
Virgil Bistriceanu Illinois Institute of Technology

169

10. Virtual Memory

In a typical memory hierarchy for a compute there are three levels: the
cache, the main memory and the external storage, usually the disk. So far
we have discussed about the first two levels of the hierarchy. the cache and
the main memory; as we saw the cache contains and provides fast access to
those parts of the program that are most recently used. The main memory is
for the disk, what the cache is for the main memory: the programmer has
the impression of a very fast, and very large memory without caring about
the details of transfers between the two levels of the hierarchy.

The fundamental assumption of virtual memory is that programs do not
have to entirely reside in main memory when executed, the same way a
program does not have to entirely fit in a cache, in order to run.

The concept of virtual memory has emerged primarily as a way to relieve
programmer from the burden of accommodating a large program in a small
main memory: in the early days the programmer had to divide the program
into pieces and try to identify those parts that were mutually exclusive, i.e.
they had not to be present at the same moment in memory; these pieces of
code, called overlays, had to be loaded in the memory under the user
program control, making sure at any given time the program does not try to
access an overlay not in memory.

Virtual memory, automatically manages the transfer of pieces of code/

10 Virtual Memory

Virgil Bistriceanu Illinois Institute of Technology

170

data between the disk and main memory and conversely.

At any moment of time, several programs (processes) are running in a
computer; however it is not known at compile time, which will be the other
programs with which the compiled program will be running in a computer.
Of course we discuss here about systems that allow multiprogramming,
which is the case with most of the today's computers: a good image for this
is any IBM-PC running Windows, where several applications may be
simultaneous active. Because several programs must share, together with
the operating system, the same physical memory, we must somehow ensure
protection, that is we must make sure each process is working only in its
own address space, even if they share the same physical memory.

Virtual memory also provides relocation of programs; this means that a
program can be loaded anywhere in the main memory. Moreover, because
each program is allocated a number of blocks in the memory, called pages,
the program has not to fit in a single contiguous area of the main memory.
Usually virtual memory reduces also the time to start a program, as not all
code and data has to be present in the memory to start; after the minimum
amount has been brought into main memory, the program may start.

10.1 Some Definitions

The basic concepts of a memory hierarchy apply for the virtual memory
(the main memory secondary storage levels of the hierarchy). For historical
reasons the names we are using, when discussing about virtual memory, are
different:

• page or segment are the terms used for block;

• page fault is the term used for a miss.

The name page is used for fixed size blocks, while the name segment is
used for variable size blocks.

Until now we have not been concerned about addresses: we did not make
any distinction between an addressed item and a physical location in
memory. When dealing with virtual memory we must make a clear
distinction between the address space of a system (the range of addresses
the architecture allows), and the physical memory location in a given
hardware configuration:

Minimum Maximum
Page size 512 Bytes 16 Kbytes
Segment size 1 Byte 64 KB - 4 MB

10.1 Some Definitions

Virgil Bistriceanu Illinois Institute of Technology

171

• the virtual address is the address the CPU issues;

• the physical address results from translating the virtual
address (using a hardware and software combination), and can be
used to access the main memory.

The process of translating virtual addresses into physical addresses (also
named real addresses) is called memory mapping, or address translation.

The virtual address can be viewed as having two fields, the virtual page/
segment number and the offset inside the page/segment. In the case the
system uses a paged virtual memory things are simple, there a fixed size
field corresponding to offset and the virtual page number is also of fixed
size; with a larger page size the offset field gets larger but, in the mean time
fewer pages will fit in the virtual address space, and the page number field
gets smaller: the sum of sizes of the two fields is constant, the size of an
address issued by the CPU.

 MSB LSB

Obviously the number of virtual pages has not to be the same with the
number of pages that fit in the main memory, and, as a matter of fact,
usually there much more virtual pages than physical ones.

Example 10.1 VIRTUAL PAGE AND OFFSET:

A 32 bit address system, uses a paged virtual memory; the page size is 2
KBytes. What is the virtual page and the offset in the page for the virtual
address 0x00030f40?

