
Virgil Bistriceanu Illinois Institute of Technology

135

8. The Memory Hierarchy (2) - The Cache

The uppermost level in the memory hierarchy of any modern computer is
the cache. It first appeared as the memory level between the CPU and the
main memory. It is the fastest part of the memory hierarchy, and the
smallest in dimensions.

Many modern computers have more than one cache, it is common to find
an instruction cache together with a data cache. and in many systems the
caches are hierarchy structured by themselves: most microprocessors in the
market today have an internal cache, with a size of a few KBytes, and
allow an external cache with a much larger capacity, tens to hundreds of
KBytes.

8.1 Some Values

There is a large variety of caches with different parameters. Below are
listed some of the parameters for the external cache of a DEC 7000 system
which is built around the 21064 ALPHA chip:

8 The Memory Hierarchy (2) - The Cache

Virgil Bistriceanu Illinois Institute of Technology

136

8.2 Placing a block in the cache

Freedom of placing a block into the cache ranges from absolute, when the
block can be placed anywhere in the cache, to zero, when the block has a
strictly predefined position.

• a cache is said to be directly mapped if every block has a unique,
predefined place in the cache;

• if the block can be placed anywhere in the cache the cache is said
to be fully associative;

• if the block can be placed in a restricted set of places then the
cache is called set associative. A set is a group of two or more
blocks; a block belongs to some predefined set, but inside the set it
can be placed anywhere. If a set contains n blocks then the cache
is called n-way set associative.

Obviously direct-mapped and fully-associative are particular names for a
1-way set associative and k-way set associative (for a cache with k blocks)
respectively.

Transfers between the lower level of the memory and the cache occur in
blocks: for this reason we can see the memory address as divided in two
fields:

 MSB LSB

Example 8.1 MEMORY ADDRESS:

What is the size of the two fields in an address if the address size is 32 bits
and the block is 16 Byte wide?

Block size (line size) 64 Bytes

Hit time 5 clock cycles

Miss penalty 340 ns

Access time 280 ns

Transfer time 60 ns

Cache size 4 MBytes

CPU clock rate 182 MHz

Block-frame address Block offset

8.2 Placing a block in the cache

Virgil Bistriceanu Illinois Institute of Technology

137

Answer:
Assuming that the memory is byte addressable there are 4 bits necessary to
specify the position of the byte in the block. The other 28 bits in the
address identify a block in the lower level of the memory hierarchy.

MSB LSB

The address above refers to block number 3 in the lower level; inside that
block the byte number 13 will be accessed.

The usual way to map blocks to positions in the cache is:

• for a direct mapped cache:
index = (Block-frame address) modulo (number of blocks in the
cache);

• for a set associative cache:
index = (block-frame address) modulo (number of sets in the
cache).

For a cache that has a power of two blocks (suppose 2m blocks), finding the
position is a direct mapped cache is trivial: position (index) is indicated by
the last (the least significant) log2m bits of the block-frame address.

For a set associative cache that has a power of two sets (suppose 2k sets),
the set where a given block has to be mapped is indicated by the last (the
least significant) log2k bits of the block-frame address.

The address can be viewed as having three fields: the block-frame address
is split into two fields, the tag and the index, plus the block offset address:

 MSB LSB
In the case of a direct mapped cache the index field specifies the position of
the block in the cache. For a set associative cache the index fields specifies
in which set the block belongs. As for a fully associative cache this field
has zero length.

Example 8.2 POSITION OF BLOCKS:

A CPU has a 7 bit address; the cache has 4 blocks 8 bytes each. The CPU
addresses the byte at address 107. Suppose this is a miss and show where
will be the corresponding block placed.

0000 0000 0000 0000 0000 0000 0011 1101

Tag Index Block offset

8 The Memory Hierarchy (2) - The Cache

Virgil Bistriceanu Illinois Institute of Technology

138

Answer:
(107)10 = (1101011)2

With an 8 bytes block the least significant three bits of the address (011) are
used to indicate the position of a byte within a block.
The most significant four bits ((1101)2 = 1310) represent the block-frame
address, i.e. the number of the block in the lower level of the memory.
Because it is a direct mapped cache, the position of block number 13 in the
cache is given by:

(Block-frame address) modulo (number of blocks in the cache)
 = 13 mod 4 = 1

Hence the block number 13 in the lower level of the memory hierarchy will
be placed in position 1 into the cache. This is precisely the same as using
the last

log24 = 2

bits (01), the index, of the block-frame address (1101).

