
Virgil Bistriceanu Illinois Institute of Technology

75

5. CPU Implementation

5.1 Defining an Instruction Set

Before going into the details of the datapath we must define the Instruction
Set. There are some major decisions that are to be made:

• the data path width: do we design our Instruction Set for an eight
bit machine (not very probable), for a 32 bit one or maybe for a 64
bit, top of the art machine? We choose a 32 bit architecture,
mainly because the market is, at this moment dominated by these
machines, but also because the major tradeoffs can be easily
discussed. The design of a wider architecture, say 64 bit, poses
special problems (like multiple instruction streams- superscalar
architectures), problems that are beyond the scope of this class.

• support for pipelining: even if we don't discus about pipelining it
should be clear by now that a “clean” Instruction Set eases the
hardware implementation; in particular it is extremely important if
we settle for an instruction set in which all instructions execute in
the same number of clock cycles (this is paramount for
pipelining), or for some bushy instruction set, full of addressing

5 CPU Implementation

Virgil Bistriceanu Illinois Institute of Technology

76

modes, and all kind of nice instructions.

We follow the current trends and we choose to have a simple instruction
set, whose main aim is to permit a simple hardware implementation; we
shall select those instructions and addressing modes that allow instructions
to run in the same number of clock cycles. We implicitly settle for a fixed
length instruction format: variable length instructions mean variable
number of clock cycles for fetch.

We have a 32-bit data path; instructions will be also 32 bit wide. Clearly it
does not make sense to have narrower instructions as long as we want to fit
so many things in a single instruction: opcode, source and destination
operand(s), immediate value, offset/displacement and maybe others. On
the other hand going beyond 32 bits with a 32 bit architecture means more
clock cycles to fetch instruction, more memory traffic, without any
guarantee this won't offset the benefits of wider instructions.

• number of addresses: is this one, two, or three address
architecture? The examples in the previous lessons should have
convinced you that a one address machine doesn't look very
exciting given the current technologies. To choose between two
and three address is more difficult: those who advocate for two
address machines say the three address ones much too often use
the same register both as a source and as a destination thus
behaving as two address instruction machines. On the other hand,
those who claim three address machines are better say it is true
that in many cases three address instructions behave like two
address ones, but if three distinct operands are to be used then a
two address machine must use two instructions to do the same job,
and it uses also an extra register.The new designs are three address
machines and the same will be ours.

• register-register, register-memory or memory-memory?
Memory operands were important at a time when technology
could not provide enough general purpose registers; it should not
be understood from this that we no longer need instructions that
take operands from memory: this is powerful and useful in very
many situations. But again there is the performance aspect we
must consider: memory operands make instructions slower; and if
we want instructions that work both register-register and register-
memory or memory-memory then we must also accept a variable
number of clock cycles for instructions to execute. All CPUs
designed in the last years are register-register; so will be the one
we will be discussing about.

• the number of registers our architecture will have, a too small

5.1 Defining an Instruction Set

Virgil Bistriceanu Illinois Institute of Technology

77

number of registers slows down the machine because variables
have to be often swapped between registers and memory. A too
small number of registers give hard times to the compiler writer
also. On the other hand, a too large number of registers could
mean valuable silicon area which is not very well used if some
registers are “idle”, i.e. they don't hold some valuable information.
Moreover the more registers we choose to have the more bits will
be necessary in the instruction to specify them. Because the
instructions are fixed size length (word) more bits for specifying
registers mean less bits for immediate/offset/displacement field,
thus negatively affecting the performance of instructions mainly
of branches.

We follow again the current trend, and choose to have 32 general purpose
registers. It is to be mentioned here that the designers of the DEC's ALPHA
architecture (a 64 bit one) have also settled for 32 registers, for the main
reason that more registers would not improve significantly the
performance.

A closely related problem is that of the floating point registers: do we
include a special set of registers for the floating point operations or not? As
a matter of fact most of the CPUs designer in the last years do include a
special set of floating point registers, meant to be used by the floating point
instructions. The main problem with the floating point operations is that
they don't fit nicely in a simple instruction set; while an integer addition or
multiplication can be performed in a single clock cycle (assume) that
hardware is provided for this), a floating point multiplication or division
may take several (5-10). We shall focus our attention on the integer part of
the CPU, and ignore, for the time being the floating point part.

To conclude this introductory part, here are the main features of our
architecture:

• 32-bit data-path
• register-register
• 32-bit wide instructions
• 32 general purpose registers
• instructions executing in the small number of clock cycles.

We did not consider all aspects of deciding an architecture; we will do
some while we decide what instructions should be included in the
Instruction Set. As a very simple example, should the memory accessed by
this CPU, be byte or word addressable? If we decide to make it byte
addressable then we can include a load_byte instruction in the instruction
set; otherwise we must simulate byte instructions using other instructions
in the set.