Answer:
For a page size of N Bytes the number of bits in the offset field is log2N. In
the case of a 2 KBytes page there are:

log2211 = 11 bits

Therefore the number of bits for the page number is:

32 - 11 = 21

which means a total of 221 = 2 Mpages. The binary representation of the
address is:

Virtual page number Page offset

10 Virtual Memory

Virgil Bistriceanu Illinois Institute of Technology

172

The given virtual address identifies the virtual page number 0x61 = 9710;
the offset inside the page is 0x740 = 185610.

When the virtual memory is segmented, the two fields of the virtual
address have variable length; as a result the CPU must issue two words for
a complete address, one which specifies the segment, and the other one
specifying the offset inside the page. It is therefore important to know from
an early stage of the design if the virtual memory will be paged or
segmented as this affects the CPU design. A paged virtual memory is also
simpler for the compiler.

Another drawback of segmented virtual memory is related to the
replacement problem: when a segment has to be brought into main memory
the operating system must find an unused, contiguous area in memory
where the segment fits. This is really hard as compared with the paged
approach: all pages have the same size, and it is trivial to find space for the
page being brought.

The main differences between the cache-main_memory and the
main_memory_disk can be resumed as follows:

• caches are hardware managed while the virtual memory is
software managed (by the operating system). As the example 7.5
points out, the involvement of the operating system in the
replacement decision, adds very little to the huge disk access time.

• the size of the cache is independent of the address size of the
architecture, while for the virtual memory it is precisely the size of
the address which determines the its size.

• besides its role as the bottom level of the memory hierarchy, the
disk also holds the file system of the computer.

0000 0000 0000 0011 0000 1 111 0100 0000
 31 11 10 0

10.1 Some Definitions

Virgil Bistriceanu Illinois Institute of Technology

173

Virtual address

Virtual page number Page offset

Page table

Physical address

n

n

FIGURE 10.1 For a paged virtual memory the page’s physical address (at outputs of page table) is
 concatenated with the page offset to form the physical address to the main memory.

10 Virtual Memory

Virgil Bistriceanu Illinois Institute of Technology

174

Virtual address

Segment offsetSegment number

n

n

Segment table

+

Physical address

FIGURE 10.2 For a segmented virtual memory the offset is added to the segment’s physical address
 to form the address to the main memory (the physical address).

10.2 How Virtual Memory Works

Virgil Bistriceanu Illinois Institute of Technology

175

10.2 How Virtual Memory Works

As with any memory hierarchy, the same basic questions have to be
answered.

Where are blocks placed in main memory

Due to the huge miss penalty, the design of the virtual memory focuses in
reducing the miss rate. The block placement is a good candidate for
optimization. As we saw when discussing about caches, an important
source for misses are the conflicts in direct mapped and set associative
caches; a fully associative cache eliminates these conflicts. While fully
associative caches are very expensive and slow down the clock rate, we can
implement a fully associative mapping for the virtual memory. That means
any virtual page can be placed anywhere in the physical memory. This is
possible because it is in software where misses are handled.

Is the block in the memory or not?

A table ensures the address translation. This table is indexed with the
virtual page/segment number to find the start of the physical page/segment
in main memory. There is a difference between paging and segmentation:

• paging: the full address is obtained by concatenating the page's
physical address and the page offset, as in Figure 10.1

• segmentation: the full address is obtained by adding the segment
offset to the segment's physical address, as in Figure 10.2

Each program has its own page table, which maps virtual page numbers to
physical addresses (a similar discussion can be made about segmentation,
but we shall concentrate on paging). This table resides in main memory,
and the hardware must provide a register whose content points to the start
of the page table: this is the page table register, and in our machine can be
one of the registers in the general purpose set, restricted to be used only for
this purpose.

As it was the case with caches, each entry in the page table contains a bit
which indicated if the page corresponding to that entry is in the main
memory or not. This bit, the valid bit is set to Valid (1) whenever a page is
being brought into the main memory, and to Non-valid (0) whenever a page
is replaced in main memory.

10 Virtual Memory

Virgil Bistriceanu Illinois Institute of Technology

176

Example 10.2 PAGE TABLE SIZE:

A 32 bit address system, has a 4 MBytes main memory. The page size is 1
KByte. What is the size of the page table?

