
© 1996, Virgil Bistriceanu

MIPS: The Virtual Machine

Objectives
After this lab you will know:

• what synthetic instructions are

• how synthetic instructions expand to sequences of native instructions

• how MIPS addresses the memory

Introduction
MIPS is a ‘typical’ RISC architecture: it has a simple and regular instruction set, only one memory addressing
mode (base plus displacement) and instructions are of fixed size (32 bit).

Surprisingly, it is not very simple to write assembly programs for MIPS (and for any RISC machine for that
matter). The reason is that programming is not supposed to be done in assembly language. The instruction
sets of RISC machines have been designed such that:

• they are good targets for compilers (thus simplifying the job of compiler writers)

• they allow a very efficient implementation (pipelining)

Pipelining means that several instructions are present in the CPU at any time, in various stages of execution.
Because of this situation it is possible that some sequences of instructions just don’t work the way they are
listed on paper. For instance

Ex 1:
lw $t0, 0($gp) # $t0 <- M[$gp + 0]
add $t2, $t2, $t0 # $t2 <- $t2 + $t0

loads a word from memory in register $t0 and then adds it, in the next instruction, to register $t2. The prob-
lem here is that, by the time the add instruction is ready to use register $t0, the value of $t0 has not changed
yet. This is not to say that the load instruction (lw) has not completed. More precisely, the clock cycle when
lw accesses the memory is the same clock cycle when add is doing the addition. If we let the two instruction
to proceed, then add will use the value in $t0 that had been stored there before lw.

2

© 1996, Virgil Bistriceanu

The solution to this problem is to do nothing for one clock cycle thus allowing data from memory to become
available. Then special hardware makes this data available to the add instruction, without waiting for the load
to terminate. In reality, the proper hand-written sequence of code should be:

Ex 2:
lw $t0, 0($gp) # $t0 <- M[$gp + 0]
nop # stall
add $t2, $t2, $t0 # $t2 <- $t2 + $t0

This load is said to be a delayed load. Please note that there is no nop instruction in the native MIPS instruc-
tion set. However, an instruction like add $0, $0, $0 does exactly the same thing, i.e. nothing.

Something similar happens with branches, where we fetch a new instruction (literally, the one after the branch
in the code) before we know whether the branch is taken or not. To avoid executing an instruction that should
not be executed, we may have to insert a nop after the branch in the source code. The branch is said to be a
delayed branch.

Doing assembly programming in these conditions may be very frustrating. Therefore, MIPS has decided to
hide these complexities from the programmer. Their assembler presents a virtual computer that has no
delayed loads or branches and has a richer instruction set than the underlying hardware.

The SPIM simulator simulates this MIPS virtual machine (this is the default). It can also simulate the actual
hardware when the -bare command-line option is used.

Instructions in the instruction set for the virtual machine, which are not in the instruction set of the bare
machine, are said to be synthetic instructions. Their sole purpose is to simplify programming. There is no
binary representation for them and, as a matter of fact, the assembler either replaces them with equivalent
native instructions or with a sequence of instructions from the native instruction set.

Laboratory 2: Prelab MIPS: The Virtual Machine

© 1996, Virgil Bistriceanu

Laboratory 2: Prelab

Date Section

Name

Introduction
This exercise will ask you to get familiar with synthetic instructions in the Instruction Set of the virtual MIPS
machine. There are many synthetic instructions but we only explore some of them during this lab. We will
see more of them as we continue exploring the Instruction Set in subsequent lab sessions.

Keep in mind that MIPS is a register-register (or Load/Store), three address machine.

• register-register means that all operations are performed in registers. Access to memory is provided
only by load and store instructions. There is no arithmetic or logic instruction that has part of operands
in registers and part in memory. Operands for such instructions are always in registers.

• three-address means that all arithmetic and logic instructions have three operands, one destination reg-
ister which is always listed immediately after the instruction name, and two source registers. add
$t0, $t1, $t2 adds source registers $t1 and $t2 and stores the result in the destination register
$t0.

Step 1
Using a text editor, enter the program P.2.

P.1:
.data 0x10010000

var1: .word 0x55 # var1 is a word (32 bit) with the ..
initial value 0x55

var2: .word 0xaa

.text

.globl main
main: addu $s0, $ra, $0# save $31 in $16

li $t0, X
move $t1, $t0
la $t2, var2
lw $t3, var2
sw $t2, var1

restore now the return address in $ra and return from main
addu $ra, $0, $s0 # return address back in $31
jr $ra # return from main

Laboratory 2: Prelab MIPS: The Virtual Machine

© 1996, Virgil Bistriceanu

Before you continue, make sure you have entered the last digit of your SSN instead of X in the instruc-
tion li $t0, X

Save the file under the name lab2.1.asm.

