
Virgil Bistriceanu Illinois Institute of Technology

19

2. Basic Organization of a Computer

2.1 The block diagram

Most of the computers available today on the market are the so called von
Neumann computers, simply because their main building parts, CPU or
processor, memory, and I/O are interconnected the way von Neumann
suggested. Figure 2.1 presents the basic building blocks of today’s
computers; even though there are many variations, and the level at which
these blocks can be found is different, sometimes at the system level, other
times at board level or even at chip level, their meaning is yet the same.

• CPU is the core of the computer: all computation is done here and
the whole

• system is controlled by the CPU

• the program and the data for the program are stored in the
memory

• I/O provide means of entering the program and data into the
system. It also allows the user to get the results of the
computation.

2 Basic Organization of a Computer

20

2.2 Computation and control in CPU

The computation part of the CPU, called the datapath, consists of the
following units:

• ALU (Arithmetic and Logic Unit) which performs arithmetic and
logic operations;

• registers to hold variables or intermediary results of computation,
as well as special purpose registers;

• the interconnections between them (internal buses).

The datapath contains most of the CPU's state; this is the information the
programmer has to save when the program is suspended; restoring this
information makes the computation look like nothing had happened.

The state includes the user visible general purpose registers, as well as the
Program Counter (PC: it contains the address of the next instruction to be
executed), the Interrupt Address Register (IAR: contains the address of
the instruction being suspended), and a Program Status Register (PSR:
this usually holds the status flags for the machine, like condition codes,
masks for interrupts, etc.).

With a few exceptions (like PC or IAR) there is no rule to indicate if some
special signification register must be kept in the general purpose area (also
called the register-file), or in a specially dedicated register. Should the
stack-pointer or the frame-pointer, for instance, have special registers with
dedicated hardware to help them perform the functions they are meant to,
or they can simply reside in the register-file?

On one hand a structure without “special features” is “cleaner”, in the sense
that it is easier to design and debug; on the other hand there are strong
reasons to have special purpose registers, and the most important is
efficiency. The PC, for example, is a special register, because it has a
special function which could be otherwise impossible to perform: its
content has to be incremented in each instruction with some value; special
hardware helps optimizing this function; as a matter of fact, in many
designs, the program counter is closer to a counter than to a simple D-type
register.

Specialized hardware also means that some functions in the machine may
execute in a parallel fashion, thus increasing the efficiency: using the same
example, the program counter can be incremented while some register(s) in
the register-file are read/written, and maybe a memory access is in
progress.

2.2 Computation and control in CPU

21

It is also to be mentioned that some special registers can be accessed only
by specialized instructions (in the case of PC only by jumps, call/return,
branches, with all their variants), thus providing superior protection against
accidental alteration, as compared with a general purpose register.

It can be long argued about what functions the ALU should perform, and
there are at least two aspects to be considered:

• encoding: the operation to be performed in the CPU is somewhere
encoded in the instruction, using a number of bits; with n bits one
can specify 2n different binary configurations, i.e. that many ALU
operations. If n is too small then it will be impossible to
accommodate the minimum number of functions the ALU should
perform; if the designer is too greedy then fewer bits will remain
available to encode other information in the instruction (as for
instance, where are the operands to be used, etc.), not to mention
the explosive increase in the ALU's complexity. For the time
being, three or four bits seem to be enough as control lines for the
ALU.

• functionality: which is the best set of operations to implement,
while keeping the design at reasonable dimensions, and, in the
mean time without impairing the programmer's ability to
implement any function from the basic set of functions we
provide.

CPU Memory I/O

Bus
FIGURE 2.1 The building blocks of a computer.

2 Basic Organization of a Computer

22

Example 2.1 IMPLEMENTATION OF OPERATIONS:

Assume that the instruction set has instructions with the following formats:

operation destination, operand1, operand2

or
operation destination, operand

where operation specifies what is to be performed with the operands
operand1 and operand2, or with operand, and destination is the place
where the result is to be stored. Suppose also that the only logic
instructions are AND, OR, NOT. Show how to implement the XOR
operation; the operands are in registers r1 and r2.

Answer: Use the relation:

A xor B =

The following sequence of code implements the XOR:
xor: NOT r3, r1 # the complement of A in r3

AND r3, r2, r3 # the first and
NOT r2, r2 # the complement of B in r2
AND r2, r1, r2 # the second and
OR r3, r2, r3 # final result in r3

Now let's consider another example in which the logic operations available
are different from those in example 2.1.

Example 2.2 IMPLEMENTATION OF OPERATIONS:

Suppose you have the same instruction formats as in example 2.1, but the
only available logic instructions are AND, OR, XOR. Implement the NOT
operation; the operand is in register r1 and the content of register r0 is
always zero.

Answer: Use the fact that:

The following sequence of code implements the NOT operation:

not: SUB r2, r0, 1 # make all 1's in r2
XOR r2, r2, r1 # final result in r2

The above sequence of code assumes that subtracting one from zero
(integer substraction) yields a all ones result; this is true for unsigned and
two's complement representation integers.