Answer:
The page table is addressed with the page number field in the virtual
address. Therefore the number of lines in the page table equals the number
of virtual pages. The number of virtual pages is:

The width of each line in the page table equals the width of the page

number field in the virtual address. If the number of virtual pages is 222,
then the line width is 22 bits. It results that the size of the page table is:

page_table_size = number_of_entries * line_size

page_table_size = 222*22 bits = 11.5 Mbyte!!

As the above example points out the size of the page table can be
impressive, in so much that in the example, it does not fit in the memory.
However, most of the entries in the page table have the valid bit equal to 0
(Non-valid); only a number of entries equal to the number of pages that fit
in the main memory have the valid bit equal to 1; that is only:

have the valid bit equal to 1; this represents only from the total number of
entries in the page table.

• One way to reduce the page table size is to apply a hash function
to the virtual address, such that the page table must have only so
many entries as pages in the main memory, 4096 for the example
10.2. In this case we have an inverted page table, The drawback
is a more involved access, and some extra hardware.

• Another way to keep a smaller page table is to start with a small

virtual_pages address_space [Bytes]
page_size [Bytes]

--=

virtual_pages 2
32

2
10

--------- 2
22

4 Mpages= = =

main_memory_size
page_size

--- 2
22

2
10

------- 2
12

4096 entries= = =

10.2 How Virtual Memory Works

Virgil Bistriceanu Illinois Institute of Technology

177

page table and a limit register; if the virtual page number is larger
than the content of the limit register, then the page table must be
increased, as the program requires more space. The underlying
explanation for this optimization is the principle of locality: the
address space won't be uniformly accesses, instead, addresses
concentrate in some areas of the total address space.

• Finally, it is possible to keep the page table paged by itself, using
the same idea that lags behind the virtual memory. namely that
only some parts of it will be needed at any time in the execution of
a program.

Even if the system uses an inverted page table, its size is so large that it
must be kept in the main memory. This makes every memory access
longer: first the page table must be in the memory to get the physical page
address, and only then can the data be accessed. The principle of locality
works again and helps improving the performance. When a translation
from a virtual page to physical one is made, it is probable that it will be
done again in the future, due to spatial and temporal locality inside a page.
Therefore the idea is to have a cache for translations, which will make most
of the translations very fast; this cache, that most new designs provide, is
called translation lookaside buffer or TLB.

What block should be replaced in the case of a miss?

Both because the main purpose is to reduce the miss rate and because the
large times involved in the case of a miss allow a software handling, the
most used algorithm for page replacing is Least Recently Used (LRU),
which is based on the assumption that replacing the page that has not been
used for the longest time in the past will hurt the least the hit rate, in that
probably it won't be needed in the near future as it has not been needed in
the past.

To help the operating system take a decision, the page table provides a bit,
the reference bit also called the use bit, which indicates if the page was
accessed or not. The best candidate for a replacement is a page that has not
been referenced in the past; if all pages in the main memory have been
referenced, then the best candidate is one page that has been little used in
the past and has not been written, thus saving the time for writing it back
on the disk.

How are writes handled?

In the case of caches there are two options to manage the writes: write
through and write back, each with its own advantages and disadvantages.

10 Virtual Memory

Virgil Bistriceanu Illinois Institute of Technology

178

For virtual memory there is only one solution: write back. It would be
disastrous to try writing on disk at every write; remember that the disk
access time is in the millisecond range, which means hinders of thousands
of clock cycles.

The same improvement that was possible with caches can be used for
virtual memory: each entry in the page table has a bit, the dirty bit, which
indicates if the content of the table was modified as a result of a write.
When a page is brought in main memory, the dirty bit is set to Non-dirty
(0); the first write in that page will change the bit to Dirty (1). When it
comes to replacing a page, the operating system will prefer to replace a
page that has not been written because this saves the time of writing out a
page to the disk, again a milliseconds amount of time.

