
Chapter 6

Flow of Control Part 2:

Looping

HOME

Topics

• Event-Controlled Loops Using while

• Looping Techniques

• Type-Safe Input Using Scanner

• Constructing Loop Conditions

• Testing Techniques for while Loops

• Event-Controlled Loops Using do/while

• Count-Controlled Loops Using for

• Nested Loops

HOME

The Grocery Cashier
• A grocery cashier's job is to calculate the total

costs of the items in the cart.

– The cashier starts with a total of $0.00.

– The cashier scans an item to get its price and

adds the price to the total.

– The cashier scans the next item to get its price

and adds the price to the total.

– …

– When there are no more items to scan, the total

is complete.

• Notice that the cashier is performing the same

operations on each item!

HOME

Looping

• In computing, we often need to perform the same

operations on multiple items.

• Typically, these tasks follow this pattern:

– initialize values (set total to 0)

– process items one at a time (add price to total)

– report results (report total)

The flow of control that programmers use to

complete jobs with this pattern is called looping,

or repetition.

HOME

The while Loop

• The while loop is designed for repeating a set of

operations on data items when we don't know how

many data items there will be.

• We will get some signal when we have reached

the end of the items to process. (For the grocery

cashier, it's the divider bar)

• The end of data items could be indicated by a

special input value called a sentinel value or by

reaching the end of a file

• Receiving the signal is an event; we call this

event-controlled looping

HOME

while Loop Flow of Control

HOME

while Loop Syntax

//initialize variables

while (boolean expression)

{

// process data (loop body)

}

//process the results

**Note: curly braces are optional if only one

statement is in the loop body

HOME

• Indent the body of a while loop to clearly illustrate

the logic of the program.

HOME

Operation of the while Loop

• If the condition evaluates to true, the loop body is

executed, then the condition is re-evaluated.

• As long as the condition evaluates to true, we

continue to repeat the loop body.

• The loop body must "update the loop condition";

that is, it must perform some operation that

eventually will cause the loop condition to

evaluate to false

• Typically, the loop update will be an attempt to

read the next input value, in order to detect the

sentinel value or the end of the file.

HOME

Some Definitions

• iteration

– one execution of the loop body

• loop update

– One or more statements that could cause the

loop condition to evaluate to false (to end the

looping)

• loop termination condition

– the event that causes the loop condition to

evaluate to false

HOME

The Endless Loop

• also called an infinite loop

• If the loop condition never evaluates to false, the

loop body is executed continuously, without end

• If the loop body has no output, the endless loop

makes the computer appear to hang.

• If the loop body produces output, the endless loop

results in that output being repeatedly written

without end.

• Aborting the program will interrupt the endless

loop.

HOME

Pseudocode for the Grocery Cashier

set total to $0.00

reach for first item

while item is not the divider bar

{

get price of item

add price to total

reach for next item // loop update

}

// if we get here, the item is the

// divider bar

output the total price

HOME

• Avoid putting a semicolon after the condition of a

while loop. Doing so creates an empty loop body

and could result in an endless loop.

• This code causes an endless loop:
int i = 0;

while (i < 10); // empty loop body

{

i++; // not in the loop body

}

• The semicolon indicates an empty loop body; i++

is never executed because it is not part of the loop

body, so the condition is always true.

HOME

Sentinel-Controlled while Loop

initialize variables

// priming read

read the first data item

while (item is not the sentinel value)

{

process the item

// update read

read the next data item

}

report the results

HOME

• Omitting the update read may result in an endless
loop.

• Example:
System.out.print("Enter a value > ");

int input = scan.nextInt();

while (input != 10) // 10 is sentinel value

{

System.out.println(input);

}

• If the value entered for input is not 10, this is an
endless loop because we never read a new value
for input. Thus, the condition always evaluates to
true.

HOME

• Omitting the priming read can lead to incorrect
results.

• Example:
int input, count = 0;;

while (input != 10) // 10 is sentinel value

{

System.out.print("Enter an integer > ");

input = scan.nextInt();

count++;

}

System.out.println("Count is " + count);

• If the user enters the values 20 30 10, then the output will
be "Count is 3", which is incorrect. We should not process
the sentinel value.

HOME

Example 6.1

• EchoUserInput.java

• -1 is the sentinel value

• We read integers from the user until the user

enters -1

• To process the data, we echo the user input

to console

HOME

Reading from a Text File

initialize variables

while (there is more data in the

file)

{

read the next data item

process the data

}

report the results

HOME

Setup for Reading from a File

• File class (java.io package) constructor

• A Scanner constructor for reading from a file

Example:
File inputFile = new File("input.txt");

Scanner scan = new Scanner(inputFile);

File (String pathname)

constructs a File object with the file name pathname

Scanner(File file)

creates a Scanner object associated with a file

HOME

Scanner Class hasNext Method

• Use this method to detect the end of the input values

Eliminates the need for a priming read because the
hasNext method looks ahead for input.

• An IOException may be generated if we encounter
problems reading the file. Java requires us to acknowledge
that these exceptions may be generated. One way to do this
is to add this clause to the main definition
throws IOException

• See Example 6.2 reading from a text file

hasNext()

returns true if there is more data to read;

returns false when the end of the file is reached

boolean

Method name and argument listReturn type

HOME

Looping Techniques

• There are standard patterns and techniques

for performing these common operations:

– Accumulation

– Counting Items

– Finding an Average

– Finding Maximum or Minimum Values

– Animation

HOME

Accumulation

• Approach: the running total

– We start by initializing a total variable to 0.

