
© 1996, Virgil Bistriceanu

Memory Issues

Objectives
After completing this lab you will:

• have a better understanding of why memory alignment is required

• know what is the difference between Big Endian and Little Endian

• know how to use in MIPS assembly programs data of sizes other than word

Introduction
As long as the compiler generates code, the programmer may be completely unaware of the layout of data
and instructions in memory. The two questions we address in this lab are:

• Can data and instructions be stored in memory at any address? This is the memory alignment problem.

• When a data object larger than a byte is stored in memory, at what addresses are stored in the individual
bytes of that object? This is the Big Endian versus Little Endian memory model problem.

Memory alignment
An object (data or instruction) with the size 2n bytes is said to be aligned in memory if it is stored in at an
address which is a multiple of 2n. Since a multiple of 2n number has the least significant n bits zero, we can
also say that an object of size 2n is memory aligned if it is stored at an address whose least significant n bits
are zero.

The alignment requirement for data and instructions in MIPS (as well as in other RISC architectures) is
directly related to performance. An unaligned object in memory may require multiple memory accesses and/
or special processing. As the next figure shows, an unaligned word in memory requires two memory accesses

Object Size (bytes) Store at address

byte 1 = 20 any address

half-word 2 = 21 multiple of 2

word 4 = 22 multiple of 4

double 8 = 23 multiple of 8

5

© 1996, Virgil Bistriceanu

to be fetched and extra operations to be aligned in a register: the three bytes of the word read from address
0x400001 must be left shifted one byte, then the byte read from address 0x400004 merged on the least
significant position. All this extra work would make the instruction execute slower.

Big Endian v. Little Endian
When data larger than a byte is stored in memory there are two possible layouts for the individual bytes as
shown in the following figure where an integer (size = word) with the value 0x56789abc is stored at
address 0x400000.If the most significant byte of the data object is stored at a smaller address than the least

significant byte, then the layout is called Big Endian. If the most significant byte is stored at a higher address
than the least significant byte, then the layout is called Little Endian.

MIPS CPUs can use either memory model. The specific model is selected at the reset time. The layout model
can not change dynamically (while programs are running).

The SPIM simulator uses the memory model of the machine it is running on. If the simulator runs on a Little
Endian machine then the memory model the user sees is Little Endian. If the simulator runs on a Big Endian
machine then the memory model the user sees is Big Endian.

0x400000

0x400001

0x400004

Unaligned word stored at address 0x400001

0x400000

Aligned word stored at address 0x400000

0x400000

0x400001

0x56 0x78 0x9a 0xbc 0xbc 0x9a 0x78 0x56
0x400000

Big Endian layout for the integer
0x56789abc

Little Endian layout for the integer
0x56789abc

Laboratory 5: Prelab Memory Issues

© 1996, Virgil Bistriceanu

Laboratory 5: Prelab

Date Section

Name

Memory Alignment
The MIPS assembler allows users to control data alignment using the .align directive. If the programmer
does not use the directive, then the data will be automatically aligned in memory at the proper boundaries.

Since all instructions are the same size (word), they must be aligned in memory. Without alignment each
instruction fetch would require two memory accesses, thus compromising the system’s performance.

Q 1:
In MIPS each address is a byte address. Do you think the alignment requirement would exist if addresses were
word addresses instead (each address would be the address of a word)? Give a justification for your answer.

Step 1
Start with the program P.1 below which you type and save as lab5.1.asm

P.1:
this is a program used to test memory alignment for data

.data 0x10000000
char1: .byte 'a' # reserve space for a byte
double1: .double 1.1 # reserve space for a double
char2: .byte 'b' # b is 0x62 in ASCII
half1: .half 0x8001 # reserve space for a half-word (2 bytes)
char3: .byte 'c' # c is 0x63 in ASCII
word1: .word 0x56789abc # reserve space for a word
char4: .byte 'd' # d is 0x64 in ASCII

.text

.globl main
main: jr $ra # return from main

Laboratory 5: Prelab Memory Issues

© 1996, Virgil Bistriceanu

Step 2
Load lab5.1.asm in the simulator and look in the data segment to see where data has been stored. Fill out the
following table. In the ‘Multiple of’ column of the table indicate what power of two the address is a multiple

of. In the ‘Displacement’ column’ indicate what is the displacement of the data object from the beginning of
the data segment.

Q 2:
Based on the way data has been stored in the data segment, do you think data is aligned or not in memory?
Explain why.

Q 3:
How many bytes have been wasted due to alignment?

Step 3
Modify lab5.1.asm as to minimize the number of bytes wasted due to alignment. Save your work as
lab5.2.asm.

Hint: change the order of data declarations.

Name Data size (bytes) Address Multiple of Displacement (bytes)

char1

double1

char2

half1

char3

word1

char4

wasted_bytes =

Laboratory 5: Prelab Memory Issues

© 1996, Virgil Bistriceanu

Q 4:
How many bytes are wasted due to alignment in program lab5.2.asm?

Step 4
Modify lab5.1.asm as follows:

• include the directive .align 0 right before ‘char1’

• in main load word1 from memory in register $t0

Save this program as lab5.3.asm.

