
1

Chapter 7

Object-Oriented Programming

Part 2:

User-Defined Classes

HOME

Topics

• Defining a Class

• Defining Instance Variables

• Writing Methods

• The Object Reference this

• The toString and equals Methods

• static Members of a Class

• Graphical Objects

• enum Types

• Creating Packages

• Documentation Using Javadoc

HOME

Why User-Defined Classes?

Primitive data types (int, double, char, ..) are
great …

… but in the real world, we deal with more
complex objects: products, Web sites, flight
records, employees, students, ..

Object-oriented programming enables us to
manipulate real-world objects.

HOME

User-Defined Classes

• Combine data and the methods that operate on the

data

• Advantages:

– Class is responsible for the validity of the data.

– Implementation details can be hidden.

– Class can be reused.

• Client of a class

– A program that instantiates objects and calls

methods of the class

2

HOME

Syntax for Defining a Class

accessModifier class ClassName

{

// class definition goes here

}

• Class or members can be referenced by

– methods of the same class,

– methods of other classes

– methods of subclasses,

– methods of classes in the same package

HOME

Software Engineering

Tip

• Use a noun for the class name.

• Begin the class name with a capital letter.

HOME

Important Terminology

• Fields

– instance variables: data for each object

– class data: static data that all objects share

• Members

– fields and methods

• Access Modifier

– determines access rights for the class and its

members

– defines where the class and its members can be

used

HOME

Access Modifiers

methods in the same package only No access modifier

(package access)

methods of the same class, methods

of subclasses, and methods of

classes in the same package

protected

methods of the same class onlyprivate

methods of the same class, and

methods of other classes

public

Class or members can be

referenced by…

Access Modifier

3

HOME

public vs. private

• Classes are usually declared to be public

• Instance variables are usually declared to be private

• Methods that will be called by the client of the class are

usually declared to be public

• Methods that will be called only by other methods of the

same class are usually declared to be private

• APIs of methods are published (made known) so that

clients will know how to instantiate objects and call the

methods of the class

HOME

Defining Instance Variables

Syntax:

accessModifier dataType identifierList;

dataType can be primitive date type or a class type

identifierList can contain:

– one or more variable names of the same data type

– multiple variable names separated by commas

– initial values

• Optionally, instance variables can be declared as
final

HOME

Examples of Instance Variable

Definitions

private String name = "";

private final int PERFECT_SCORE = 100,

PASSING_SCORE = 60;

private int startX, startY,

width, height;

HOME

Software Engineering

Tips

• Define instance variables for the data that all

objects will have in common.

• Define instance variables as private so that only

the methods of the class will be able to set or

change their values.

• Begin the identifier name with a lowercase letter

and capitalize internal words.

4

HOME

The Auto Class

public class Auto

{

private String model;

private int milesDriven;

private double gallonsOfGas;

}

HOME

Writing Methods
Syntax:

accessModifier returnType methodName(

parameter list) // method header

{

// method body

}

• parameter list is a comma-separated list of data

types and variable names.

– To the client, these are arguments

– To the method, these are parameters

• Note that the method header is the method API.

HOME

Software Engineering

Tips

• Use verbs for method names.

• Begin the method name with a lowercase letter

and capitalize internal words.

HOME

Method Return Types

• The return type of a method is the data type of

the value that the method returns to the caller.

The return type can be any of Java's primitive

data types, any class type, or void.

• Methods with a return type of void do not return

a value to the caller.

5

HOME

Method Body

• The code that performs the method's function is

written between the beginning and ending curly

braces {…}.

• Unlike if statements and loops, these curly braces

are required, regardless of the number of

statements in the method body.

• In the method body, a method can declare

variables, call other methods, and use any of the

program structures we've discussed, such as

if/else statements, while loops, for loops, switch

statements, and do/while loops.