Figure 8.2 is a graphical representation for this example. Figures 8.1 and
8.3 are graphical representations of the same problem we have in example
8.2 but for fully associative and set associative caches respectively.

Because the cache is smaller than the memory level below it, there are
several blocks that will map to the same position in the cache; using the
Example 8.2 it is easy to see that blocks number 1, 5, 9, 13 will all map to
the same position. The question now is: how can we determine if the block
in the memory is the one we are looking for, or not?

8.3 Finding a Block in the Cache

Each line in the cache is augmented with a tag field that holds the tag field
of the address corresponding to that block. When the CPU issues an
address, there are, possibly, several blocks in the cache that could contain
the desired information. The one will be chosen that has the same tag as
that of the address issued by the CPU.

Figure 8.4 presents the same cache we had in figures 8.1 to 8.3, improved
with the tag fields. In the case of a fully associative cache all tags in the
cache must be checked against the address's tag field; this because in a fully
associative cache blocks may be placed anywhere. Because the cache must
be very fast, the checking process must be done in parallel, all cache's tags

8.3 Finding a Block in the Cache

Virgil Bistriceanu Illinois Institute of Technology

139

must be compared at the same time with the address tag fields. For a set
associative cache there is less work than in a fully associative cache: there
is only one set in which the block can be; therefore only the tags of the
blocks in that set have to be compared against the address tag field.

If the cache is direct mapped, the block can have only one position in the
cache: only the tag of that block is compared with the address tag field.

There must also be a way to indicate the content of a block must be
ignored. When the system starts up for instance, there will be some binary
configurations in every tag of the cache; they are meaningless at this
moment; however some of them could match the tag of an address issued
by the processor thus delivering bad data. The solution is a bit for every
cache line, which indicates if that line contains valid data. This bit is called
the valid bit and is initialized to Non-valid (0) when the system starts up.

Figure 8.5 presents a direct mapped cache schematic; a comparator
(COMP) is used to check if the Tag field of the CPU address matches the
content of the tag field in the cache at address Index. The valid bit at that
address must be Valid (1) to have a hit when the tags are the same. The
multiplexor (MUX) at the Data outputs is used to select that part of the
block we need.

Figure 8.6 presents the status of a four line, direct mapped cache, similar to
the one we had in Example 8.2 after a sequence of misses; suppose that
after reset (or power-on), the CPU issues the following sequence of reads at
addresses (in decimal notation): 78, 79, 80, 77, 109, 27, 81. Hits don't
change the state of the cache when only reads are performed; therefore
only the state of the cache after misses is presented in Figure 8.6. Below is
the binary representation of addresses involved in the process:

8 The Memory Hierarchy (2) - The Cache

Virgil Bistriceanu Illinois Institute of Technology

140

Index

0

1

2

3

Block
Number

0

1

13

15

Fully associative cache

Block 13 can go
anywhere in the cache

Lower level in memory hierarchy

FIGURE 8.1 A fully associative four blocks (lines) cache connected to a 16 blocks.

8.3 Finding a Block in the Cache

Virgil Bistriceanu Illinois Institute of Technology

141

Index

0

1

2

3

Block
Number

0

1

13

15

Direct mapped cache

Block 13 can go
only in position 1

FIGURE 8.2 A Direct mapped, four blocks (lines) cache connected to a 16 blocks memory.

(13 mod 4) in the
cache

8 The Memory Hierarchy (2) - The Cache

Virgil Bistriceanu Illinois Institute of Technology

142

Index

0

1

2

3

Block
Number

0

1

13

15

 Set associative cache

Block 13 goes to

FIGURE 8.3 A 2-way set-associative cache connected to a 16 blocks memory.

set 1 (13 mod 2);
in the set 1 it can
occupy any position

 Set 0

Set 1

8.3 Finding a Block in the Cache

Virgil Bistriceanu Illinois Institute of Technology

143

Tag Data

13

13

13

0

1

2

3

Set 0

Set 1

Fully associative; all tags
must be compared. The
searched block is found
at index 3.