5 CPU Implementation

Virgil Bistriceanu Illinois Institute of Technology

78

5.2 The Instruction Set

Addressing Modes

At a first glance the more addressing modes we provide, the more
convenient will be to use the instruction set; the question is, convenient for
programmers in assembly language or for the compiler? As most of
programmers no longer use assembly language, the Instruction Set we
design must be convenient for the compiler. This is to say, the instruction
set has to be designed in such a way to ease the writing a compiler for the
new machine. If we provide ten different addressing modes, then a big
amount of time of the compiler writing team will be spent in trying to
figure out what the best addressing mode is for a sequence of instructions.
And when it comes to optimizations thing get even worse, because a large
number of possible sequences that yield the same final result, have to be
analyzed to decide which one is best.

Our machine will have only three addressing modes:

• register
• immediate
• base register + offset.

Obviously, any addressing mode can be synthesized using the base-offset
(or base_displacement if you prefer) addressing mode, and the sequences
of instructions required to simulate other addressing modes are simple and
clear. Thus the compiler development job is greatly simplified.

Operations

We must provide instructions for the three basis classes: ALU operations,
loads and stores, branches and jumps.

ALU instructions are register-register (clearly because we have a register-
register machine). Before deciding what operations we want to include in
the Instruction set, we must decide if we allow immediate operands in
ALU instructions.

add r1, r2, 3

is clearly an easy way to add the immediate 3 to the content of register r2,
and to store the result in register r1. Without immediate operands the
sequence would be:

lw r3, (r4)
add r1, r2, r3

5.2 The Instruction Set

Virgil Bistriceanu Illinois Institute of Technology

79

which assumes that the number 3 is stored at the address in r4. This is not a
problem because the compiler usually decides that literals are kept in a
dedicated memory area (the literal pool) where they are accessible
throughout the live of the program; as such the address of any literal is
known at compile time, and generating the above sequence of two
instructions is easy. What does this pay for us?

• if we accept immediate operands in instructions then we must
somehow transform the immediate into a 32 bit number;
remember that the immediate occupies only a field in the
instruction, it is not 32 bit wide; there will be some hardware
complications for this.

• if we do not accept immediate in instructions (the second
sequence of code) then we don't have to worry about possible
hardware complications at this point; it the compiler's job to
properly represent the numbers. The price paid is a sequence of
two instructions instead of one, and the use of a register to hold the
number before the actual arithmetic operation is performed.

As a matter of fact literal integers appear quite often in programs (think
about comparisons in the language you are using, Pascal, C, whatever). In
these conditions we'll allow immediate operands in our ALU instructions.

To keep things very simple we include only those operations that are used
the most, taking care to provide enough support for the simulation of
others.

5 CPU Implementation

Virgil Bistriceanu Illinois Institute of Technology

80

Here they are and don't forget we only discuss about integers.

Certainly ALU instructions must be able to operate between any registers
in the register file (the 32 registers our machine have). As it is always the
case with arithmetic operations, a representation for the numbers has to be
chosen. It is important because the hardware looks different for different
representations.The two's complement representation for integers certainly
is the most widespread.This is all by now; as we'll see soon some other
operations must be included in the group of ALU Instructions.

Loads and Stores load and store any register. We must now decide what
kind of loads/stores we want: word only or maybe word and half-word and
byte. This is a major decision because it influences not only the instruction
set but also the memory subsystem. If we decide our load/store
instructions will handle only words then we don't have to be concerned
with memory alignment problems. The price we pay for this is a difficult
manipulation of characters (represented as bytes).

Suppose again we want to keep things very simple and we decide for word

Operation Mne-
monic

Example Meaning

Addition add add r1, r2, r3 r1 r2 + r3

addi addi r1, r2, 5 r1 r2 + 5

Subtraction sub sub r1, r2, r3 r1 r2 - r3

subi subi r1, r2, 5 r1 r2 - 5

Multiply mul mul r1, r2, r3 r1 r2 * r3

muli muli r1, r2, 5 r1 r2 * 5

Division div div r1, r2, r3 r1 r2 / r3

divi divi r1, r2, 5 r1 r2 / 5

Logical OR or or r1, r2, r3 r1 r2 or r3 (bitwise or)

ori ori r1, r2, 5 r1 r2 or 5 (bitwise or)

Logical AND and and r1, r2, r3 r1 r2 and r3 (bitwise and)

andi andi r1, r2, 5 r1 r2 and 5 (bitwise and)

Logical XOR xor xor r1, r2, r3 r1 r2 xor r3 (bitwise xor)

xori xori r1, r2, 5 r1 r2 xor 5 (bitwise xor)

5.2 The Instruction Set

Virgil Bistriceanu Illinois Institute of Technology

81

only operations. Then we have the following:

Even though we have only two instructions, we must keep in mind that
their number would be larger in the case byte and half-word load/store
operations were allowed.

Branches and jumps. Let's start with a question: do we want or can we
have an instruction like
jump label

where label is an absolute address? The answer is we want (because it is
the most natural way to specify the change in the flow of control) but we
can not as long as we insist in having fixed size instructions. With a 32-bit
instruction size and a 6 bit opcode field there are only 26 bits that could be
used as an immediate address, much too little. Actually we have already
discussed about this and possible solutions to this problem:

• jump relative to the PC: use a signed offset to compute the target
address by adding it to the PC;

• jump through register: the jump instruction specifies a register that
contains the target address.

