September 28, 1998

cs330 - Discrete Structures Fall 1998

Midterm Exam

closed books, closed notes

Starts: 9:00 am

Ends: 10:15 am

Name:_____(please print)

ID:_____

Problem	Max points	Your mark	Comments
1	10		10*1
2	5		
3	20		4*5
4	10		5+5
5	10		
6	30		6*5
	110		

1 of 6

1.	Let $A = \{\{a\}, \{\emptyset\}\}$. Mark with true (T) or false (F) each of the following statements:
----	--

Statement	T/F
a∉ A	
$a \subseteq A$	
$\varnothing \subseteq A$	
$A \subseteq \emptyset$	
$\{\emptyset\} \in A$	

Statement	T/F
$\{a\} \in A$	
$\{a\} \subseteq A$	
$\{\emptyset\} \subseteq A$	
<i>A</i> =2	
$\{A\} \subseteq \text{power}(A)$	

2. Find $P(P\{\emptyset\})$, where *P* denotes the power set of a set.

3. Let S be the set of all three letter strings over the alphabet {a, b}. A relation R on the set S is defined as follows: two elements of S are related iff they have a common substring of length two. For example aab and baa are related because they have in common the substring aa (of length two)

a) show the set representation of R

b) show the matrix representation of *R*.

c) Show the digraph of R

d) decide whether R is an equivalence relation or not. If it is, then show the partition it cre-

ates on S.

4. This is the postfix (reverse Polish) notation for an algebraic expression:

V1

ab+2-a5+*

a) Show the tree representation of this expression.

b) Show the corresponding algebraic expression

5. Let G be the graph below:

V1

Do a graph traversal for G starting with the least significant digit of your SSN. Use a depth first algorithm with lexicographic ordering when choosing a vertex.

6. Give a definition for:

a) Set

V1

b) Cartesian product

c) Relation

d) Graph

e) Euler Path in a graph

f) Spanning tree