For a set associative cache
the block can be in only one
set; only the tags of that set
must be checked

In a direct mapped cache
only one tag must be
compared with the address
tag field.

FIGURE 8.4 Finding a block in the cache implies comparing the tag field of the actual address with the
 content of one or more tags in the cache.

8 The Memory Hierarchy (2) - The Cache

Virgil Bistriceanu Illinois Institute of Technology

144

• Address 78: miss because the valid bit is 0 (Not Valid); a block is
brought and placed into the cache in position Index = 01

• Address 79: hit; as Figure 8.6.b points out the content of this
memory address is already in the cache

• Address 80: miss because the valid bit at index 10 in the cache is 0
(Not Valid); a block is brought into the cache and placed at this
index.

• Address 77: hit, found at index 01 in the cache.

• Address 109: miss; the block being transferred from the lower
level of the hierarchy is placed in the cache at index 01, thus
replacing the previous block.

• Address 27: miss; block transferred into the cache at index 11.

• Address 81: hit; the item is found in the cache at index 10.

It is a common mistake to neglect the tag field when computing the amount
of memory necessary for a cache.

Example 8.3 COMPUTATION OF MEMORY REQUIRED BY A CACHE:

A 16 KB cache is being designed for a 32 bit system. The block size is 16
bytes, and the cache is direct mapped. Which the total amount of memory
needed to implement this cache?

Answer:
The cache will have a number of lines equal with:

Address Tag Index Block offset

 78 10 01 110

 79 10 01 111

 80 10 10 000

 77 10 01 101

 109 11 01 101

 27 00 11 011

 81 10 10 001

cache capacity
blocksize

----------------------------------- 16KB
16 B
-------------- 1 KB 2

10
lines= = =

8.4 Replacing Policies

Virgil Bistriceanu Illinois Institute of Technology

145

Hence the number of bits in the index field of an address is 10. The tag field
in an address is:

32 - 3 - 10 = 19 bits(3 bits are needed as block offset)

Each line in the cache needs a number of bits equal to:

1 + 19 + 16 * 8 = 148 bits

The total amount of memory for the cache is:

line_size * number_of_lines = 148 * 210 = 151.5 Kbit = 18.9 KB roughly

This figure is by 18% larger than the “useful” size of the cache, and is
hardly negligible.

8.4 Replacing Policies

Or in other words, answering the question “which block should go out in
the case of a cache miss?”. The replacing policy depends upon the type of
cache. For a direct mapped cache the decision is very simple: because a
block can go in only one place, the block in that position will be replaced.
This simplifies the hardware (remember that a cache is hardware
managed).

For fully associative and set-associative caches a block may go in several
positions (at different indexes), and, as a result, there are different
possibilities to choose a block that will be replaced. Note that, due to the
high hit rates in the caches (high hit rates are a must for good access times),
the decision is painful, with a high probability we will replace blocks that
contain useful information.

The most used policies for replacement are:

• random: this technique is very simple, one block is selected at
random and replaced.

• LRU (Least Recently Used): in this approach accesses to the
cache are recorded; the block that will be replaced is the one that
has been unused (unaccessed) for the longest period of time. This
technique is a direct consequence of the temporal locality
principle: if blocks tend to be accessed again soon then it seems
natural to discard the one that has been of little use in the past.

8 The Memory Hierarchy (2) - The Cache

Virgil Bistriceanu Illinois Institute of Technology

146

CPU Addresses

Tag Index Block offset

Address

Valid Tag Data

ntag

nindex

1 ntag

MUX

COMP
 =

Hit

FIGURE 8.5 a direct mapped cache schematic.