Note that the syntax for the plain jump can be misleading: name is a
symbolic name and not an absolute address; moreover the instruction that
is labeled name must be within the range accessible by the displacement a
jump instruction can provide.

Branches specify a conditional control transfer, and we must decide how
conditions are set and tested and how the target address is computed. If we
start with the latter, the answer is easy: target address cannot be an absolute
address, because we can not accommodate absolute addresses in our fixed
size instructions. We can adopt the same policy as for jumps with the
following differences:

 Operation Mnemonic Example Meaning

 Load lw lw r1, (r2) r1 M[r2]

 Store sw sw r1, 8(r2) M[r2+8] r1

 Operation Mnemonic Example Meaning

 Jump j jname PC name

 Jump Register jr jrr1 PC r1

5 CPU Implementation

Virgil Bistriceanu Illinois Institute of Technology

82

• the offset will be shorter as a branch instruction has to specify
what has to be tested;

• a branch through register may raise some hardware problems
because first a comparison must be done and then a target address
must be computed; probably this is a real concern if we decide to
pipeline our machine. Let's keep both kind of branches and see if
we get some problems in implementing them.

Deciding what conditions to test and how the conditions are set by previous
instructions is not easy. Here are the major ways for evaluating branch
conditions:

• Condition Code (CC): special bits in a flags register are set by
ALU operations or explicitly using special instructions; examples
include Z (the result of the last arithmetic operation was zero), C
(there was a carry at the last operation), V (there was an overflow
at the last operation) etc. The main advantage of CC is that, in
most cases, they don't require extra work/time to get set. The
disadvantage is that condition codes impose restrictions in
reordering instructions; you may need to reorder instructions when
you write an assembly program or, more often, reordering appears
in compilers as a way to optimize the code generated.

• Condition Register (CR): the result of a comparison is placed in
some arbitrary register. The advantage is that this is very simple,
though it requires an explicit instruction to set the register, and it
uses a register to hold the result of the comparison. It simplifies
however the compiler's job in that any instructions can be inserted
between set instruction and a branch as long as these instructions
don't have as destination the condition register.

• Compare and branch: compare is a part of the branch, as a as a
result there is only one instruction that compares and branch
instead of two as was the case with CR. There is a problem
however in that there might be too much information to be
encoded in the instruction and too much work to be performed in a
fixed amount of clock cycles (if we care about).

With all the above in mind let's try to decide how our branches should look
like:

• compare and branch is not very appealing for a register-register
machine with fixed instruction length: the instruction should
specify two registers (10 bit in our machine), the comparison that
has to be performed (greater_than, equal, etc.) which means 3

5.2 The Instruction Set

Virgil Bistriceanu Illinois Institute of Technology

83

more bits, all this besides the opcode (say 6 bits), as a result the
offset can be only

32 - 6 - 10 - 3 = 13
bits wide. On the other hand performing a comparison and the
computation of a new address can prove to be too much if we want
to make instructions run in the same amount of clock cycles (a
small amount of course as we have already discussed).

• using condition codes (CC) is also problematic due to the
problems it poses to compiler writer. Sure, these problems can be
overcame, many very successful machines (as the VAXs or the
Intel x86) use condition codes and yet very efficient compilers
have been written for those machines as targets. But behind the
scenes, there was, more or less, a hard work in trying to figure out
what sequences of code can be replaced with what without
changing anything in the machine's status.

• most of the machines that emerged in the last years use the
Condition Register method for branches. This is the way we will
choose our instructions.

Note that name represents a symbolic label and not an absolute address.
When code is generated it will be translated as a signed offset that is
added to the PC to get the target of the branch when it is taken. If there are
k bits for the offset i an instruction then name must respect the following
condition:

(PC+4)-2k <= name < (PC+4)+2k

The content of a register a branch uses for test can be some value left there
by some computation, or it cat be the result of a set operation; we have, at
this moment to update our ALU Instruction pool with instructions that
compare two registers (or a register and a immediate) and set the content of
the destination register: if the condition is true place a 1 in the destination,
else place a zero (the positive logic convention for True and False
respectively). This instructions are of the form:

sxx d, s1, s2 d is the destination register;
s1, s2 are the source registers;

sxxi d, s1, immediate

where xx in the above mnemonics stands for one of the following:

Operation Mnemonic Example Meaning

Branch beqz beqzr1, name if (r1 == 0) PC name;

bnez bnezr1, name if (r1!= 0) PC name;

5 CPU Implementation

Virgil Bistriceanu Illinois Institute of Technology

84

There is one more problem that has to be resolved, calls to subroutines and
returns. They are like jumps with the following differences:

• at a call the return address must be saved in stack

• the return address is not known at compile time; from the two
flavors of jumps, the return is like jump through register.