HOME

main is a Method

public static void main(String [] args)

{

// application code

}

Let's look at main's API in detail:

public main can be called from outside the

class. (The JVM calls main.)

static main can be called by the JVM

without instantiating an object.

void main does not return a value

String [] args main's parameter is a String array

HOME

Value-Returning Methods

• Use a return statement to return the value

• Syntax:

return expression;

HOME

Constructors

• Special methods that are called when an object is

instantiated using the new keyword.

• A class can have several constructors.

• The job of the class constructors is to initialize the

instance variables of the new object.

6

HOME

Defining a Constructor

Syntax:
public ClassName(parameter list)

{

// constructor body

}

Note: no return value, not even void!

• Each constructor must have a different number of
parameters or parameters of different types

• Default constructor: a constructor that takes no
arguments.

• See Examples 7.1 and 7.2, Auto.java and
AutoClient.java

HOME

Default Initial Values

• If the constructor does not assign values to the

instance variables, they are auto-assigned default

values depending on the instance variable data

type.

nullAny object reference (for

example, a String)

falseboolean

spacechar

0.0float, double

0byte, short, int, long

Default ValueData Type

HOME

Common Error

Trap

Do not specify a return value for a constructor (not

even void).

Doing so will cause a compiler error in the client

program when the client attempts to instantiate

an object of the class.

HOME

Class Scope

• Instance variables have class scope

– Any constructor or method of a class can

directly refer to instance variables.

• Methods also have class scope

– Any method or constructor of a class can call

any other method of a class (without using an

object reference).

7

HOME

Local Scope

• A method's parameters have local scope, meaning

that:

– a method can directly access its parameters.

– a method's parameters cannot be accessed by

other methods.

• A method can define local variables which also

have local scope, meaning that:

– a method can access its local variables.

– a method's local variables cannot be accessed

by other methods.

HOME

Summary of Scope

• A method in a class can access:

– the instance variables of its class

– any parameters sent to the method

– any variable the method declares from the point

of declaration until the end of the method or

until the end of the block in which the variable

is declared, whichever comes first

– any methods in the class

HOME

Accessor Methods

• Clients cannot directly access private instance

variables, so classes provide public accessor

methods with this standard form:

public returnType getInstanceVariable()

{

return instanceVariable;

}

(returnType is the same data type as the instance

variable)

HOME

Accessor Methods

• Example: the accessor method for model.

public String getModel()

{

return model;

}

• See Examples 7.3 Auto.java & 7.4 AutoClient.java

8

HOME

Mutator Methods

• Allow client to change the values of instance

variables

public void setInstanceVariable(

dataType newValue)

{

// validate newValue,

// then assign to instance variable

}

HOME

Mutator Methods

• Example: the mutator method for milesDriven
public void setMilesDriven(int newMilesDriven)

{

if (newMilesDriven >= 0)

milesDriven = newMilesDriven;

else

{

System.err.println("Miles driven "

+ "cannot be negative.");

System.err.println("Value not changed.");

}

}

• See Examples 7.5 Auto.java & 7.6 AutoClient.java

HOME

Software Engineering

Tip

• Write the validation code for the instance variable

in the mutator method and have the constructor

call the mutator method to validate and set initial

values

• This eliminates duplicate code and makes the

program easier to maintain

HOME

Common Error

Trap

• Do not declare method parameters.

– Parameters are defined already and are assigned
the values sent by the client to the method.

• Do not give the parameter the same name as the
instance variable.

– The parameter has name precedence so it
"hides" the instance variable.

• Do not declare a local variable with the same
name as the instance variable.

– Local variables have name precedence and hide
the instance variable.

9

HOME

Data Manipulation Methods

• Perform the "business" of the class.

• Example: a method to calculate miles per gallon:

public double calculateMilesPerGallon()

{

if (gallonsOfGas != 0.0)

return milesDriven / gallonsOfGas;

else

return 0.0;

}

• See Examples 7.7 Auto.java & 7.8 AutoClient.java

HOME

The Object Reference this

• How does a method know which object's data to
use?

• this is an implicit parameter sent to methods and is
an object reference to the object for which the
method was called.