8.4 Replacing Policies

Virgil Bistriceanu Illinois Institute of Technology

147

0
0
0
0

0
1 10 M[72] M[73] M[74] M[75] M[76] M[77] M[78] M[79]
0
0

0
1 10 M[72] M[73] M[74] M[75] M[76] M[77] M[78] M[79]
1 10 M[80] M[81] M[82] M[83] M[84] M[85] M[86] M[87]
0

0
1 11 M[104] M[105] M[106] M[107] M[108] M[109] M[110] M[111]
1 10 M[80] M[81] M[82] M[83] M[84] M[85] M[86] M[87]
0

0
1 11 M[104] M[105] M[106] M[107] M[108] M[109] M[110] M[111]
1 10 M[80] M[81] M[82] M[83] M[84] M[85] M[86] M[87]
1 00 M[24] M[25] M[26] M[27] M[28] M[29] M[30] M[31]

a. The initial state of cache after power on. The Tag and Data fields contain some
arbitrary binary configurations which are not shown.

b. After the miss at address 78.

c. After the miss at address 80.

Index
00
01
10
11

V Tag Data

d. After the miss at address 109. The previous block at index 01 has been replaced.

e. After the miss at address 27.

Index

00
01

10
11

V Tag Data

Index

00
01
10
11

V Tag Data

Index
00
01
10
11

V Tag Data

Index

00
01
10
11

V Tag Data

FIGURE 8.6 The cache after handling the sequence of addresses: 78 (miss), 79 (hit),
 80 (miss), 77 (hit), 109 (miss), 81 (hit).

8 The Memory Hierarchy (2) - The Cache

Virgil Bistriceanu Illinois Institute of Technology

148

• FIFO (First In First Out): the oldest block in the cache (or in the
set for a set associative cache) is selected for replacement. This
policy does not take into account the addressing pattern in the
past: it may happen the block has been heavily used in the
previous addressing cycles, and yet it is chosen for replacement.
The FIFO policy is outperformed by the random policy which has,
as a plus, the advantage of being easier to implement.

As a matter of fact, almost all cache implementations use either random or
LRU for block replacement decision. The LRU policy delivers slightly
better performance than random, but it is more difficult to implement: at
every access the least recently used block must be determined and marked
somehow. For instance, each block could have associated a hardware
counter (a software one would be too slow), called age counter; when a
block is addressed its counter is set to zero, and all other ones are
incremented by one. When a block must be replaced, the decision block
must find the block with the highest value in its age counter. Obviously the
hardware resources are more expensive than for a random policy, and, what
is worse, the algorithm is complicated enough to slow down the cache, as
compared with a random decision.

Example 8.4 CONTENTS OF A CACHE:

Consider a fully associative four block cache, and the following stream of
block-frame addresses: 2, 3, 4, 2, 5, 2, 3, 1, 4, 5, 2, 2, 2, 3. Show the content
of the cache in two cases:
a) using a LRU algorithm for replacing blocks;
b) using a FIFO policy.

Answer:

For the LRU replacement policy:

Address:
2 3 4 2 5 2 3 1 4 5 2 2 2 3

21 22 23 21 22 21 22 23 24 51 52 53 54 55

31 32 33 34 35 31 32 33 34 21 21 21 22

41 42 43 44 45 11 12 13 14 15 16 31

51 52 53 54 41 42 43 44 45 46

M M M M M M M M M

8.5 Cache Write Policies

Virgil Bistriceanu Illinois Institute of Technology

149

For the FIFO policy:
Address:

For the LRU policy, the subscripts indicate the age of the blocks in the
cache. For the FIFO policy a star is used to indicate which is the next block
to be replaced. The Ms under the columns of tables indicate the misses.

For the short sequence of block-frame addresses in this example, the FIFO
policy yields a smaller number of misses, 7 as compared with 9 for the
LRU. However in most cases the LRU strategy proves to be better than
FIFO.

8.5 Cache Write Policies

So far we have discussed about how reads are handled in a cache. Writes
are more difficult and affect the performance more than reads do. If we take
a closer look at the block scheme in Figure 8.5 we realize that, in the case
of a read, the two basic operations are performed in parallel: the tag and
reading the block are read at the same time. Further, the tags must be
compared, and the delay in the comparator (COMP) is slightly higher then
the delay through the multiplexor (MUX): if we have a hit then the data is
already stable at the cache's outputs; if there a miss there is no harm in
reading some improper data from the cache, we simply ignore it.

