Getting Started With SPIM

Objectives
After thislab you will be able to:

» Load MIPS programs (assembly language) and execute them
» Examine memory locations

e Examine registers

» Execute programs step by step

* Set/remove breakpoints

Introduction

SPIM S20 isasimulator that can run programs for the MIPS R2000 and R3000 architectures. The simulator
may load and execute assembly language programs.

The process through which a source file (assembly language) is trandated to an executable file contains two
stages:

* assembling (implemented by the assembler)
* linking (inplemented by the linker)

An executable file must be loaded before the CPU can actually run that program. This is done by aloader.
Figure 1.1 shows the relation between the processes involved in translation and loading and various types of
files they manipulate.

The assembler performs the trandlation of an assembly language module into machine code. Note that a pro-
gram may have several modules, each of them a part of the program. Thisis usually the case when you bulid
an application from several files.

The output of the assembler is an object module for each source module. Object modules contain machine
code. The tranglation of a module is not complete if the module uses a symbol (alabel) that is defined in a
different module or is part of alibrary.

The linker enters now the picture. It's main god is to resolve external references. In other words the linker

© 1996, Virgil Bistriceanu

Source modules

Y Y
()()() Assembler

Object modules Libraries

Linker

Executable file

A
) Lo

Figure 1.1 The translation process

will match a symbol used in a source module with it's definition found in a different module or in alibrary.
The output of the linker is an executablefile.

The loader may be as simple as a program that copies the executable in the memory at the appropriate loca-
tion(s), or it may be moreinvolved if loading occurs at different locations at different times. This second case
iscalled relocation and it involves the trand ation of some addresses as to correspond with the actual |oading
address.

File Names

File suffixesindicate the type of thefile. Filesthat contain assembly code have the suffix “.s" or “.asm”. Com-
pilers use the first convention.

Files with object programs have the suffix “.0” and executables don’t usually have any suffix.

Trandation in SPIM

The process of tranglation in SPIM is transparent to the user. This means that you don’'t have to deal with an
assembler, alinker and aloader as separate programs. Provided you have written a correct assembly language
program, the only thing you have to do is to start the ssmulator and then indicate what program you want to
execute. The whole process of trandation is hidden.

© 1996, Virgil Bistriceanu

Laboratory 1. Prelab Getting Sarted With SPIM

e —

Laboratory 1. Prelab

Date Section

Name

P.1:

Step 1

Using atext editor, enter the program P.1. The sharp sign (#) starts a comment, a name followed by a colon
(:) isalabel, and names that start with a period (.) are assembler directives.

. data 0x10000000
nsgl: .asciiz "Please enter an integer nunber: "
. text
.globl main

Inside main there are sone calls (syscall) which will change the
value in $31 ($ra) which initially contains the return address
frommain. This needs to be saved.

mai n: addu $s0, $ra, $0 # save $31 in $16
i $v0, 4 # systemcall for print_str
la $a0, nsgl # address of string to print
syscal |

now get an integer fromthe user
i $vO, 5 # systemcall for read_int
syscal | # the integer placed in $v0

do some conputation here with the nunber

addu $t0, $v0, $0 # nove the nunber in $t0

sl $t0, $t0, 2 # last digit of your SSN instead of 2
print the result

i $vO, 1 # systemcall for print_int

addu $a0, $t0, $0 # nmove nunber to print in $a0

syscal |

restore now the return address in $ra and return from nmai n
addu $ra, $0, $sO # return address back in $31
jr $ra # return frommin

Before you continue make sure you have entered the last digit of your SSN instead of 2 in theinstruc-
tionsl | $t0, $t0, 2

© 1996, Virgil Bistriceanu

Laboratory 1. Prelab Getting Sarted With SPIM

Let’ snote here, before we move on, that we save the content of register $r a into another register. Theregister
$r a (used for the call/return mechanism) has to be saved when you enter main, only if you either call system
routines (using syscall) or if you call your own routines (there will be alaboratory dedicated to this topic).
Saving $r a in $s0 (or in any other register for that matter) only works if

« thereisonly onecall level (in other words there are no recursive cals of the routine)
« theroutines you are calling do not modify the register you use for saving

Step 2

Savethefile under the namelabl.1.asm. Savethefilein the samedirectory where the simulator itself is. Oth-
erwise you will have to change the search path such that the system will be able to execute the simulator no
matter what the current working directory is.

Hereweusethe’.asm’ extension for thefile name asto differentiate between hand written code and compiler
generated assembly code. A compiler would usethe’.s' extension for the file containing the assembly code.

Step 3

Start the SPIM simulator by typing spi mat the prompt. Y ou will see a copyright message, followed by a
message indicating that the trap handler has been loaded.

In case you get an error message that says something like "spim: command not found", then you must make
sure the directory where spim islocated isin your search path.

Step 4
Atthe (spi m) prompt type

| oad "Il abl. 1. asnt

If you have any error messages go back to Step 1 and make sure you have not made any mistakes when typing
the program. If there is no error message, then your program has been trandated and you can run it.

