
Virgil Bistriceanu Illinois Institute of Technology

109

6. Interrupts

6.1 Examples and Alternate Names

Interrupts are events that require a change in the control flow, other than
jumps or branches. They appeared as an efficient way to manage I/O
devices: instead of continuously checking the state of a peripheral device
(polling), the CPU does something else until it is announced by the
peripheral (with an interrupt) that it is ready; at this moment CPU suspends
its regular operation and take appropriate measures to handle the interrupt.
Note that polling is not only very inefficient, in that the CPU does nothing
but testing the status of some peripheral device, it may lead to a system that
get stuck in the case the awaited event never occurs. Even if it eventually
resumes the computation it is no guarantee that other events have not been
lost. Such an approach can be found only in very simple processing units.

Interrupts make the Control Unit specification and implementation
extremely difficult; they must be considered from an early stage of the
design. Here are some of the situations in which interrupts are used:

• I/O device request
• arithmetic overflow/underflow
• hardware malfunction (with the most frequent case of memory

error)

6 Interrupts

Virgil Bistriceanu Illinois Institute of Technology

110

• real-time clock;
• power failure;
• wrong instruction;
• unaligned memory access (if the system requires alignment);
• page fault (object not in memory);
• user defined breakpoints;
• others.

There is no unique name for this kind of change in control flow which we
usually call interrupt.

• In IBM-360 and Intel 80x86 every event is called an interrupt.
• In Motorola 68000 family every event is called an exception.
• The VAX divides events in interrupts and exceptions:

• interrupts may be: device, software, urgent;
• exceptions may be: faults, traps, aborts.

While there are different names to describe the same event, it is important
to keep in mind that they all describe the same thing; actions in every case
might be different, but what is common is that they all require a transfer in
the flow of control.

6.2 A Classification of Interrupts

Interrupts have received different names in the machines coming from
different vendors because they wanted to emphasize different
characteristics of various events. We can see every interrupt as being
characterized by one of the following:

1.User request v. system
The user may have the possibility to request an interrupt as is the
case with breakpoints or calling operating system services. Most
of the interrupts come however from the system;

2.User maskable v. nonmaskable
There are interrupts the user may disable or enable in the
program, such as the breakpoints or arithmetic overflows. Other
interrupts must always determine a response from the CPU, as I/O
requests or hardware failure events; these are said to be
nonmaskable.

3.Within v. between instructions
Some events require a very quick response, they must be treated
at once, as is the case with a power failure interrupt, an overflow
or a memory page fault. Other interrupts may be treated at the end

6.3 Checking for interrupts

Virgil Bistriceanu Illinois Institute of Technology

111

of instructions (i.e. between instructions) as happens with I/O
requests or breakpoints.

4.Synchronous v. asynchronous
An interrupt is said to be synchronous if it occurs at the same
place, every time the program is executed with the same data and
memory allocation. This is the case with arithmetic overflows,
breakpoints, page faults or undefined instructions. Asynchronous
interrupts are those that occur unexpectedly, without any time
relation to the program being executed, as happens with hardware
problems, power failures, or I/O requests.

5. Resume v. terminate
If the program stops after the interrupt then we have a terminating
event; this is the case for example with power failures, hardware
troubles or undefined instructions.

In all cases the status of the program must be saved, another program (an
interrupt handler) must be invoked to solve the problem that caused the
interrupt, and finally the program's state restored and the program restarted.

6.3 Checking for interrupts

We have to modify the state-diagram of the Control Unit to check for
interrupts; we also have to update the hardware to provide support for
interrupts handling. At this point we should make a major decision: do we
want to accept within instruction interrupts or only between instructions?
This is a major decision because the two options are very different in
complexity. To decide this we must have very clear in mind what kind of
system de we want. If the system has to have virtual memory, then there is
no way around, we must accept interrupts within instructions: any memory
access may yield a page fault interrupt. We'll come back to virtual memory
in chapter 10, but to ease the understanding, here is a small introduction:

Our machine has 32bit addresses; this means 232 objects (whatever
they are, depending upon organization, bytes, half-words or words)
can be referred. The system's main memory is much smaller, in the
range of MBytes. The virtual memory creates the user the illusion
of having that much memory as the address says, 4GBytes. For this,
the external memory is used, basically the hard disk. The object
referred by some address may reside at a given moment in the main
memory, or it may be somewhere on the disk. In the latter case an
access to this object requires a much longer time (milliseconds)
than it would if the object was in the main memory (hundreds of

6 Interrupts

Virgil Bistriceanu Illinois Institute of Technology

112

nanoseconds at most), due to disk latency. In such a situation the
memory subsystem (more precisely the Memory management Unit)
issues a page fault interrupt, and the CPU has to start a sequence of
operations that will eventually the object required in the main
memory. When it is here the instruction that led to the page fault,
addresses the memory again, with the same address, and will, this
time, succeed.