When we come to writes we realize that the sequence of operations is
longer than for a read: the problem is that, for most caches, only a part of
the block will be modified; if the block is 16 Bytes wide, and the CPU
writes a byte, then only that byte must be changed. This implies a read-
modify-write sequence in the cache: read the whole block, modify the
needed portion, write the new configuration of the block. Of course the
block can not be changed until a hit/miss decision is taken.

There are two options when writing into the cache, depending upon how
the information in the lower lever of the hierarchy is updated:

• write through: the item is written both into the cache and into the
corresponding block in the lower level of the hierarchy; as a

2 3 4 2 5 2 3 1 4 5 2 2 2 3

2* 2* 2* 2* 2* 2* 2* 1 1 1 1 1 1 1

3 3 3 3 3 3 3* 3* 3* 2 2 2 2

4 4 4 4 4 4 4 4 4* 4* 4* 3

5 5 5 5 5 5 5 5 5 5*

M M M M M M M

8 The Memory Hierarchy (2) - The Cache

Virgil Bistriceanu Illinois Institute of Technology

150

result, the blocks in the lower level of the hierarchy contains at
every moment the same information as the blocks in the cache;

• write back: writes occur only in the cache; the modified block is
written into the lower level of the hierarchy only when it has to be
replaced.

With the write-back policy there is useless to write back a block (i.e. to
write a block into the lower level of the hierarchy) if the block has not been
modified while in the cache. To keep track if a block was modified or not, a
bit, called the dirty bit, is used for every block in the cache; when the
block is brought into the cache this bit is set to Not-dirty (0); the first write
in that block sets the bit to Dirty (1). When the replacement decision is
taken, the control checks if the block is dirty or clean. If the block is dirty it
has to be to the lower level of the memory; otherwise a new block coming
from the lower level of the hierarchy can simply overwrite that block in the
cache.

For fully or set associative caches, where several bocks may candidate for
replacement, it is common to prefer the one which is clean (if any), thus
saving the time necessary to transfer a block from the cache to the lower
level of the memory.

The two cache write policies have their advantages and disadvantages:

• write through: this is easy to implement, and has the advantage
that the memory has the most recent value of data; this property is
especially attractive in multiprocessing and I/O. The drawback is
that writes going to the lower level in memory are slower. When
the CPU has to wait for a write to complete it is said to write stall.
A simple way to reduce write stalls is to have a write buffer.
which allows CPU to continue working while the memory is
updated; this works fine as long as the rate at which writes occur is
lower than the rate at which transfers from the buffer to the
memory can be done.

• write back: is more difficult to implement but has the advantage
that writes occur at the cache's speed; moreover writes are local to
the cache and don't require access to the system bus, unless a dirty
block has to be transferred from the cache to the memory. So this
write policy uses less memory bandwidth, which is attractive for
multiprocessing where several CPUs share the system's resources.
Another disadvantage, besides greater hardware complexity, is
that read misses may require writes to the memory, in the case a
block has to be transferred into the lower level of the hierarchy.

8.6 The Cache Performance

Virgil Bistriceanu Illinois Institute of Technology

151

8.6 The Cache Performance

As we discussed very early in this course, the ultimate goal of a designer is
to reduce the CPUtime for a program. When connected with a memory, we
must account both for the execution time of the CPU and for its stalls:

CPUtime = (CPUexec + Memory_stalls) * Tck

where both the execution time and stalls are expressed in clock cycles.

Now the natural question we may ask is: do we include the cache access
time in the CPUexec or in Memory_stalls? Both ways are possible: it is
possible to consider the cache access time in Memory_stalls, simply
because the cache is a part of the memory hierarchy. On the other hand,
because the cache is supposed to be very fast, we can include the hit time in
the CPU execution time as the item sought in the cache will be delivered
very quickly, maybe during the same execution cycle. As a matter of fact
this is the widely accepted convention.