Step 5
Load lab5.3.asm in the simulator and look in the data segment to see where data has been stored. Fill out the
following table. In the ‘Multiple of’ column of the table indicate what power of two the address is a multiple

of. In the ‘Displacement’ column’ indicate what is the displacement of the data object from the beginning of
the data segment.

Q 5:
Based on the way data has been stored in the data segment, do you think data is aligned or not in memory?

wasted_bytes =

Name Data size (bytes) Address Multiple of Displacement (bytes)

char1

double1

char2

half1

char3

word1

char4

Laboratory 5: Prelab Memory Issues

© 1996, Virgil Bistriceanu

Explain why.

Q 6:
How many bytes have been wasted due to alignment?

Step 6
Run lab5.3.asm. You will get an error message. Write it down.

Q 7:
Why does the simulator report an error?

Step 7
Modify lab5.1.asm as indicated below.

• start the text segment at address 0x400001 instead of the default value.

Save the new program as lab5.4.asm.

wasted_bytes =

Laboratory 5: Prelab Memory Issues

© 1996, Virgil Bistriceanu

Step 8
Load lab5.4.asm. Write down the first error message you obtain

Q 8:
Why does the simulator report an error?

Laboratory 5: Inlab Memory Issues

© 1996, Virgil Bistriceanu

Laboratory 5: Inlab

Date Section

Name

Big Endian v. Little Endian
Most of the time the programmer does not see the details of memory layout for data. Most of the time it is
irrelevant whether the data (or instructions for that matter) is stored in Big or Little Endian format. But you
do not need to do assembly programming to become aware of these details. Playing with pointers makes the
issue visible very quickly.

Ex 1:
{
int w=0x4255664c; // an integer is of size word
char *p; // pointer to byte

p = (char*)&w; // p now points to where w starts in memory
cout << *p << endl; // prints the byte pointed to by p

}

The last statement in this piece of code will print out the byte stored in memory at the address where the stor-
age for w begins. If the memory model is Big Endian, then this byte is the most significant byte of w (0x42),
and the program prints the letter B (0x42 is the ASCII representation for B). Otherwise, it is the least sig-
nificant byte of w (0x4c) and the program prints the letter L. ■

The MIPS architecture provides instructions that can be used to load and store data of other sizes than the
native size (word). The next table presents the loads. Corresponding store instructions exist for the signed ver-

sions of these loads.

Remember that sign-extending a datum means replicating the most significant bit of the datum until it reaches
the required size. Sign-extending a byte to fit a register (32 bits) means replicating 24 times the most signif-
icant bit of the byte.

Instruction Effect Comment

lb Rdest, disp(Rbase) Rdest ← M[Rbase + disp]8 load byte and sign extend it

lbu Rdest, disp(Rbase) Rdest ← M[Rbase + disp]8 load byte

lh Rdest, disp(Rbase) Rdest ← M[Rbase + disp]16 load half-word and sign
extend it

lhu Rdest, disp(Rbase) Rdest ← M[Rbase + disp]16 load half-word

Laboratory 5: Inlab Memory Issues

© 1996, Virgil Bistriceanu

Step 1
Sign extend to 32 bits the the following two bytes

Step 2
Start with lab5.1.asm and create a new program named lab5.5.asm based on the following description.

• declare a new variable called word2 of size word, with the initial value 0

• load (use lb) the four bytes of word1 in successive registers starting with $t0

• load (use lbu) the four bytes of word1 in successive registers starting with $t4

• load (use lh) half1 in $t8

• load (use lhu) half1 in $t9

• store the four bytes into word2 in reverse order: the byte that was the most significant in word1 will be
the least significant byte in word2, and so on.

Step 3
Load the program and run it. Fill out the following table

0 1 1 0 1 1 1 1

1 1 1 0 1 1 1 1

Register Content

$t0

$t1

$t2

$t3

$t4

$t5

$t6

$t7

$t8

$t9

Variable Expected value Value in memory

word2

Laboratory 5: Inlab Memory Issues

© 1996, Virgil Bistriceanu

Q 1:
Why are $t2 and $t6 different even if they have been loaded with data from the same address?

Q 2:
Based on the content of registers can you decide whether the SPIM simulator uses a Big Endian or Little
Endian memory model? Which one?

Step 4
Use lab4.2.asm as a template to create lab5.6.asm using the following description.

• prompts the user to enter an integer; store the integer in memory in a variable called user1

• calls a procedure named ‘Reverse_bytes’. The argument passed to the procedure is the address of the
word whose bytes must be reversed. The most significant byte will become the least significant and so
on.

• prints a message that reads “If bytes were layed in reverse order the number would be: ”

• prints the number whose bytes have been reversed

Run the program using the next test plan. Enter the last four digits of your SSN in the bolded row of the table.

Test plan for lab5.6.asm

Integer Output

0 0

-1 -1

1 16777216

16777216

Laboratory 5: Postlab Memory Issues

© 1996, Virgil Bistriceanu

Laboratory 5: Postlab

Date Section

Name

Handling Unaligned Data in MIPS
The MIPS architecture provides instructions that can be used to handle unaligned data. Loading an unaligned
word from memory will require at least two instructions, one to get the upper part of the data and another one
for the lower part of the same data.