It is easy to see that the page fault interrupt must be treated at the very
moment it appears; there is no way around this. On the other hand, if we
are designing a less sophisticated CPU, which is not meant to support a
virtual memory system, nor is it meant to be pipelined, then the simpler
approach of interrupt handling can be taken, i.e. accepting interrupts only
between instructions. As a matter of fact this has been the case from the
early microprocessors to many of the recent ones (the Intel 80x86 family
for example). With the emergence of RISC architectures in the early '80s
with their emphasis on efficient implementation (pipelining), things have
changed dramatically: interrupts must be treated when they appear, not
after the instruction has terminated.

Because one of our goals is to have an easy to implement architecture, and
we have chosen the Instruction Set in such a way that a pipelined
implementation is possible, we will discuss this latter approach in dealing
with interrupts. This is also the major trend in architectures today.The basic
actions the Control Unit must take when an interrupt occurs are:

• save the current PC (the address of the interrupted instruction) in
the Interrupt Address Register (IAR on Figure 2.2), also called
Exception Program Counter

• transfer to the operating system at some specified address (call an
interrupt handler)

At the return from the interrupt handler, the content of the IAR is used to
restart the instruction.

The operating system must know, besides the instruction which caused the
interrupt, the reason for that interrupt: was it an overflow, or maybe a page
fault? There are two ways to keep track of the reason for an interrupt:

• use a status register in which every kind of interrupt writes its
code, before control gets to the Operating System

• vectored interrupts: in this approach every kind of interrupt
forces a call to a different address, the address where its interrupt
handler (or at least its beginning) is located.

6.3 Checking for interrupts

Virgil Bistriceanu Illinois Institute of Technology

113

The use of a status register for interrupts requires only an entry point for all
possible interrupts (a single call address); the interrupt handler then
decodes the content of the status register to execute the proper sequence of
code. Assuming a vectored implementation (a status register
implementation is slightly more difficult in that it requires at least one extra
instruction that accesses the content of the status register) what we need, as
hardware, is a way to load the PC with the address for the interrupt: this
means a small “table” with addresses must be kept in the Control Unit, and
a multiplexer has to be provided to select between the bus Dest (see Figure
2.2) and this table. These addresses are fixed at the moment the circuit is
designed, and there must be as many as different kinds of interrupts.

With all this in mind we can now modify the state-diagram for the Control
Unit to include interrupts. Figure 6.1 presents the initial part of the
diagram, the instruction fetch and decode. Pending interrupts must be
treated at this moment, i.e. the between instructions interrupts, page fault
interrupt from the instruction read cycle, and wrong instruction at the end
of a decoding cycle. A wrong instruction may appear if, somehow, the
content of the code area in the memory has been overwritten or if an
instruction is fetched from another part of the memory that the code area.

Figure 6.2 presents the part of the state-diagram corresponding to the add
and load instructions. Arithmetic instructions must test for overflow, while
load/store must test for page fault interrupt.

We must define two new instructions, one to allow user defining a software
interrupt, and another one to return from the exception handler. The two
instructions are:

• trap: transfer control to a vectored address (fixed by design), it
saves in IAR the PC of the next instruction, then loads into PC the
vector address;

• rex (return from exception): used to return from an interrupt
(exception) handler to the main program. It restores the
processor's status word (which was saved by trap) and then load
PC with the content of IAR;

 Note here that the mechanism we use to return from subroutines:

jr r31

cannot be used in this case; the trap instruction does more than an usual jal
instruction and it must have a corresponding return instruction (rex).

6 Interrupts

Virgil Bistriceanu Illinois Institute of Technology

114

 START

IR M[PC]
PC interrupt address

PC PC + 4

IAR PC

Yes

Yes

Yes

No

No

No

Page fault

Pending
Interrupt

Memory
 ready

Figure 6.1 Including interrupts in the state-diagram of the control unit. Only the initial part,
 corresponding to instruction fetch is shown.

Wrong instructionAll instructions that have
 a valid opcode

6.3 Checking for interrupts

Virgil Bistriceanu Illinois Institute of Technology

115

Overflow

Page
fault

Memory
ready

START

START
add

lw

No

Yes

Yes

YesNo

d A + B

PC interrupt address

IAR PC

MAR A + offset

MDR M[MAR]

d MDR

Figure 6.2 Testing for interrupts in the body of the state-diagram. Only add and lw are represented.

No

6 Interrupts

Virgil Bistriceanu Illinois Institute of Technology

116

Registers are considered to be a part of the program status, and we must
take care that the exception handler does not change their content; however
the execution of this piece of code requires working with registers, both for
addressing (the only addressing modes we have are immediate and based),
and for computation. Let's save some registers to make room for the
handler! This can be done indeed using the run time stack and the register
designed to hold the stack pointer. Sometimes the handler is very simple,
and saving registers at the beginning of the handler and restoring then at
the end is expensive. For these reasons we could reserve one or two
registers in our register set for the exclusive use of the operating system.