Memory_stalls will include the stall due to misses, for reads and writes:

Memory_stalls = Mem_accesses_per_program * miss_rate * miss_penalty

We now get for the CPUtime:

CPUtime = (CPUexec + Mem_accesses_per_program*miss_rate*miss_penalty)*Tck

which can be further modified by factoring the IC (Instruction Count):

CPUtime = IC*(CPIexec + Mem_accesses_per_instruction*miss_rate*miss_penalty)*Tck

The above formula can be also written using misses per instruction as:

CPUtime = IC*(CPIexec + Misses_per_instruction*miss_penalty)*Tck

Example 8.5 CPU PERFORMANCE WITH CACHE:

The average execution time for instructions in some CPU is 7 (ignoring
stalls); the miss penalty is 10 clock cycles, the miss rate is 5%, and there
are, on average, 2.5 memory accesses per instruction. What is the CPU
performance if the cache is taken into account?

Answer:
CPUtime = IC*(CPIexec + Mem_accesses_per_instruction*miss_rate*miss_penalty)*Tck

8 The Memory Hierarchy (2) - The Cache

Virgil Bistriceanu Illinois Institute of Technology

152

CPUtime (with cache) = IC*(7 + 2.5*0.05*10)*Tck = IC*8.25*Tck

The IC and Tck are the same in both cases, with and without cache, so the
result of including the cache's behavior is an increase in CPUtime by

The following example presents the impact of the cache for a system with a
lower CPI (as is the case with pipelined CPUs):

Example 8.6 CPU PERFORMANCE WITH CACHE AND CPI:

The CPI for a CPU is 1.5, there are on the average 1.4 memory accesses
per instruction, the miss rate is 5%, and the miss penalty is 10 clock cycles.
What is the performance if the cache is considered?

Answer:
CPUtime = IC*(CPIexec + Mem_accesses_per_instruction*miss_rate*miss_penalty)*Tck

CPUtime (with cache) = IC*(1.5 + 1.4*0.05*10)*Tck = IC*2.2*Tck

This means an increase in CPUtime by 46%.

Note that for a machine with lower CPI the impact of the cache is more
significant than for a machine with a higher CPI.

The following example shows the impact of the cache on system with
different clock rates.

Example 8.7 CPU PERFORMANCE WITH CACHE, CPI AND CLOCK RATES:

The same architecture is implemented using two different technologies,
one which allows a clock cycle of 20ns and another one which permits a
10ns clock cycle. Two systems, built around CPUs in the two technologies,
use the same type of circuits for their main memories: the miss penalty is,
in both cases, 140ns. How does the cache behavior affect the CPU
performance? Assume that the ideal CPI is 1.5, the miss rate is 5%, and
there are 1.4 memory accesses per instruction on average.

Answer:
CPUtime = IC*(CPIexec + Mem_accesses_per_instruction*miss_rate*miss_penalty)*Tck

For the CPU running with a 20ns clock cycle, the miss penalty is 140/20 =
7 clock cycles, and the performance is given by:

CPUtime1 = IC*(1.5 + 1.4*0.05*7)*Tck1 = IC*1.99*Tck1

8.25
7

---------- 1– 17.8%=

8.6 The Cache Performance

Virgil Bistriceanu Illinois Institute of Technology

153

The effect of the cache, for this machine, is to stretch the execution time by
32%. For the machine running with a 10 ns clock cycle, the miss penalty is
140/10 = 14 clock cycles, and the performance is:

CPUtime2 = IC*(1.5 + 1.4*0.05*14)*Tck2 = IC*2.48*Tck2

The cache increases the CPUtime, for this machine, by 65%.
Example 8.7 clearly points out that the cache behavior gets more important
while CPU are running faster. Neglecting the cache may completely
compromise the performance of a CPU. For a given instruction set and a
specified program the CPIexec can be measured; the Instruction Count can
also be measured, and Tck is known for the given machine. Reducing the
CPUtime can be achieved by:

• reducing the miss rate: the easy way is to increase the cache size;
however there is a serious limitation in doing so for on-chip
caches: the space. Most on-chip caches are only a few kilobytes in
size.