Using the special instructions in the instruction set will result in programs that work without generating align-
ment related errors. These programs will be slower than their counterparts in which data is aligned in memory
at the proper boundaries.

Instruction alignment is a must. The programmer may choose whether data is aligned or not but there is no
choice for instructions.

Q 1:
Can you see any advantage in working with unaligned data?

Aside from the fact that these instructions must generate no error, they must also place the data of interest in
the proper place in the destination register.

In the figure below the most significant three bytes of a word are stored beginning with address
0x10000001, while the least significant byte of the same word is stored at 0x10000004. When loaded in
a register, the most significant three bytes of the word must end up on the most significant three bytes in the
register, while the least significant byte of the word (now stored on the most significant position of the word
beginning at 0x10000004) should be merged with the other bytes on the least significant byte of the
register.

There are two instructions used to do the job, lwl and lwr. Similar instructions exist for dealing with half-
words.

lwl will read from a memory address (possibly unaligned) and will place the bytes starting with the current
address up to the next aligned word address in the upper bytes of the destination register. The next example

Laboratory 5: Postlab Memory Issues

© 1996, Virgil Bistriceanu

will clarify how the instruction works.

Ex 1:
lui $t0, 0x1000 # $t0 <- 0x10000000
lwl $t1, 1($t0) # read from address 0x10000001

The three bytes stored at addresses 0x10000001, 0x10000002, and 0x10000003 will be loaded in reg-
ister $t1 on positions 3, 2, and 2 respectively (3 is the most significant byte, 2 is the byte next to it and so
on). ■

Your job is to understand how the other instruction (lwr) works and then use the two instructions together
to load unaligned words from memory.

Step 1
Create the program lab5.7.asm which does

• declare a word variable named word1 with the initial value 0x89abcdef

• loads (using lwl) the registers $t0 to $t3 with data from memory, using as base address the address
of word1 and displacements from 0 to 3 respectively.

Run the program. Based on the values stored in registers fill the missing spaces in the following figure. The
bold vertical arrow indicates the address lwl reads from. Use slanted lines to indicates which bytes are trans-
ferred in the register and on what position(s) in the register.

0x10000000

0x10000004 $i

An unaligned word stored in memory at
address 0x10000001

The same word loaded in register $i

0x10000000

0x10000000

0x10000000

0x10000000

$t0

$t1

$t2

$t3

Memory Register

Laboratory 5: Postlab Memory Issues

© 1996, Virgil Bistriceanu

Step 2
Create the program lab5.8.asm which does

• declare a word variable named word1 with the initial value 0x89abcdef

• loads (using lwr) the registers $t4 to $t7 with data from memory, using as base address the address
of word1 and displacements from 0 to 3 respectively.

Run the program. Based on the values stored in registers fill the missing spaces in the following figure. The
bold vertical arrow indicates the address lwr reads from. Use slanted lines to indicates which bytes are trans-
ferred in the register and on what position(s) in the register.

Step 3
When you run lab5.3.asm you get an error message, due to the fact that you attempt to load an unaligned word
using the lw instruction. Modify that program and create a new one, named lab5.9.asm, which fixes the prob-
lem. Use only native instructions.

Hint: use a sequence of lwl and lwr instructions with the appropriate displacements.

Step 4
It is now time to use some of the store instructions for unaligned data.

Create the program lab5.10.asm with the following description.

• declares the unaligned variables (in this order) ch1 of size byte, word1 of size word, ch2 of size byte
and word2 of size word

• the initial values of variables are ‘a’, 0x89abcdef, ‘b’ and 0 respectively

• copies the value of word1 into word2

• uses only native instructions

0x10000000

0x10000000

0x10000000

0x10000000

$t4

$t5

$t6

$t7

Memory Register

Laboratory 5: Postlab Memory Issues

© 1996, Virgil Bistriceanu

Start the SPIM simulator using the -bare command line option. Load the program and run it. Look into the
memory and make sure the program has changed the value of word2 from 0 to 0x89abcdef.

Step 5
You want to evaluate the impact of unaligned data on the overall performance of some application.

If the data were aligned in the memory, then each memory access would be just one instruction. If data is not
aligned, then several instructions are needed for each load or store.

Let’s also assume that the overall CPI for the application does not change and that the clock cycle is the same
in both cases. The next table gives the frequency of loads and stores for various data sizes in the case data is
aligned. For the sake of this problem we ignore any data of size other than byte and word.

Q 2:
By how much faster is the application when data is aligned than the same application with unaligned data?
Show your work.

Extra instructions needed to load an unaligned word =

Extra instructions needed to store an unaligned word =

Instruction Frequency

lw 9%

sw 4%

lb 2%

sb 0.9%

Laboratory 5: Postlab Memory Issues

© 1996, Virgil Bistriceanu

Step 6
Return to your lab instructor copies of lab5.7.asm to lab5.10.asm together with this postlab description. Ask
your lab instructor whether copies of programs must be on paper (hardcopy), e-mail or both.