Because they resemble so much to jumps we'll choose similar names:

There is no need for a special return instruction; we have already one, jump
register (jr) which does the job if the register contains the proper return
address. The question you may ask at this moment is “why do you save the
return address (PC+4) in register r31 and not directly into the stack?” and it
makes very much sense. After all, if we place the return address in r31 we
must explicitly transfer it into the stack in the subroutine, while an implicit
push into the stack would save us a few lines of code. To answer this
question you must first recall one of the basic principles of a computer
designer which is:

make the common case fast

When we enter a subroutine the content of r31, i.e. the return address from
that subroutine, must be saved only if there is another call inside that
subroutine (nested subroutines). As long as most of the subroutine calls are

 xx Example Meaning

 eq seq r1, r2, r3 if (r2 == r3) r1 1; else r1 0;

 ne snei r1, r2, 7 if (r2 != 7) r1 1; else r1 0;

 lt slt r23, r2, r27 if (r2 < r27) r23 1; else r23 0;

 le slei r23, r2, 0 if(r2 < 0) r23 1; else r23 0;

 gt sgti r11, r12, 3 if (r12 > 3) r11 1; else r11 0;

 ge sge r11, r12, r13 if (r12 >= r13) r11 1; else r11 0;

Operation Mnemonic Example Meaning

Jump And Link jal jalname r31 PC+4;
PC name;

Jump And Link Register jalr jalrr7 r31 PC+4;
PC r7;

5.2 The Instruction Set

Virgil Bistriceanu Illinois Institute of Technology

85

of the form:

name: # start subroutine
...................# no call statement (no jal or jalr)
jr r31 # return to caller

there is no need to save the return address into the memory, thus saving two
memory accesses (which is not only a matter of time saving but also one of
reducing the memory traffic).

Example 5.1 IMPLEMENTATION OF A SEQUENCE:

Show how to implement a call return sequence if the subroutine must save
the return address into the stack.

Answer:
..................

sub1: subi sp, sp, 4
sw r31, (sp) # push return address into the stack
..................# the subroutine's body
lw r31, (sp) # pop from stack the return address
addi sp, sp, 4
jr r31 # return
..................
..................
jal sub1 # call sub1
..................

Note: sp denotes the Stack-Pointer, a register from the 32 our machine
have, dedicated to handling the run-time stack.

Instruction format

We can now more precisely indicate the format of instructions. There are
three different formats as can be seen below:

I-type

R-type

Opcode s1 d immediate

6 5 5 16

Opcode s1 s2 d func

6 5 5 5 11

5 CPU Implementation

Virgil Bistriceanu Illinois Institute of Technology

86

J-type

The I-type instructions encode:

• ALU operations with immediate d s1 op immediate
• Load and Store
• branches (d is unused)
• jr and jalr (d and immediate fields are unused).

The R-type instructions encode:
• all register-register ALU operations: d s1 func s2

The j-type instructions encode:
• j and jal instructions;

There are some points where you may raise justified questions:

• why don't we use the opcode field to indicate the operation in the
R-type instructions (and use instead the func field)?

• why don't we have a special instruction format for branches? The
5 bits of the d field are unused in branches, and, maybe, they could
be used to have a larger offset (the immediate field is used as an
offset)

Let's try to sketch answers to these questions, even if a full understanding
of the problem
requires a discussion about pipelining, which is beyond the scope of this
course.

• one of the major concerns in implementing the CPU is how to
reduce the clock cycle thus improving performance; while
technology has played the major role in the evolution of
computers, architectural innovations and design refinements have
their fair share in the process. Suppose there are several logical
steps in the execution of an instruction (fetch, decode, ALU...);
when it comes to implementation it turns out that they require
different amounts of time to execute: we want to reduce all

Opcode offset

6 26

5.3 Executing an Instruction

Virgil Bistriceanu Illinois Institute of Technology

87

execution times until they get equal (or at least very close) to the
minimum execution time from all logical steps. It so happens that
the step following the instruction fetch, decode and register fetch,
may be required to more than that in a pipelined implementation:
more precisely in this single step the instruction must be decoded
(decode the opcode field), and then, if it is a branch a comparison
must be performed to find out if the branch is taken or not; if it is
taken the modify the content of program counter,
PC target_address (the target address can be computed in
parallel with the decoding, in many cases the result makes no
sense, but this is not a problem). It follows that the decoding time
should be reduced as much as possible. This gives the answer to
the first question; the less we encode in a binary field the easier the
decoding, at limit no decoding at all! this is also true for the func
field, the required decoding for this field should be very little.

• the answer to the second question is simpler: both for immediate
operands and for offsets there must be some hardware to transform
the immediate/offset into a full 32 bit integer that can then be
operated; to simplify hardware only one such device is provided,
namely for the shortest of the two possible. It would be nice to
have larger offsets, but the price is not worth.

5.3 Executing an Instruction

Figure 2.2 presents the schematic diagram of an ordinary CPU. We shall
use that block diagram to see what are the steps in the execution of an
instruction.

Two steps are common for all instructions:

1. Instruction fetch

MAR PC; Place the content of PC in the Memory address Register.
IR M[MAR];The instruction is brought into Instruction Register.

Note that these are logical steps. Our implementation should reflect the fact
that the memory access may take several clock cycles.

2. Instruction decode and register fetch

PC PC+4

Operands specified by the s1 and s2 fields in the instruction are retrieved in

5 CPU Implementation

Virgil Bistriceanu Illinois Institute of Technology

88

the register-file and brought at the A and B outputs. PC is updated to point
to the next instruction in memory. Instruction decoding proceeds in parallel
with register fetch: this is possible because the source fields in the
instruction are always in the same positions, and as a result there is no need
to wait until the instruction is decoded to decide where are the operand to
be taken from. The immediate values also belong to a fixed field, and the
sign-extension of immediate operands can be done in this step.