A and B() or A and B()

A xor 1 A=

2.2 Computation and control in CPU

23

Example 2.2 points out that the common case has to be consider when
choosing an instruction set; the efforts in design will probably go towards
optimizing the common case. Certainly the designer could consider
implementing both the NOT and XOR operations in the instruction set (i.e.
to have corresponding instructions): same questions emerge again, are
there enough opcodes to implement a new operation, and what is the
hardware price we have to pay for it? Usually more hardware means a
lower clock cycle and the specter of offsetting the overall performance.

It is now the time to discuss about interconnections inside the CPU and to
sketch a CPU. Basically the question is how many internal buses should
the CPU have?

If space/low-price are a must then a single internal bus may be considered
as the one in figure 2.2. This approach has however a big drawback: little
flexibility in choosing the instruction set; most operations have as an
operand the content of the accumulator, and this is also the place where the
result goes. Due to its simplicity (simple also means cheap!), this was the
solution adopted by the first CPUs.

When we say simple we mean both hardware simplicity and software
simplicity: because one operand is always in the accumulator, and the
accumulator is also the destination, the instruction encoding is very simple:
the instruction must only specify what is the operation to be performed and
which is its second operand. Could the designers have encoded more than
this in the first 8-bit integrated CPUs (the Intel 8080 or the Zilog Z80, the
most popular 8-bit microprocessors, both appeared in the 70s)?

2 B
asic O

rganization of a C
om

puter

24

Register File

Status Register

ALU

Accumulator

Control

IR

Internal data bus

FIGURE 2.2 A possible organization of a CPU, using a single internal data bus. IR is the Instruction Register.

2.3 Instruction cycle

Virgil Bistriceanu Illinois Institute of Technology

25

As the technology allowed to move to wider data paths (16, 32, 64 and
even larger in the future), it has become also possible to specify more
complex instruction formats: more explicit operands, more registers, larger
offsets, etc. It is the moment to observe that newer CPU generations are
faster due to:

• faster clock rate (lower Tck); while the technology features
decreased more transistors fit on the same surface and they may
operate at higher speed;

• lower IC: it takes fewer instructions to perform an integer
instruction on 32-bit integers, if the datapath is 32-bit wide as
compared with an 8-bit datapath;

• lower CPI: with a more involved hardware it is possible to make
large transfers (read/store from/to memory in a single clock cycle,
instead of several ones as it was the case with narrower datapath
CPUs.

Figure 2.3 presents a typical modern CPU, connected to memory. The CPU
uses three buses (Op1, Op2 and Dest). The two operands are placed on the
two buses, Op1, and Op2, an operation is performed, and the result gets on
the Dest bus to be stored in any register connected to the bus.

• MAR is the Memory Address Register which holds the memory
address during an instruction fetch on a load/store operation;

• MDR is the Memory Data Register, used to hold the data to be
written into the memory during a store or to temporarily hold the
data during a load;

• temp is a temporary register used for internal manipulation of
data.

Figure 2.3 also assumes that the only way from a register to another is
through ALU, therefore ALU must be able to, as one of its functions, pass
one operand from input to output.

2.3 Instruction cycle

Obviously there are at least two steps in the cycle of an instruction: fetch
(i.e. the instruction is brought into CPU, more precisely into IR) and
execute.

2 Basic Organization of a Computer

26

At a closer look several substeps can be seen:

1. Instruction fetch step:
MAR PC
IR M [MAR]
The content of PC is transferred into MAR; then the instruction at address
MAR is brought into IR.

2. Instruction decode / register fetch step:

Decoding the instruction is the step when the control decides what should
be done next; if the instruction has a fixed fields format, then the contents
of registers specified in the instruction can be read into A and B at the same
time with the decoding.

It is also in this phase that PC has to be updated; how much is to be added
to the PC in order to get the new PC (i.e. the address of next instruction to
be executed)? Various factors are to be considered, like instruction width,
byte/word addressable memory, memory alignment.

3. Execution

In the case of an arithmetic logic operation whose operands are in registers
the operation is performed.

If the instruction is a load/store, then the address has to be computed and
only then the operation can be performed.

In the case of a branch/jump operation the target address has to be
computed and, for a conditional branch/jump, PC may be updated or not
depending on the flag (condition) being tested.

The execution step could be further divided into specific substeps for each
instruction or class of instructions.

2.3 Instruction cycle

Virgil Bistriceanu Illinois Institute of Technology

27

Op2 bus

Op1 bus

MDR temp IAR PC
RF

A B

ALU

Dest bus

SR

CONTROL

IR

MAR

MUX

Din

Dout

Address

FIGURE 2.3 A typical CPU organization; it is represented in connection with the memory.

2 Basic Organization of a Computer

28

Exercises

2.1 Give some arguments for having the stack pointer as a special purpose
register, and indicate which is the hardware required to manage it.

2.2 The block diagram in Figure 2.3 represents the Program Counter as a
normal register, i.e. without dedicated hardware around it. How can it be
incremented, and how long does it take to do so? In which case would PC
require dedicated hardware?

