October 2, 2000

cs330 - Discrete Structures Fall 2000

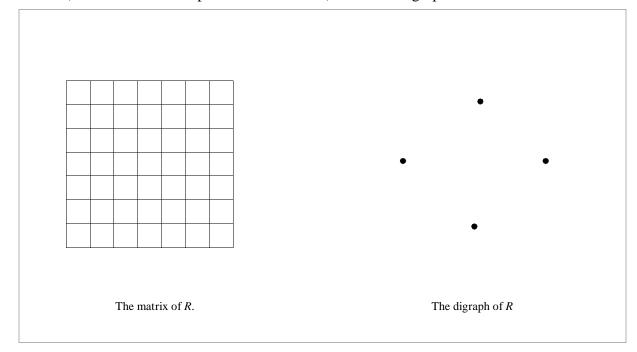
Midterm Exam closed books, closed notes

Starts:8:35 am	Ends: 9:50 am	
Name:		(please print)
ID·		

Problem	Max points	Your mark	Comments
1	10		10*1
2	15		5*3
3	10		4+3+3
4	5		
5	12		4*3
6	8		2*4
	60		

1. Let $A = \{\{a, b\}, ?\}$. Mark with true (T) or false (F) each of the following statements:

Statement	T/F
a? A	
a ? A	
? ?? ?A	
A?? ??	
{?}? A	


Statement	T/F
{a} ? A	
{b} ? A	
?? ??? A	
? ? A	
{ <i>a</i> , <i>b</i> } ? power(<i>A</i>)	

2. Let $S = \{1, 2, 3, 4\}$ and a relation R on S defined as

a R b if and only if $(a+b) \le 2b$, a, b? S

a) show the set representation of R

b) show the matrix representation of R. c) Show the digraph of R

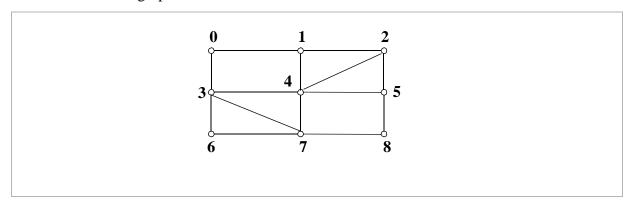
d) mark with true (T) or false (F) the following statements. If your answer is true then give an example

Statement	Your answer (T/F)	Example
There is a cycle in the digraph		
There is a path of length 3 in the digraph of R		

e) Decide whether the relation R on S is an equivalence relation or not. If it is then show the partition it creates on S .


3. This is the postfix (reverse Polish) notation for an algebraic expression:

a) Show the tree representation of this expression.



b) Show the corresponding algebraic expression

7<u>1</u> 4 of 5

4. Let G be the graph below:

Do a graph traversal for this graph starting with the vertex given by the right-most digit of your Social Security Number (if that digit is 9, then the start vertex will be 0). Use a depth first algorithm with lexicographic ordering when choosing a vertex.

5. Give a definition for:

a) set		

b) relation			

V1 5 of 5

	c) Cartesian product
	d) tree
5.	Explain the difference between
J.	Explain the difference between:
	a) an Euler cycle and a Hamiltonian cycle in a connected, undirected graph
	b) a set and a list