Obviously registers specified by s1 and s2 fields will always be accessed in
the register file even if the instruction does not need register operands, as is
the case with a jump (j); this does not hurt. Note in this context that we
need multiple port register-file, with two read ports and a write port: this
should allow us to read two different registers and to write a third one in a
single clock cycle (of course the three registers may be the same).

ALU is used to compute the new value of PC; for this to happen the control
unit must generate the proper control signals to PC (to place the content on
one of the busses Op1 or Op2) and ALU. The constant 4 might come from
a small table of constants, or the ALU can be design in such a way to
directly provide a +4 operation. After the instruction has been decoded
there are some steps which differ from one instruction to another. We shall
present these steps for different kinds of instructions.

ALU Instructions

3. ALU operation and write back

ALUoutput A op B (or ALUoutput A op immediate)
d ALUoutput;

Writes the result of the operation into the register-file (write back), in the
destination register specified by the field d in the instruction. The write
back happens at the end of the clock cycle, after the computation has been
done and the output lines of ALU are stable.
This step concludes the ALU instructions.

Branch Instructions

3. Target address computation

ALUoutput PC +offset; cond A op 0;

offset denotes the sign extension of the immediate field in the instruction,
i.e. bits 15-0 in IR. The comparison against zero is also done in this step.

5.3 Executing an Instruction

Virgil Bistriceanu Illinois Institute of Technology

89

Condition cond will be tested in the next step to see if the branch is taken or
not.

4. Test and set new PC

if (cond) PC ALUoutput;If the condition cond is true the branch is
taken and the content of PC is replaced by the target address (calculated in
step 3). Otherwise the content of PC is left unchanged.
This concludes the execution of a branch instruction.

Jump Instructions (simple jump)

3. Target address computation

ALUoutput PC + offset;PC ALUoutput;

offset denotes the sign extension of the offset field in the instruction, i.e.
bits 25-0 in the Instruction Register. At the end of this clock cycle the
output of ALU is stored into PC; this one must be edge triggered for correct
operation. This concludes a simple jump.

Jump and Link Instructions

3. Save return address

 r31 PC;
PC is saved into r31. PC has been incremented by for in step 2 such that the
saved value is the address of the next (in order they are listed) instruction.

4. Target address computation

ALUoutput PC + offset;PC ALUoutput;

offset denotes the sign extension of the offset field in the instruction, i.e.
bits 25-0 in the Instruction Register. At the end of this clock cycle the
output of ALU is stored into PC; this one must be edge triggered for correct
operation. This concludes a Jump and Link instruction.

op What happens

eq if (A ==0) cond 1; else cond 0;

ne if (A!= 0) cond 1; else cond 0;

5 CPU Implementation

Virgil Bistriceanu Illinois Institute of Technology

90

Load/Store Instructions

3. Memory reference

ALUoutput A + offset;
MAR ALUoutput;

offset denotes the sign extension of the immediate field in the instruction,
i.e. bits 15-0 in IR. If this step can be performed in a single cycle (ant it
can) then the Memory Address Register (MAR) is loaded at the end of this
cycle, when the outputs of ALU are stable. The coming cycle is a read/
write cycle; if it is a write cycle then data to be written should be already
into the MDR. But this cannot be done in this cycle with the CPU
organization in Figure 2.2: the only way from the outputs of register-file to
MDR is through ALU, and ALU is busy at this moment computing the
address. Loading MDR in the coming cycle involves some delicate timing
(the load command to MDR must come after the outputs of ALU contain
the proper data, but early enough such that a memory write cycle can still
be performed), and it could be a better idea to provide a direct path from
the outputs B of the register file, to the inputs of MDR. In these conditions
we have to add at this step:
MDR B;

4. Memory read/write

M[MAR] MDR; in the case of a write;

MDR M[MAR]; in the case of a load;

The actual memory access is performed in this step; depending upon the
speed of the memory, this step may take several cycles to complete. If it is
a load then during the last clock cycle data coming from memory is stored
in MDR.
This step concludes a Store instruction. In the case of a Load instruction
there is one more step, writing back into the register-file.

5. Write back

d MDR;

d denotes the destination field in a I-type instruction. The content of MDR
is written into the d register. This ends a Load instruction.

5.4 Hardwired Control

After the Instruction Set has been defined and the datapath has been
designed, the next step is the design of the Control Unit. We didn't

5.4 Hardwired Control

Virgil Bistriceanu Illinois Institute of Technology

91

undertake a full effort to completely design the datapath; what we have in
Figure 2.2, with some improvements suggested by the analysis of
executing steps, is only a rough description of a datapath. A complete
design should include more details and all control points; for example
buffers that control access to internal buses Op1 and Op2 should appear on
the figure, together with the name of signals that control them and their
significance, i.e. if they are active low or high.

Such a detailed design is beyond the scope of this course; while the
problems a designer faces in doing the whole specification and carrying the
design are very interesting, it is a process in which technological details are
very important, and, as such, a Digital Design class or a VLSI Design one
are more appropriate.