• reducing the miss penalty: for most cases the access time
dominates the miss penalty; while the access time is given by the
technology used for memories, and, as a result can not be easily
lowered, it is possible to use intermediate levels of cache between
the internal cache (on-chip) and main memory.

Here is a short description of internal caches for several popular CPUs:

CPU Instruction Data

Intel 80486 8 KB

Motorola 68040 4 KB 4 KB

Intel PENTIUM 8 KB 8 KB

DEC Alpha 8 KB 8 KB

Sun MicroSPARC 4 KB 2 KB

Sun SuperSPARC 20 KB 16 KB

Hewlett-Packard PA 7100 - -

MIPS R4000 8 KB 8 KB

MIPS R4400 16 KB 16 KB

PowerPC 601 32 KB

8 The Memory Hierarchy (2) - The Cache

Virgil Bistriceanu Illinois Institute of Technology

154

8.7 Sources for Cache Misses

Misses in a cache can have one of the three following sources:

• compulsory: when the program starts running the cache is empty
(no block for that program yet);

• capacity: if the cache does not contain all the blocks needed for
the execution of the program, then some blocks will be replaced
and then, later, brought back into the cache;

• conflict: this happens in direct mapped and set associative caches
if too many blocks map to the same position.

There is little to do against compulsory misses: increasing the block size
reduces indeed the number of compulsory misses as the cache will be filled
faster; the drawback is that bigger blocks may increase the number of
conflict misses as there are fewer blocks in the cache.

Conflict misses seem to be easiest to resolve: a fully associative cache has
no conflicts. However full associativity is very expensive in terms of
hardware: more hardware tends to slow down the clock, yielding an overall
poorer performance.

As for capacity misses, the solution is larger caches, both internal and
external. If the cache is too small to fit the requirement of some program,
then most of the time will be spent in transferring blocks between the cache
and the lower level of the hierarchy; this is called trashing. A trashing
memory hierarchy has a performance that is close to that of the memory in
the lower level, or even poorer due to misses overhead.

8.8 Unified Caches or Instruction/Data Only?

Initial caches were meant to hold both data and instructions. This caches
are called unified or mixed. It is possible however to have separate caches
for instructions and data, as the CPU knows if it is fetching an instruction
or loading/storing data. Having separate caches allows the CPU to perform
an instruction fetch at the same time with a data read/write, as it happens in
pipelined implementations. As the table in section 8.6 shows, most of the
today’s architectures have separate caches. Separate caches give the
designer the opportunity to separately optimize each cache: they may have
different sizes, different organizations, and block sizes. The main
observation is that instruction caches have lower miss rates as data caches,
for the main reason that instructions expose better spatial locality than data.

Exercises

Virgil Bistriceanu Illinois Institute of Technology

155

Exercises

8.1 Draw a fully associative cache schematic. Which are the hardware
resources besides the ones required by a direct mapped cache? You must
pick some cache capacity and some block size.

8.2 Redo the design in problem 8.1 but for a 4-way set associative cache.
Compare your design with the fully associative cache and the direct
mapped cache.

8.3 Design a 16 KB direct mapped cache for a 32 bit address system. The
block size is 4 bytes (1 word). Compare the result with the result in
Example 8.3.

8.4 Design (gate level) a 4 bit comparator. While most MSI circuits provide
three outputs indicating the relation between the A and B inputs (A > B, A
= B, A < B), your design must have only one output which gets active (1)
when the two inputs are equal.

8.5 Assume you have two machines with the same CPU and same main
memory, but different caches:

cache 1: a 16 set, 2-way associative cache, 16 bytes per block, write
through;
cache 2: a 32 lines direct mapped cache, 16 bytes per block, write
back.

Also assume that a miss takes 10 longer than a hit, for both machines. A
word write takes 5 times longer than a hit, for the write through cache; the
transfer of a block from the cache to the memory takes 15 times as much as
a hit.
a) write a program that makes machine 1 run faster than machine 2 (by as
much as possible);
b) write a program that makes machine 2 run faster than machine 1 (by as
much as possible).

8 The Memory Hierarchy (2) - The Cache

Virgil Bistriceanu Illinois Institute of Technology

156