Step 5
Atthe (spi m) prompt type

run

to have the program execute. Y ou will be prompted for an integer number; after you enter it, the program will
print a result and exit. You know the program has finished to execute since the simulator returns to the

(spi n) prompt.

Y ou can run the program again either by typing r un at the prompt or by simply pressing the Enter key (which
re-executes the last command).

Step 6

You now try to figure out what program labl.1.asm does. Run it several times with various input data. Use

© 1996, Virgil Bistriceanu

Laboratory 1. Prelab Getting Sarted With SPIM

both positive and negative integers. Fill out the following table:

Test casesfor labl.1.asm

Input number Output number

Step 7
What is the formulathat describes the relation between the output and the input?

© 1996, Virgil Bistriceanu

Laboratory 1: Inlab Getting Sarted With SPIM

e —

Laboratory 1: Inlab

Date Section

Name

Using SPIM to Learn About the MIPS Architecture

Using the simulator you will peek into the memory and into various general purpose registers. Y ou will also
execute a program step by step. Stepping may be very useful for debugging. Setting breakpointsin aprogram
is another valuable debugging aide: you will be playing with these too.

Step 1
Start the spim simulator and load the program labl.1.asm

Step 2

Typeprint _symatthe (spi n) prompt. You will see alisting of all global symbols. Global symbols are
those that are preceded by the assembler directive ‘.globl’. For each symbol the addressin memory where the
labeled instruction is stored, is also printed.

Symbol Address

Exit the ssmulator.

Step 3
Modify labl.1.asm as follows: replace the first line after the line labeled ‘main’ with aline that reads

| abel 1: li $vO, 4 # systemcall for print_int

Save the program as labl.2.asm. The only difference between the two programs is the label ‘label1’

© 1996, Virgil Bistriceanu

Laboratory 1: Inlab Getting Sarted With SPIM

Step 4
Start the spim simulator, load the program labl.2.asm and print the list of global symbols.

Symbol Address

Asyou can see there is no difference between the listing you obtain at this step and the one at Step 2. The
reason isthat ‘label1’ isalocal symbol. Local symbols are visible only within the module in which they are
defined. A global symbol is visible inside and outside the module where it is defined. A global symbol can
therefore be referenced from other modules.

Step 5

We now know where the program is stored in memory. It isthe addressreturned by pri nt _symfor the sym-
bol ‘main’. Let'scall it main_address. To see what is stored in memory starting with that address do

print main_address

at the prompt. The address returned by pri nt _sym isin hexadecimal so make sure you don't forget the
0x whenyoutypeit. The print command printsalinethat contains (in this order):

* the address in memory

* the hexadecimal representation of the instruction

* the native representation of instructions (no symbolic names for registers)1
« thetextual instruction asit appearsin the sourcefile

Q1L

What is the size of an instruction (in bytes)?

Instruction size =

Step 6

Usethepri nt command, starting with the address of the symbol *__start’ and fill the table below

L abel Address Native instruction Source instruction

1. More about this when we discuss synthetic instructions.

© 1996, Virgil Bistriceanu

Laboratory 1: Inlab Getting Sarted With SPIM

Label Address Native instruction Source instruction

Step 7

The st ep <N> command allows the user to execute a program step by step. If the optional argument <N>
is missing, then the simulator will print the instruction, execute it and stop. The user can then see (using the
pri nt command) how a specific instruction has modified registers, memory, etc. If the optional argument
<N> is present, then the simulator will stop after executing N instructions. For example, step 3 will tell
the simulator to execute three instructions and then stop.

The format of line(s) printed by the st ep command is the same asthe format for the pri nt command.
Thefirst field is the address of the executed instruction (the Program Counter).

Usestep 1 (orsimply st ep) tofill out the following table

Label Address (PC) Native instruction Source instruction

© 1996, Virgil Bistriceanu

Laboratory 1: Inlab Getting Sarted With SPIM

Label Address (PC) Native instruction Source instruction

Q2

Why does this table differ from the table you got at step 6?

Step 8

Load again labl.2.asm. Y ou will get an error message indicating that some |abel (s) have multiple definitions.
This happens because the program lab1.2.asm has aready been loaded. If thereisaneed to reload a program,
thentheway todoitis

reinit

| oad <program nane>

rei nit will clear the memory and the registers. Make sure the name of the program you want to load is
between double quotes.

Step 9

Let’s assume you don’t want to step through the program. Instead, you want to stop every time right before
someinstruction is executed. Thisallowsyou to seewhat isin memory or in registersright before theinstruc-
tion is executed.