• When a method refers to an instance variable
name, this is implied

• Thus:

variableName model

is understood to be is understood to be

this.variableName this.model

HOME

Using this in a Mutator Method

public void setInstanceVariable(

dataType instanceVariableName)

{

this.instanceVariableName = instanceVariableName;

}

• Example:
public void setModel(String model)

{

this.model = model;

}

this.model refers to the instance variable.

model refers to the parameter.

HOME

The toString Method

• Returns a String representing the data of an object

• Client can call toString explicitly by coding the

method call.

• Client can call toString implicitly by using an

object reference where a String is expected.

• Example client code:
Auto compact = new Auto();

// explicit toString call

System.out.println(compact.toString());

// implicit toString call

System.out.println(compact);

10

HOME

The toString API

toString()

returns a String representing the

data of an object

String

Method name and argument listReturn

value

HOME

Auto Class toString Method

public String toString()

{

DecimalFormat gallonsFormat =

new DecimalFormat("#0.0");

return "Model: " + model

+ "; miles driven: " + milesDriven

+ "; gallons of gas: "

+ gallonsFormat.format(gallonsOfGas);

}

HOME

The equals Method

• Determines if the data in another object is equal to

the data in this object

• Example client code using Auto references auto1

and auto2:

if (auto1.equals(auto2))

System.out.println("auto1 equals auto2");

equals(Object obj)

returns true if the data in the Object obj is

the same as in this object; false otherwise.

boolean

Method name and argument listReturn value

HOME

Auto Class equals Method

public boolean equals(Auto autoA)

{

if (model.equals(autoA.model)

&& milesDriven == autoA.milesDriven

&& Math.abs(gallonsOfGas -

autoA.gallonsOfGas) < 0.0001)

return true;

else

return false;

}

• See Examples 7.10 Auto.java

& 7.11 AutoClient.java

11

HOME

static Variables

• Also called class variables

• One copy of a static variable is created per class

• static variables are not associated with an object

• static constants are often declared as public

• To define a static variable, include the keyword

static in its definition:

• Syntax:

accessSpecifier static dataType variableName;

• Example:
public static int countAutos = 0;

HOME

static Methods

• Also called class methods

• Often defined to access and change static variables

• static methods cannot access instance variables:

– static methods are associated with the class,

not with any object.

– static methods can be called before any object

is instantiated, so it is possible that there will be

no instance variables to access.

HOME

Rules for static and Non-static Methods

• See Examples 7.12 and 7.13

yesnoUse the object reference this?

yesnoCall non-static instance

methods?

yesyesCall static class methods?

yesyesAccess static class variables?

yesnoAccess instance variables?

Non-static

Method

static

Method

HOME

Reusable Graphical Objects
• In Chapter 4, the applet code and the Astronaut

were tightly coupled; we couldn't draw the
Astronaut without running the applet.

• To separate the Astronaut from the applet, we can
define an Astronaut class.

– The starting x and y values become instance
variables, along with a new scaling factor.

– We move the code for drawing the Astronaut
into a draw method.

• The applet instantiates an Astronaut object in init
and calls draw from the paint method.

• See Examples 7.14, 7.15, and 7.16.

12

HOME

enum Types

• Special class definition designed to increase the

readability of code

• Allows you to define a set of objects that apply

names to ordered sets

• Examples of ordered sets:

– Days of the week

– Months of the year

– Playing cards

HOME

enum
• Built into java.lang (no import statement needed)

• Syntax:

enum EnumName { obj1, obj2,… objn };

• Example

enum Days { Sun, Mon, Tue, Wed,

Thurs, Fri, Sat };

• When this statement is executed A constant object
is instantiated for each name in the list. Thus, each
name is a reference to an object of type Days

HOME

Using an enum Object

• Referring to an enum object reference

– Syntax:
EnumType.enumObject

– Example:
Days.Mon

• Declaring an object reference of an enum type

– Syntax:
EnumType referenceName

– Example:

Days d; // d is null initially

d = Days.Thurs;

HOME

Useful enum Methods

ordinal()

returns the numeric value of the enum

object. By default, the value of the first

object in the list is 0, the value of the second

object is 1, and so on.

int

compareTo(Enum eObj)

compares two enum objects and returns a

negative number if this object is less than the

argument, a positive number if this object is

greater than the argument, and 0 if the two

objects are the same.

int

Method name and argument listReturn value

13

HOME

More Useful enum Methods

• See Example 7.17 EnumDemo.java

valueOf(String enumName)

Convert a string to an object

static method that returns the enum object

whose name is the same as the String

argument enumName.