Step 2
Start the simulator, load lab2.1.asm, and then step through it. Identify synthetic instructions and fill out the
following table. Remember that synthetic instructions are those that are in the instruction set of the virtual
machine but not in the native instruction set (i.e. not in the instruction set for the bare machine). You can rec-
ognize them because they are different in memory from the source file. Sometimes there is a one to one
replacement (a synthetic instruction is replaced by a native instruction), other times several native instructions
are used to replace a synthetic instruction. The fact that a register name (like $t0) is replaced by a register
number ($8) does not denote a synthetic instruction.

In the ’Effect’ section of the table indicate what is the effect of each native instruction. Be very specific, do
not just give a general description of what the instruction does. You may follow the example below

Ex 1:
add $t0, $t1, $t2 # $t0 <- $t1 + $t2 ■

Step 3
The instruction lui is used to load a 32 bit constant in a register. Since all instructions are the same size (32
bit wide) there is no way an instruction could initialize a register with a 32 bit immediate value1. Therefore a
mechanism should be in place to allow us to load a 32 bit constant in a register even if this can not be always
done in a single step. This mechanism is the lui instruction.

1. The size of an immediate value is 16 bits.

Address Synthetic Instruction Native Instruction(s) Effect

Laboratory 2: Prelab MIPS: The Virtual Machine

© 1996, Virgil Bistriceanu

The lui instruction uses a register (usually $1 which is a register reserved for the assembler) and a constant.
In the table below enter the constant you find with the first lui in your program, both in decimal and in 16
bit hexadecimal format.

Reload lab2.1.asm and set a breakpoint at the address of that lui instruction. Run, and the program will stop
at that breakpoint. Write down the contents of the register used by the instruction. Execute that instruction
(step 1) and write down the content of the same register.

Q 1:
Assume you want to load the constant 0xabcd0000 in register $t0. What native instruction(s) should be
executed?

Step 4
What is the content of register $t2 after the instruction la $t2, var2 has been executed? Note that this

synthetic instruction contains a lui followed by an immediate instruction.

Q 2:
What does the immediate instruction do in this case?

Q 3:
Assume you want to load the constant 0xabcd00ef in register $t0. What native instruction(s) should be

Decimal constant 16 bit hexadecimal

Register Before executing lui After executing lui

Laboratory 2: Prelab MIPS: The Virtual Machine

© 1996, Virgil Bistriceanu

executed?

Laboratory 2: Inlab MIPS: The Virtual Machine

© 1996, Virgil Bistriceanu

Laboratory 2: Inlab

Date Section

Name

Addressing in MIPS
During this exercise you will use the load word (lw) and store word (sw) instructions.

Background
The only way CPU can access the memory in MIPS is through load and store instructions. There is only one
addressing mode (base+displacement). Having just one addressing mode is part of the RISC philosophy to
keep instructions simple thus allowing for a simple control structure and efficient pipelining.

The figure below shows the memory layout for MIPS systems. The user space is reserved for user programs.

The kernel space can not be directly accesses by user programs, and it is reserved for the use of the operating

Text Segment (code)

Dynamic Data

Static Data

Stack

0x00000000

0x7fffffff

0x80000000

0xffffffff

Reserved

Kernel

User

Laboratory 2: Inlab MIPS: The Virtual Machine

© 1996, Virgil Bistriceanu

system1. Note that the kernel space is half of the address space (it contains those addresses that have the most
significant bit 1). The kernel space may be organized the same way as the user space (with a text segment,
data segment, stack), though this is not shown on the figure.

The text segment contains the user code the system is executing. The data segment has two sections:

• static data, which contains the space for static and global variables; generally speaking this is the stor-
age place for data object whose life is the same as the program’s

• dynamic data, where space is allocated for data objects at run time (typically using malloc)

The stack segment grows towards small addresses and is used for the call/return mechanism as well as to hold
local variables (those defined inside a block and which are not declared to be static).

In base+displacement addressing, a register (the base) is used together with an offset (displacement) to create
the address used to accress the memory. The displacement is an immediate value supplied in the instruction.

Ex 1:
lw $t0, 4($t2) # $t0 <- M[$t2 + 4]

reads a word from the memory address formed by adding 4 to the content of register $t2. The word read
from that memory location is stored in register $t0. ■

To access the memory two steps are necessary if the base address is not in a register already:

• load the base address in the base register: in general this is done using the lui instruction since the
address is 32 bit wide and all other instructions that can load an immediate value do only load a 16 bit
constant

• access the memory using the base register and the proper displacement.