Set a breakpoint at the second syscall in your program.

br eakpoi nt <addr ess>

where <address> can be found in the table you filled out at step 7. Now you can run the program, up to the
first breakpoint encountered (thereis only one at this time).

run

Usethepri nt command to view the registersjust before the syscall is executed. For example print $0
will print the content of register O. Fill the ‘ Before the syscall’ column of the following table

Register . Before the After the
number Register name syscall syscall Changed
0 zero

© 1996, Virgil Bistriceanu

Laboratory 1: Inlab Getting Sarted With SPIM

Izsgiﬁg Register name B(:yfc;rczltlhe Asf;grcsne Changed
1 $at
2 $v0
3 $vi
4 $a0
5 $al
6 $a2
7 $a3
8 $tO0
9 $t1
10 $t 2
11 $t3
12 $t4
13 $t5
14 $t 6
15 $t7
16 $s0
17 $s1
18 $s2
19 $s3
20 $s4
21 $s5
22 $s6
23 $s7
24 $t8
25 $t9
26 $k0
27 $k1
28 $gp
29 $sp
30 $f p
31 $ra

Step 10

Type step atthe(spi n) prompt to have the syscall executed. Before you can do anything el se you must

© 1996, Virgil Bistriceanu

Laboratory 1: Inlab Getting Sarted With SPIM

supply an integer. This happens because the program executes a syscall, a call to a system function, in this
case one that reads an integer from the keyboard.

Fill out the * After the syscall’ column of the abovetable. In the column * Changed’, mark with a star registers
that have changed.

Q3

Some registers have changed during the syscall execution. Can you assume that syscall uses only these reg-
isters? Explain.

Q4.

Thefirst instruction in your program moves the content of register $r a to register $s0. The content of that
register isamemory address. What is stored in memory at that address?

Q5

This question is related to the previous one. When will be executed the instruction stored at the addressin
$s0? Indicate the instruction that immediately precedes it in execution.

Step 11

Y ou may set as many breakpoints as you want in aprogram. If you want to remove them, then you haveto do
del et e <address>

where <address> isthe address at which the breakpoint has been set. If you have more than one and you have
forgot where they are, then you can list them.

list
will produce alisting with all breakpoints you have set.

Remove the breakpoint you have previously set and run the program again to make sure it has been removed.

© 1996, Virgil Bistriceanu

Laboratory 1: Postlab Getting Sarted With SPIM

e
Laboratory 1: Postlab

Date Section

Name

Learn More About MIPS

In this exercise you will be using the floating-point registers of MIPS.

Background
For practical reasons, the original definition of the R2000 architecture defined aMIPS processor as composed
of

* integer unit (the actual CPU)
* COProcessors

Theidea was that the technology just did not allow to integrate everything on a single silicon die. Therefore
coprocessors could be separate integrated circuits, or could just be software emulators (i.e. for floating point)
if the price was a serious concern. Defining coprocessors neatly separates the architectural definition from the
implementation constraints or details. Keep in mind that the same architecture may have several implemen-
tations, each using possibly different technologies and having different performance.

SPIM simulates two coprocessors

* coprocessor 0: handles interrupts, exceptions and the virtual memory system
* coprocessor 1: floating point unit (FPU)

The FPU performs operations on

« single precison floating point numbers (32 bit representation); adeclaration likef | oat a=1.5; in
C would reserve space for avariable called awhich is single precision floating point, and isinitialized
tol1l5

* double precision floating point numbers (64 bit representation); a declaration like f | oat a=1. 5;

in C would reserve space for avariable called awhich is double precision floating point, and isinitial-
izedto 1.5

The coprocessor has 32 registers, numbered from 0 to 31 (their names are $f 0 to $f 31). Each register is 32
bit wide. To accomodate doubles registers are grouped together (0 with 1, 2 with 3, ..., 30 with 31). To sim-
plify things, floating point operations use only even numbered registers.

© 1996, Virgil Bistriceanu

Laboratory 1: Postlab Getting Sarted With SPIM

Step 1

Create a program (use labl.1.asm as amodel) that reads a float (i.e. single precision number) from the key-
board and then outputsit.

You will need to look at the instruction set to find out what instruction to use for moving a float from one
floating point register to another (addu $f 12, $f 0, $0 will not work).

Save the program as labl.3.asm. Run the program and fill out the ‘ Single precision’ section of the following
table (the content of registers after program finished). The input you type at the keyboard when prompted will
be the last four digits of your Socia Security Number, followed by a period (.), followed by the current year
(four digits).

Step 2

Create a program that reads a double (i.e. double precision number) from the keyboard and then outputs it.
Savethe program aslabl.4.asm. Run the program and fill out the * Double precision’ section of the following
table (the content of registers after program finished). The input you type at the keyboard when prompted will
be the same as at Step 1.

Register Single precision Double precision

$f0
$f 2
$f 4
$f 6
$f 8
$f 10
$f 12
$f 14

$f 16
$f 18
$f 20

$f 22

$f 24

$f 26

$f 28

$f 30

© 1996, Virgil Bistriceanu

Laboratory 1: Postlab Getting Sarted With SPIM

Step 3

Return to your lab instructor copies of lab1.3.asm and labl.4.asm together with this postlab description. Ask
your lab instructor whether copies of programs must be on paper (hardcopies), e-mail or both.

© 1996, Virgil Bistriceanu