6.4 Some problems in checking for interrupts

Even though checking for interrupts does not add very many states to the
original state diagram, it is worth noting that its complexity increases due
to the many tests that appear. Instead of unconditional state transitions we
now have almost everywhere conditional transitions; the combinatorial
circuit gets bigger as a result. Clearly Figure 6.1 and Figure 6.2 are very
schematic, and here is the reason:

• In the case of an interrupt the address of the current instruction
must be saved in the IAR, i.e. the PC corresponding to the current
instruction. For interrupts that occur in the instruction fetch stage
this is true because PC has not been incremented yet.

• After the instruction decode state the PC holds the address of the
following instruction (PC PC+4). For all interrupts that
occur after this state we must save PC-4 into IAR. Hence there
must be different states in the state diagram to reflect this
situation.

Another serious problem that appears is that arithmetic operations change
the state of registers no matter if an interrupt occurs or not. Taking a closer
look at Figure 6.2 we see that the result is written into the destination
register in the same state the operation is performed, and only then the
overflow is tested. This seems to be unimportant; however some
architectures require the instructions to have no effect if interrupts occur
(this happens with MIPS for instance). That means that the state of the
machine must be left precisely the same as it was at the beginning of the
instruction.

6.4 Some problems in checking for interrupts

Virgil Bistriceanu Illinois Institute of Technology

117

Example 6.1 ARITHMETIC OPERATIONS:

Consider the following sequence of code:

..........................
add r1, r1, r2
..........................

and explain what happens if there is an overflow at the addition.

Answer:

The result of the addition (erroneous due to the overflow) is written into r1
at the end of the add cycle. The address of this instruction is saved into the
IAR and, after the exception is handled, the system returns, trying to
execute this instruction again. But at this moment the content of r1 is no
longer what it was during the first addition attempt!

As the above example points out, the problem is not that simple as it
seemed to. We probably need to modify the state-diagram in such a way
that the result of an arithmetic operation is not directly written in the
destination until after the overflow test is performed. This requires some
extra hardware, a register to hold the result until after the overflow test is
performed, and oddly enough, more states in the state-diagram thus
increasing the CPI.

An alternative solution to this problem is to have a set of alternate registers
that hold copies of values the regular registers had at the beginning of
instruction. These registers are called shadow registers, and the interrupt
handler uses them to restore the state of the CPU as it was before the
interrupted instruction.

Our design makes an attempt to handle three kind of interrupts; this
changes in a rather substantial way the initial design: more hardware is
needed, and a the state-diagram has to be redrawn. It should be clear by
now why the design of the Control Unit is the most challenging part of the
project: it must handle the variety of interactions between interrupts and
instructions while remaining small enough and fast.

Handling the interrupts is not done only in hardware nor only in software.
The design must provide sufficient hardware support for an efficient
software manipulation.

6 Interrupts

Virgil Bistriceanu Illinois Institute of Technology

118

6.5 What is Really Hard About Interrupts

The example we had in section 6.4 showed what kind of problems can arise
from interrupts that occur in the middle of execution. Many instructions
require that the machine has to be restored in the state it was before starting
to execute the faulting instruction.

A system that meets the above requirement is said to be restartable.

As we suggested, our design can be modified to be made restartable,
though there is a heavy price paid for this, the loss in performance. This
explains why supecomputers are not restartable.

The most difficult problems arise with instructions that modify the
machine's state before it is known that an interrupt might occur. Obviously
the more complicated an instruction is, and the more time it takes to
execute, the greater are chances to modify the state before an interrupt
occurs. As an example consider the MOVC3 instruction on the VAX. Its
format is:

MOVC3 LEN, S, D

and it copies LEN bytes starting at address S, to LEN bytes starting at
address D. The length LEN is specified as a 16 bit integer; that means it can

move up to 216 bytes before ending. Moving a byte every 500 nanoseconds
it will take 32.7 milliseconds for this instruction to complete. Clearly we
can not ask from this instruction to restart after running for milliseconds.
Not only would be this wasteful but, after restarting, a new interrupt could
occur forcing a new restart, and so on with very little chances for this
instruction to ever terminate. On the other hand, interrupts may not be
disabled for milliseconds without the risk of losing important events.
Special techniques have been developed to manage interrupts for such long
running instructions.

This example suggests why most modern architectures have shifted
towards simple instructions executing in a couple of clock cycles. Easing
the handling of interrupts is yet another reason for this move.

