.asm based on this description:

• reserve space in memory for a variable called var1 of size word. The initial value of var1 will be the
first digit of your SSN.

• the program will implement the piece of C code described below.

for (i=var1; i<100; i++) {
var1 = var1+1;

}

Q 2:
What value would var1 have after executing the for loop?

Step 2
Load lab3.3.asm. Fill out the ‘Before run’ section of the table below. Use print to look in the memory for

the value of var1.

Run the program and fill out the ‘After run’ section of the same table. Compare the expected values for var1
with the value you obtain after running the program.

Step 3
The implementation of the for loop presented in Ex. 1 uses a branch from the extended instructions set. Step
through the program to find out how the assembler replaces the synthetic instruction (ble) with native
instructions.

Variable Initial value Expected value

var1

Variable Before run After run

var1

Synthetic Instruction Native Instructions Effect

Laboratory 3: Inlab Control Structures in MIPS

© 1996, Virgil Bistriceanu

Step 4
The implementation of the for loop presented in Ex. 1 uses a jump instruction. The 26 least significant bits in
the instruction represent an instruction address. Since all instruction addresses are multiples of four, repre-
senting the address as such would be wasteful (the least significant two bits would always be zero). Rather,.
the address divided by four is stored in the 26 bit field. The following example should clarify this.

Ex 2:
label1:. ... # some interesting stuff here

.... # in between code
j label1 # jump to the instruction labeled ‘label1’

Assume we know that the address of the instruction labeled ‘label1’ is 0x409abc. Then the 26 least signif-
icant bits in the jump instruction are 0x109abc since this is the address 0x409abc divided by four. To
convince yourself this is true, take the number 0x409abc and shift it right by two positions (thus discarding
the least significant two bits) which is equivalent to an integer division by four. This is exactly what the
assembler does when generating code for the jump. ■

When the jump instruction is executed, the following happen:

• the address (26 bits) is left-shifted with two bits (which is equivalent to multiplying by 4) as to find the
true address.

• replace the least significant 28 bits of the PC with the address.

The reason the 28 bit address replaces the least significant 28 bits in the PC is speed. The designer has chosen
to avoid an addition (if the jump were PC-relative) thus saving one clock cycle in the execution.

Caveat: the 4 most significant bits in the PC remain unchanged in the process described above. The linker
and the loader must make sure that the program is placed in the memory in such a way as to have the same
most significant 4 bits for the address of the jump instruction and for the target.

Q 3:
Give an example of what can happen during execution if the condition stated in the above caveat is not
respected.

Synthetic Instruction Native Instructions Effect

Laboratory 3: Inlab Control Structures in MIPS

© 1996, Virgil Bistriceanu

Step 5
Step through the program to find the jump instruction. Fill out the next table

Q 4:
What is the largest address a jump can reach?

Instruction
Address field in

instruction (26 bits)
Shifted left by two bitst Target address

Laboratory 3: Postlab Control Structures in MIPS

© 1996, Virgil Bistriceanu

Laboratory 3: Postlab

Date Section

Name

Step 1
Create a program called lab3.4.asm as follows:

• reserve space in memory for an array of words of size 10. Use the ‘.space’ directive. The array is called
my_array.

• the program will implement the piece of C code described below. The value of initial_value is
the first digit of your SSN. i and j will be in one of the registers $t0 to $t9.

j = initial_value;
for (i=0; i<10, i++) {

my_array[i] = j;
j++;

}

Run the program and make sure it works. Do not forget the comments at each line of code indicating what
they do.

Hint: A common mistake here is to forget that sequential word addresses in memory differ by 4 not by one.

Step 2
Most branches have as a target an instruction that is nearby. Occasionally however, a branch may have a target
that is very far away, much farther than can be represented using the 16 bit offset. Write a program called
lab3.5.asm that shows such a situation. The description of the program follows:

• prompts the user to enter two integers; store them in $t0 and $t1

• if the two integers are equal, then the program branches to a label called ‘Far’ that is very far away
(farther than a 16 bit offset can indicate), prints the message “I’m far away” and terminates.

• if the two integers are different, then the program prints the message “I’m nearby” and terminates.

Laboratory 3: Postlab Control Structures in MIPS

© 1996, Virgil Bistriceanu

Q 1:
What is the sequence of instructions the assembler generates to implement this branch?

Step 3
Return to your lab instructor copies of lab3.4.asm and lab3.5.asm together with this postlab description. Ask
your lab instructor whether copies of programs must be on paper (hardcopy), e-mail or both.

Synthetic Instruction Native Instructions Effect