Ex 2:
lui $1, 0x1001 # $1 <- 0x10010000
lw $8, 4($1) # $8 <- M[0x10010004] ■

To access data on the stack we use register $sp (the stack pointer). Since this register is a reserved register,
all stack accesses will consist of only one instruction, as the stack pointer has already been set to the proper
value when the program was loaded. In this context ‘reserved register’ means that the MIPS register usage
convention indicates that the register $29 ($sp) be used as a stack pointer. But there is no mechanism to
restrict its usage for a different purpose.

To access data in the static data section two different possibilities are available.

• data declared within a ‘.data’ section of the program will be accessed using as base an address within
the data segment (most likely the start address of the data segment). There are two instructions the
assembler generates for each load/store instruction.

• data that is declared using the ‘.extern’ assembler directive will be stored in a special area within the
data segment and will be accessed using the reserved $gp (global pointer) register. Therefore each

1. Laboratory 7 presents the exception mechanism in MIPS and how the kernel space is used.

Laboratory 2: Inlab MIPS: The Virtual Machine

© 1996, Virgil Bistriceanu

access to such data will be only one instruction as the $gp register has been set to the proper value
when the program was loaded.

Step 1
Ask your lab instructor to provide you with four integer values you will use when creating the program
lab2.2.asm

Create the program as follows

• reserve space in memory for four variables called var1 through var4 of size word. The initial values
of these variables will be those provided by your lab instructor

• also reserve space in memory for two variables called first and last of size byte. The initial value of
first should be the first letter of your first name and the initial value of last should be the first letter of
your last name

• the program swaps the values of variables in memory: the new value of var1 will be the initial value
of var4, the new value of var2 will be the initial value of var3, var3 will get the initial value of var2,
and finally var4 will get the initial value of var1. first and last will be left unchanged

• use registers $t0 to $t8 if you need to

• use the extended instruction set

• each line in the program has a comment indicating what the instruction does

Step 2
Find the displacement (offset) of each variable in your program from the beginning of the data segment. The
displacement will be the distance in bytes between the beginning of the data segment and the place where the
variable is stored. Use the print command to see what is stored in memory in the data segment.

Variable name Initial value

var1

var2

var3

var4

Variable Displacement

var1

var2

var3

var4

first

last

Laboratory 2: Inlab MIPS: The Virtual Machine

© 1996, Virgil Bistriceanu

Step 3
Run the program and make sure it works properly.

Q 1:
What is the number of instructions executed? Count only instructions between the label ‘main’ and the last
instruction executed from your program.

Step 4
Start the simulator using the -bare command line option. This will make SPIM simulate a bare MIPS
processor.

Load lab2.2.asm. What is the reason you get error messages?

Instruction Count =

Laboratory 2: Postlab MIPS: The Virtual Machine

© 1996, Virgil Bistriceanu

Laboratory 2: Postlab

Date Section

Name

Addressing in MIPS (continued)
In this exercise you will continue exploring addressing in MIPS. You are also required to detail the memory
model SPIM implements.

Step 1
As you could see during the inlab exercise, one can not run on the bare machine code that uses the extended
instruction set.

Based on lab2.2.asm create a new program that will do the same thing but will be able to run on the bare
machine. Save this as lab2.3.asm. Optimize your code as much as possible.

Q 1:
What is the number of instructions executed? Count only instructions between the label ‘main’ and the last
instruction executed from your program.

Step 2
Create the program lab2.4.asm as follows:

• reserve space in memory for two variables called var1 and var2 of size word. The initial values of these
variables will be the first two digits of your SSN for var1 and the next two digits of your SSN for var2

• also reserve space in memory for two variables called ext1 and ext2 of size word. Use the ‘.extern’ dec-
laration for these two variables. The assembler will reserve space for them in the data segment that can
be accessed using the $gp register

• the program copies the values of var1 and var2 in ext2 and ext1 respectively

• use registers $t0 to $t8 if you need to

• use the extended instruction set

• each line in the program has a comment indicating what the instruction does

Instruction Count =

Laboratory 2: Postlab MIPS: The Virtual Machine

© 1996, Virgil Bistriceanu

Q 2:
What are the displacements of ext1 and ext2 from the global pointer ($gp) value?

Q 3:
What exactly are the addresses where variables are stored in memory?

Q 4:
How many native instructions are needed for each of the following memory accesses?

Step 3
Return to your lab instructor copies of lab2.3.asm and lab2.4.asm together with this postlab description. Ask
your lab instructor whether copies of programs must be on paper (hardcopy), e-mail or both.

Variable Displacement (decimal) Displacement (hexadecimal)

Variable Address (hexadecimal)

var1

var2

ext1

ext2

Memory Access Native Instructions

lw $t0, var1

sw $t0, ext1