6.6 A Case Study: Interrupts in MIPS

MIPS is the name of one of the first RISC machines, introduced in 1981 at
Stanford. The MIPS architecture provides a simple mechanism for
exceptions. The CPU operates in one of two modes, kernel or user. In user
mode only the 32 general purpose integer registers, and the 32 floating

6.6 A Case Study: Interrupts in MIPS

Virgil Bistriceanu Illinois Institute of Technology

119

point registers are available for read/write operations. In kernel mode an
extra set of special purpose registers is available, and the content of those
registers can be modified. In this mode addresses that are otherwise
inaccessible (those having the MSB = 1), can be accessed and it is here
where the exception handler resides, as well as data accessible only to the
operation system.

Two instructions, mtc0 and mfc0, allow moving data between the general
registers and the special set of registers. mtc0 which moves a general
register into a special purpose one works only in kernel mode. The registers
which are of interest at this moment are:

• Status Register;
• Cause Register;
• Exception Program Counter (EPC).

 The Status Register has the following structure:

31-16 15 14 13 12 11 10 9 8 7-6 5 4 3 2 1 0

The signification of bits in the register is as follows:

• IM7 to IM2: interrupt masks for hardware interrupts
• IM1 to IM0: interrupt masks for software interrupts
• KUo: the old Kernel/User bit
• IEo: the old Interrupt Enable bit
• KUp: the previous Kernel/User bit
• IEp: the previous Interrupt Enable bit
• KUc: the current Kernel/User bit
• IEc: the current Interrupt Enable bit.

When an interrupt occurs, the operating mode, kernel or user, is saved in
the KUc after KUp has been moved into KUo, and KUc into KUp. In other
words when an exception occurs the previous state is saved as the old state
and the current state is saved as the previous state; the old state is lost.
When the rfe instruction is executed the previous state becomes the current
state and the old state becomes the previous. It is easy to see that the Status
Register implements a simple three level stack for the KU and IE bits. The
current executing mode is saved in the Status Register such that the correct
executing mode is restored after the execution of an rfe instruction (return
from exception); an exception may occur while working in kernel mode.

When the exception occurs the system disables all interrupts, thus
preventing the exception handler from being interrupted again, before it
has any chance to save the sensitive information, as the EPC, the Cause

 IM7 IM6 IM5 IM4 IM3 IM2 IM1 IM0 .. KUo IEo KUp IEp KUc IEc

6 Interrupts

Virgil Bistriceanu Illinois Institute of Technology

120

Register, the Status Register and other registers it will be using. After all
this information has been saved, interrupts may be enabled by setting IRc
to one. The rfe instruction also enables interrupts if they were enabled at
the moment when the interrupt occurred.

The Interrupt Masks allow enabling/disabling individual interrupts. For an
interrupt to be enabled both IEc and IMi (i = 0..7) must be enabled (set to
one).

The Cause Register has the following bit allocation:

31-16 15 14 13 12 11 10 9 8 7 6-2 1 0

The meaning of bits in the Cause Register is as follows:
• IP7 to IP2: hardware Interrupt Pending flag;
• IP1 to IP0: software Interrupt Pending flag;
• ExcCode: the Exception Code; an unsigned integer which

indicates the class of interrupt that occurred.

The flag IPi (i == 0..7) is set to one when an interrupt occurs on the
interrupt line i. However, no action is being taken unless both IEc and IMi
are enabled (set to one).
Some of these exception codes can be seen in the table below:

The MIPS architecture fixes a single address, 0x80000080, as the address
where the control is transferred when an exception occurs.The instruction
syscall permits user exceptions.

 0 IP7 IP6 IP5 IP4 IP3 IP2 IP1 IP0 0 ExcCode 0 0

ExcCode Mnemonics Meaning
0 Int Interrupt
4 AdEL Load from an illegal address
5 AdES Store to an illegal address
6 IBE Bus error on instruction fetch
7 DBE Bus error on data reference
8 Sys Syscall instruction
9 Bp Break instruction
10 RI Reserved instruction
11 CpU Coprocessor unavailable
12 Ov Overflow
15 FPE Floating-point exception

Exercises

Virgil Bistriceanu Illinois Institute of Technology

121

Exercises

6.1 Let's suppose that the ideal CPI of our machine is 4 (calculated with
some instruction mix), and we want to take into account the effect of
interrupts. There is an interrupt every millisecond (from the real-time
clock) and the clock cycle of the machine is 20 ns. Servicing the interrupt
requires 50 cycles. What is the new value of CPI in this case, and how does
the initial performance compare with the new one? Redo your
computations if interrupts are coming at a 10 microseconds rate.

6.2 Suppose we have to modify the state-diagram for our Control Unit to
make interrupts restartable (i.e. after an interrupt is handled the instruction
is restarted). What is the new CPI for every instruction? Is there any special
hardware requirement for this?

6 Interrupts

Virgil Bistriceanu Illinois Institute of Technology

122