Hardwired control means that the Control Unit is implemented as Finite
State Machine with outputs going to every control point in datapath and in
the outside environment (control signals for memory, bus operation, etc.),
and inputs from all relevant parts of the structure (most of them come from
Instruction Register but not only).The Finite State Machine is specified
using a finite-state diagram. Every state in the diagram corresponds to a
clock cycle. In every state input signals may be tested, and output signals
may become active.

A first step in specifying the finite-state diagram is to draw a diagram in
which macrooperations are performed, i.e.operations as they appear in the
description of execution steps. For instance one state in the diagram could
include the following statement:

PC PC+4;

This has to be further detailed in a later stage of the design: in order for this
operation to be performed, several control signals must become active:

• open driver for PC content to get on the bus Op1;
• a signal (or more) to tell ALU it has to perform an addition with 4
• load enable signal for PC such that it will be loaded with the new
value at the end of this clock cycle.

Figure 5.1 presents the part of the diagram, which corresponds to the first
two steps in the execution of an instruction, the instruction fetch and the
instruction decode. As it can be seen, after the content of PC is loaded into
MAR, a memory cycle begins; the Control Unit repeatedly tests to see if
the memory cycle has completed (the memory subsystem must provide
such a signal to CPU). If the cycle has not completed (MemoryReady =
No) then the Control Unit keep asserting the control lines necessary for the
memory control (in state labeled Q0). After the instruction has been
brought into IR (when MemoryReady = Yes) it gets into the state Q2 where

5 CPU Implementation

Virgil Bistriceanu Illinois Institute of Technology

92

the actual execution begins.

Figures 5.3 to 5.6 present the parts of the finite-state diagram describing
different kinds of instructions. If we count them we find there are 40 states.
Figure 5.7 presents the general view of a Finite State Machine, while
Figure 5.8 presents A FSM in the context of a Control Unit.

To implement a FSM whose state-diagram has N states one needs:

ns = ceiling(log2(N));

bits to encode the state. In our case, to encode 40 states:

ns = 6

There are also 6 inputs from the IR, the opcode, and some other inputs
from the func field of the IR, suppose 4 bits (16 different functions can be
encoded wit 4 bits). As for the bits coming from the datapath, there those
who indicate the relation between A and temp (see Figure 5.4), and those
indicating the relation between A and zero (see Figure 5.5), a total of
seven. At this we have to add some other conditions that might need to be
tested, as the overflow from ALU. Suppose there are 10 inputs to the
Control Unit from the datapath.

There are also some external bits and it is here to consider inputs from the
memory (MemoryReady and PageFault, the latter in the case our system is
supporting a virtual memory scheme), and maybe from peripheral devices,
as one or more interrupt signals. This can not be detailed at this moment
because the whole picture of the system should be available. Anyhow,
suppose there are 4 input bits from the exterior.

As we said earlier, at this moment a detailed datapath design should have
been done such that the total number of control signals is known. It is not
unreasonable to assume this number is somewhere between 30 and 50.
Suppose it is 40. With the numbers we have so far the Control Unit looks
like in the Figure 5.9.

There are several ways to turn FSM specification into a real design:

1. Direct minimization

•MAR PC; Place the content of PC in the Memory address
Register.

•IR M[MAR]; The instruction is brought into Instruction
Register.

5.4 Hardwired Control

Virgil Bistriceanu Illinois Institute of Technology

93

This method is suitable for very small designs, with only a couple of
inputs. The combinatorial logic must implement 46 binary functions
each function with 30 inputs (24+6). Note that the main problem is not
the number of outputs (each new control signal is an output from the
combinatorial circuit, and defines a new function), but the number of
inputs, as every new input line doubles the complexity of the function.
A truth table for a boolean k places function has:

2k

rows. Functions have to be minimized and expressed in canonical
form, usually as sum of product terms. After that the circuitry is laid
down: for every product term there is a NAND gate, and for every
function there is a big NAND gate that “adds” the product terms
together.

The problem with this kind of implementation is the messy result;
interconnecting all the gates is a challenging task. Once the design has
been turned into silicon any changes are virtually impossible: if an
error is discovered this usually implies a complete redesign of the
Combinatorial logic. This is sad because it is precisely in the control
unit where the most design errors are found.

2. ROM implementation

Any set of M functions, each of k places can be implemented using a
ROM with k address lines and M outputs. For a combinatorial circuit
with 30 inputs we need a ROM with 30 address lines! And we have 40
outputs, this means a 5GByte ROM. It is not quite what the technology
permits at this moment. The problem with the ROM implementations
is that a huge amount of logic is wasted; if a ROM has k inputs then all
2k product terms (minterms) are computed, i.e. there is a gate with k
inputs for every such minterm. Actually only a very small number of
this product terms are being used to implement a function, the reason
for this is that some combinations of input variables will never appear.

Minterms are at hand, we can easily modify the design to use another
minterm(s), but this approach is very expensive if possible at all. This
approach to the design of combinatorial logic is especially attractive
for small designs (up to 16-20 inputs) in an early stage of the
development when changes are frequent and ROM prove to be very
flexible (actually the rewritable versions of ROM).