10.3 More About TLB

The TLB is a cache specially designed for page table mappings. Each entry
in the TLB has the two basic fields we found in caches: a tag field which is
as wide as the virtual page number, a data field which is the size of the
physical page number, and several bits that indicate the status of the TLB
line or of the page associated with it; these bits usually are a dirty bit which
indicates if the corresponding page has been written, a reference bit which
indicates if the corresponding page has been accessed, maybe a write
protection bit which indicates if writes are allowed in the corresponding
page. Note that these bits correspond to the same bits in the page table.

At every memory reference the TLB is accessed with the virtual page
number field of the virtual address. If there is a hit, then the physical
address is formed using the data field in the TLB for that entry,
concatenated with the page offset. If there is a miss in the TLB, the control
must determine if there is a real page fault or a simple TLB miss which can
be quickly resolved by updating the TLB entry with the proper information
from the page table residing in main memory. In the case of a page fault the
CPU gets interrupted, and the interrupt handler will be charged to take the
necessary steps to solve the fault.

Figure 10.3 presents the logical steps in addressing the memory; the
diagram assumes that the cache is addressed using the physical address.
The main implication of this scheme is that both accesses, to the TLB and
to the cache, are serialized; the time needed to get an item from the
memory, in the best case, is the access time in TLB (assume there is a TLB
hit), plus the access time in the cache (assume there is a cache hit).

10.3 More About TLB

Virgil Bistriceanu Illinois Institute of Technology

179

Virtual Address

TLB

TLB hit

Write

Upgrade dirty bit in TLB

Cache write

Cache read

Cache hit Cache hit

Process cache
read missData to CPU

Write in cache
Process cache
write miss

No

TLB miss

Yes

Yes

Yes No NoYes

No

FIGURE 10.3 Steps in read/write a system with virtual memory and cache.

10 Virtual Memory

Virgil Bistriceanu Illinois Institute of Technology

180

Certainly this is troubling because we would like to get an item from the
cache in the same clock cycle the CPU issues the address; with the TLB it
is probably impossible to do this, unless the clock cycle is stretched to
accommodate the total access time.

Another possibility is the CPU to access the cache using an address that is
totally or partial virtual: in this case we have a virtually addressed cache.
For the virtually addressed caches, there is a benefit, shorter access times,
and a big drawback: the possibility of aliasing. Aliasing means that an
object has more than one name, in this case more than one virtual address
for the same object; this can appear when several processes access some
common data. In this case an object may be cached in two (or more)
locations, each corresponding to a different virtual address. The
consequence is that a one process may change data without the other ones
being aware of this. Dealing with this problem is a fairly difficult problem.

A final comment about TLB: it is usually implemented as a fully
associative cache, thus having a smaller miss rate than other options, with a
small number of lines (tens) to reduce the cost of a fully associative cache.
For a small number of words even the LRU replacing algorithm becomes
tempting and feasible.

10.4 Problems In Selecting a Page Size

There are factors that favor a larger page size and factors that favor a small
page size. Here are some. Here are some that favor a large page size:

• the larger the page size is the smaller is the page table, thus saving
space in main memory;

• a larger page size makes transfers from/to disk be more efficient,
in that given the big access times, it is worth transferring more
data once the proper location on the disk has been accessed.

As for factors that favor a small page size, here are some:

• internal fragmentation: if the space used by a program is not a
multiple of the page size, then there will be wasted space because
the unused space in the page(s) can not be used by other programs.
If a process has three segments (text, heap, stack), then the wasted
space is on the average 1.5 pages. As the page size increases the
wasted space gets more relevant

10.4 Problems In Selecting a Page Size

Virgil Bistriceanu Illinois Institute of Technology

181

• wasted bandwidth: this is related to the internal fragmentation
problem. When bringing a page in memory we also transfer the
unused space in that page.

• start time: with a smaller page many small processes will start
faster.

10 Virtual Memory

Virgil Bistriceanu Illinois Institute of Technology

182

Exercises

10.1 Draw the block schematic of a 32 bit address system, with pages of
4KBytes. The cache has 8192 lines, each 8 words wide. Assume that the
cache is word addressable.

10.2 With a TLB and cache there are several possibilities of misses: TLB
miss, cache miss, page fault or combinations of these ones. List all possible
combinations and indicate in which circumstances they can appear.