Enum

toString()

returns the name of the enum constant

String

equals(Enum eObj)

returns true if this object is equal to the

argument eObj; returns false otherwise.

boolean

Method name and argument listReturn value

HOME

Using enum Objects with switch

• Using enum objects for case constants makes the

code more readable.

• Use the enum object reference without the enum

type

– Example:

case Fri:

• See Example 7.18 DailySpecials.java

HOME

Creating Packages

• A package is a collection of related classes that

can be imported into a program.

• Packages allow reuse of classes without needing

the class in the same directory as the other source

files.

• To include a class in a package, precede the class

definition with the package statement:

package packageName;

HOME

A Reusable Class

• For example, we can create a class that provides

type-safe reading of input from the console that

can be reused by our programs.

• We will name this class ConsoleIn.java

• See Example 7.20

14

HOME

Naming Packages

• To avoid name collisions, which can occur when

multiple programmers define packages, we use

this naming convention:

– Use the reverse of the domain name, excluding

"www".

• For example, for a domain name:

www.jbpub.com

the package name would begin with:

com.jbpub

then add the package name:

com.jbpub.af HOME

Create the Directory Structure

• For the package com.jbpub.af, we create three

directories and place ConsoleIn.java into the af

directory and compile it:

HOME

Modify the CLASSPATH

• The CLASSPATH environment variable tells the

compiler where to look for packages.

• Set the CLASSPATH to include the directory in

which you created the com directory for your

package.

• On Windows, if com is created in My Documents,

the CLASSPATH might be:
.;c:\documents and settings\user\My Documents

• On Linux, if com is created in myClasses in your

home directory, the CLASSPATH might be:
.;/usr/local/java/jre/lib;/home/user/myClasses

HOME

Client Use of Package

• To reuse the classes in a package, use the import

statement.

import com.jbpub.af.ConsoleIn;

• See Example 7.21 ConsoleInClient.java

15

HOME

Javadoc Documentation

• The Java class library documentation on Sun's

Web site (www.java.sun.com) helps us learn how

to instantiate objects and call methods for the

classes.

• This documentation was generated using Javadoc,

a tool provided in the Java Software Development

Toolkit (SDK).

• We can also use Javadoc to generate Web pages

that provide documentation on our class's fields

and methods.

HOME

To Use Javadoc

• We need to add Javadoc comments and special

tags to our classes.

• Javadoc comments begin with /** and end with

*/ (Note that this is similar to a Java block

comment, but with an extra * in the opening

syntax.)

• Example:

/** Auto class

* Anderson, Franceschi

*/

HOME

Block Tags

• Identify parameters and return values

• HTML tags can be used in the descriptions

– For example,
 to insert a new line

@return description@return

@param variableName description@param

Common syntaxTag

HOME

Sample equals Method

Documentation
/**

* equals method:

* Compares the fields of two Auto objects

* @param a1 another Auto object

* @return a boolean, true if this object

* has the same field values as the parameter a1

*/

public boolean equals(Auto a1)

{

return (model.equals(a1.model) &&

milesDriven == a1.milesDriven &&

Math.abs(gallonsOfGas - a1.gallonsOfGas)

< 0.001);

}

16

HOME

Executing Javadoc

• javadoc.exe is located in the bin directory of the

Java SDK

• To generate documentation for a class:

javadoc Class.java

Example:

javadoc Auto.java

• To generate documentation for all classes in a

directory:

javadoc *.java

• See Example 7.22

HOME

Sample Javadoc Documentation