5 CPU Implementation

Virgil Bistriceanu Illinois Institute of Technology

94

START

MAR PC

IR M[MAR]

Memory
ready?

Q0

Q1

Q2
PC PC + 4

Access s1 and s2 in RF

No

Yes

FIGURE 5.1 The states corresponding to the first two steps in the execution of an
instruction, fetch and instruction decode.

5.4 Hardwired Control

Virgil Bistriceanu Illinois Institute of Technology

95

START

d A + Badd

sub

mul

div

or

and

xor

addi

subi

muli

divi

ori

andi

xori

FIGURE 5.2 The states in the state-diagram corresponding to ALU operations.

d A + imm

d A - B

d A * B

d A / B

d A or B

d A and B

d A xor B

d A - imm

d A * imm

d A / imm

d A or imm

d A and imm

d A xor imm

5 CPU Implementation

Virgil Bistriceanu Illinois Institute of Technology

96

temp immtemp B

No Yes

sle slei

A < temp

temp B temp imm

seqiseq

A == temp

d 1d 0

No Yes

START

FIGURE 5.3 States in the state-diagram corresponding to some set operations. There are 14 states; only
 those for sle, seq, slei, and seqi are represented.

5.4 Hardwired Control

Virgil Bistriceanu Illinois Institute of Technology

97

START

beq bne

No Yes Yes No

PC PC + offset

A == 0 A != 0

FIGURE 5.4 States in the state-diagram corresponding to the execution of branches.

5 CPU Implementation

Virgil Bistriceanu Illinois Institute of Technology

98

jalj

jalr

jr

PC PC + off r31 PC

PC PC + off

PC A

r31 PC

PC A

START

FIGURE 5.5 States in the state-diagram corresponding to execution of jumps. There seem to be six states
 at first look; however their number can be reduced to four by merging some of them.

5.4 Hardwired Control

Virgil Bistriceanu Illinois Institute of Technology

99

load store

MAR A + offset MAR A + offset

MDR B

M[MAR] MDR

Memory Ready

Yes

No

START

MDR M[MAR]

Memory Ready

 d MDR

START

Yes

No

FIGURE 5.6 The states in the state-diagram corresponding to loads and stores.

5 CPU Implementation

Virgil Bistriceanu Illinois Institute of Technology

100

Combinatorial logic

Outputs

State

ns

no

ni

Inputs

FIGURE 5.7 A general view of a Finite State Machine. Combinatorial logic and
 hardwired are synonyms.

5.4 Hardwired Control

Virgil Bistriceanu Illinois Institute of Technology

101

Datapath

Instruction Register

Combinatorial logic

State

Control Unit

 From Exterior

Control signals to exterior

FIGURE 5.8 A Finite State Machine used as Control Unit. Inputs are coming from the Instruction
 Register (basically, the opcode), from the Datapath (conditions to be tested), and from
 the outside world (like Memory Ready, interrupts etc.).

5 CPU Implementation

Virgil Bistriceanu Illinois Institute of Technology

102

Combinatorial logic

State

24

FIGURE 5.9 The Finite State Machine with numbers indicating how many inputs go to the

Control lines

40

6

 Combinatorial circuit and how many outputs are there.

5.4 Hardwired Control

Virgil Bistriceanu Illinois Institute of Technology

103

Combinatorial logic Combinatorial logic

Combinatorial logicCombinatorial logic

Inputs Inputs

Inputs Inputs

Outputs Outputs

Outputs

Outputs

Rs
Rs

RsRs

Ro

Ro

CL1
CL1

a) Mealy Immediate b) Delayed Mealy

c) Moore Immediate d) Delayed Moore

FIGURE 5.10 A classification of Finite State Machines. Rs is the state register. Ro is the output register,
 and CL1 is a combinatorial circuit which produces the outputs based on the state.
 Registers are clocked with the main clock signal (not represented). For Mealy machines
 the outputs are calculated based on the state and the inputs, while for Moore machines the
 outputs depend only on the state.

5 CPU Implementation

Virgil Bistriceanu Illinois Institute of Technology

104

3. PLA implementation

A PLA organization resembles very much to that of a ROM with the
big difference that only a handful of product terms (not necessarily
minterms) are computed, those that are “added” to yield the output.
Contrary to ROM implementation, the PLA implementation requires
minimization, more precisely the system of function has to be
minimized, in the sense that as many as possible common terms should
be found between functions. PLA implementation is used in most
Control Units in the today's CPUs.

 Here are some of the problems related to this kind of implementation:

• state-assignment: changing the binary codes we assign to states
may seriously affect the size of the PLA; not only is important
what the binary codes are, but also the ordering in the state-
diagram. Ordering of binary codes assigned to states is important
also if we are concerned with the problem of combinatorial hazard
(and we must be concerned as long as many of the control signals
must be hazard-free). In this context note that the schematic
diagram of a FSM in Figure 5.7 describes a particular kind of
machine, one in which output directly come from the
Combinatorial circuit. Figure 5.10 presents a more systematic
classification of Finite State Machines. The basic difference
between Mealy and Moore machines is that in a Mealy FSM the
outputs are depend both of the state and of the inputs of CL in that
state, while in a Moore machine the outputs depend only upon the
state. Immediate machines yield output directly from the
combinatorial logic and, as a consequence, output may have
hazard. On the other hand delayed machine have clean, hazard-
free outputs.

