February 25, 1998

1 of 8

cs330 - Discrete Structures Spring 1998

Midterm Exam

closed books, closed notes

Starts: 9:00 am

Ends: 10:15 am

Name:_____(please print)

ID:_____

Problem	Max points	Your mark	Comments
1	10		10*1
2	10		
3	10		
4	20		5+5+5+5
5	10		5+5
6	10		5+5
7	40		8*5
	110		

Statement	T/F
a∉ A	
$a \subseteq A$	
$\varnothing \subseteq A$	
$A \subseteq \emptyset$	
$\{\emptyset\} \in A$	

Statement	T/F
$\{a\} \in A$	
$\{a\} \subseteq A$	
$\{\emptyset\} \subseteq A$	
<i>A</i> =2	
$\{A\} \subseteq \text{power}(A)$	

2. A *boolean function* is a function whose domain and codomain is the set {0, 1}. List all boolean functions of one variable.

3. Find $P(P\{\emptyset\})$, where *P* denotes the power set of a set.

4. Let S be the set of all three letter strings over the alphabet $\{0, 1\}$. A relation R on the set S is defined as follows: two elements of S are related iff they have a common substring of length two. For example **001** and **100** are related because they have in common the substring 00 (of length two)

a) show the set representation of R

b) show the matrix representation of *R*.

c) Show the digraph of R

d) decide whether R is an equivalence relation or not. If it is, then show the partition it creates on S.

V1

5. This is the postfix (reverse Polish) notation for an algebraic expression:

abc/-a2/3+*

a) Show the tree representation of this expression.

b) Show the corresponding algebraic expression

6. Let G be the graph below:

a) Construct a spanning tree for this graph starting with the vertex given by the last digit (rightmost) of your Social Security Number. Use a depth first algorithm with lexico-

graphic ordering when choosing a vertex .

b) Construct a minimum spanning tree for the graph using Prim's algorithm. Use the page attached to this exam to show each step of the process.

7. Give a definition for:

a) Set

b) Cartesian product

c) Relation

V1

d) Function

e) Injective function

f) Graph

g) Euler Path in a graph

h) Spanning tree