• input signals signification: binary input configurations affect the
PLA in the same way as state binary configurations do. In this
context the allocation of opcodes may significantly affect the
design. Even if all possible binary combinations are used as
opcodes, the order in which they are assigned to various
operations is important.

5.5 Performance for Hardwired Control

This section presents a brief overview of the performance of hardwired
control for our instruction set. Any instruction take at least 3 clock cycles
only for fetch and decode, this in the case there is no waiting time for a
memory cycle to complete. Then the ALU instructions require one more

5.5 Performance for Hardwired Control

Virgil Bistriceanu Illinois Institute of Technology

105

cycle to complete (that means that the ideal CPI for an add is 4), while
loads require three more cycles (the ideal CPI for a load is 6). Recall the
ideal CPI is the CPI with a zero delay memory subsystem. The real CPI
takes into consideration the finite response time of the memory, and as such
is always larger than the ideal one.

We must always keep in mind that the ultimate goal of the designer is to get
the best CPU performance, i.e. to minimize the CPUtime which is
expressed as:

CPUtime = IC * CPI * Tck

At the CPU design level the parameters that can be the easiest affected are
the CPI, through the sequence of states that embody the execution of an
instruction, and Tck, both through technological refinements and
organization inventions. Remember that for the store instructions we
suggested a possible organization change in that a direct path from the B
outputs of the register file to the MDR could save a state (that is a clock
cycle in execution); Figure 5.7 reflects this option.

Example 5.2 CPU PERFORMANCE:

Stores represent a fraction f=20% of the instructions in a program. A direct
path from the B outputs to the MDR reduces the store CPI from 6 to 5. By
how much does the CPU performance improve? Suppose the original CPU
is 3.5.

Answer:
CPUtime old = IC * CPIold * Tck
CPUtime new = IC * CPInew * Tck
CPInew = CPIold - f * 1 one clock cycle saved at every store
CPInew = 3.5 - 0.2 = 3.3

which means an improvement by 6% in performance.
Note: we assumed in this example that the change in organization does not
affect the clock rate.

It sounds simple but it is not that simple in practice. A direct connection
between those two parts of the CPU means routing 32 wires in a structure
where the space is not so easily available. Moreover such a change might
affect the clock rate thus offsetting the gain in speed due to a reduced CPI.

CPUtime old
CPUtime new
---------------------------------- =

3.5
3.3
------- 1.06=

5 CPU Implementation

Virgil Bistriceanu Illinois Institute of Technology

106

Example 5.3 CPU PERFORMANCE:

Suppose you consider the same change in organization as in the previous
example with the difference that this slows down the clock rate by 10%.
What is the performance improvement?

Answer:
CPUtime old = IC * CPIold * Tck old
CPUtime new = IC * CPInew * Tck new
CPInew = CPIold -f*1one clock cycle saved at every store
CPInew = 3.5 - 0.2 = 3.3
Tck new = Tck old + 10%*Tck old = Tck old*(1+0.1)

which means that the performance decreases in this case.

Improvements in the organization may decrease the CPI for some of the
instructions or for all (this is a happy case). Figure 5.2 assumes that a fetch
cycle starts with moving the PC into MAR. What if we remove this step?
This means some connections from the PC to the address lines emerging
from the CPU, plus some extra hardware (a multiplexor to select from
MAR, in the case of load/store, plus a new control line that commands this
MUX). We get for this price a reduction with one of the CPI for any
instruction. Probably this is an improvement worth to be considered.

CPUtime old
CPUtime new

3.5 * Tck old
3.5 *1.1 * Tck old
-- 0.96= =

Exercises

Virgil Bistriceanu Illinois Institute of Technology

107

Exercises

5.1 How many compare operations are needed as a minimum? In the course
we listed all possibilities.

5.2 Our machine is similar with many RISC machines at least in respect of
basic concepts of Instructions Set design and hardware organization. These
machines have one register (usually r0) tied to zero. Explain why. Do you
see any need for such a decision?

5.3 Design a four register, multiple port register-file. It should contain two
read ports and a write port.

5.4 Compute the CPI for every instruction in the Instruction set we defined
and then the overall CPI considering the following frequencies of
operations:

• ALU 50%
• set instructions represent 10% of ALU operations
• Jumps/Branches20%

• simple jump represent 10%
• jump and link are 10%
• branches represent 80%

• Load/Store25%
• loads represent 50%
• stores represent 50%

Assume that branches are taken with the same frequency as they are not
taken.

5.5 Draw in detail the sequence of tests that follows the Q2 state in Figure
5.2. For this you have to choose opcodes for instructions and codes in the
func field for different arithmetic operations (as you can observe the func
field is not absolutely necessary, our opcode field can accommodate 64
different instructions). Is there some way to modify the opcodes such that
the sequence of tests gets simpler?

5 CPU Implementation

Virgil Bistriceanu Illinois Institute of Technology

108