– Each time we read a value, we add it to the

total.

– When we have no more values to read, the total

is complete.

• Note that this is the same pattern used by the

grocery cashier.

HOME

Accumulation Pseudocode

set total to 0 // very important!

read a number // priming read

while (number is not the sentinel value)

{

add the number to total

read the next number // update read

}

output the total

• See Example 6.3 Calculator.java

HOME

• Forgetting to initialize the total variable to 0

before beginning the loop will produce incorrect

results.

HOME

Counting Items

• Approach: the running count

– We start by initializing a count variable to 0.

– Each time we read a value, we check whether

that value meets the criteria as something we

want to count. If so, we increment the count

variable by 1.

– When we are finishing reading values, the

count is complete.

HOME

Counting Items Pseudocode

set count to 0 // very important!!

read input // priming read

while (input is not the sentinel value)

{

if (input is what we want to count)

add 1 to count

read the next input // update read

}

output count

• See Example 6.4 CountTestScores.java

HOME

• Forgetting to initialize the count variable to 0

before beginning the loop will produce incorrect

results.

HOME

Calculating an Average

• Approach: combine accumulation and counting

• We start by initializing a total variable and count
variable to 0.

• Each time we read an item, we add its value to the
total variable and increment the count variable

• When we have no more items to read, we calculate
the average by dividing the total by the count of
items.

HOME

Calculating an Average Pseudocode
set total to 0

set count to 0

read a number

while (number is not the sentinel value)

{

add the number to total

add 1 to the count

read the next number

}

set average to total / count

output the average

• See Example 6.5 AverageTestScore.java

HOME

• Forgetting to check whether the denominator is 0

before performing division is a logic error.

• In integer division, if the divisor is 0, an

ArithmeticException is generated.

• In floating-point division, if the divisor is 0:

– If the dividend is also 0,

• the result is NaN

– If the dividend is not 0,

• the result is Infinity

HOME

Correct Calculation

• Remember that if we declare total and count as

integers, then average will be calculated using

integer division, which truncates the remainder.

• To get a floating-point average, we need to type

cast one of the variables (either total or count) to a

double or a float to force the division to be

performed as floating point.

• Example:

double average = (double) (total) / count;

HOME

Finding Maximum/Minimum Values

• Approach: the running maximum or minimum

• For the maximum (minimum is similar):

– Read the first item and save its value as the

current maximum

– Each time we read a new value, we compare it

to the current maximum.

• If the new value is greater than the current

maximum, we replace the current maximum

with the new value.

– When we have no more items to read, the

current maximum is the maximum for all

values.

HOME

Finding Maximum Value

Pseudocode for Reading From a File
read a number

make that number the maximum

while (there is another number to read)

{

read the next number

if (number > maximum)

{

set maximum to number

}

}

output the maximum

• See Example 6.6

HOME

• Initializing a maximum or a minimum to an

arbitrary value, such as 0 or 100, is a logic error

and could result in incorrect results.

• For example, if we initialize the maximum to 0

and all the values read are less than 0, then we will

incorrectly report 0 as the maximum.

• Similarly, if we initialize the minimum to 0 and all

the values read are greater than 0, then we will

incorrectly report 0 as the minimum.

HOME

Animation

• Move object (for example, a ball) across window

by changing x and y values and redrawing

• Drawing a figure using offsets from (x, y) makes

this possible.

• Loop terminates when we reach the right edge of

window

figure + width >= windowWidth

• Thus, our loop condition becomes:

figure + width < windowWidth

HOME

Circle Class API

• Constructor

• Example:
Circle c = new Circle(100, 200, 50,

Color.RED);

instantiates a Circle object with the upper left (x,y)

coordinate of (100, 200), a diameter of 50, and the color

red.

Circle(int sX, int sY, int sDiam,

Color sColor)

constructs a Circle object; sets x and y to sX and

sY, respectively; diameter to sDiam; and color to

sColor.

HOME

Circle Class Methods

setDiameter(int newDiameter)

sets the Circle's diameter to newDiameter

void

setY(int newY)

sets the Circle's y value to newY

void

getY()

returns the Circle's y value

int

setX(int newX)

sets the Circle's x value to newX

void

getDiameter()

returns the Circle's diameter

int

getX()

returns the Circle's x value

int

Method name and argument listReturn type

HOME

Circle Class Methods (con't)

getColor()

returns the Circle's color

Color

draw(Graphics g)

draws a filled circle with x and y being the

upper-left corner of a bounding rectangle, and

with the diameter and color set in the object.

void

setColor(Color newColor)

sets the Circle's color to newColor

void

Method name and argument listReturn

type

HOME

Animation First Attempt

• See Example 6.7 RollABall1.java

• Get width of window by calling the getWidth
method in the JApplet class with this API:

• In while loop, we increment x by the ball diameter,
plus a constant space between balls (SPACER)

ball.setX(ball.getX() +

ballDiameter + SPACER);

getWidth()

returns the current width of the

window in pixels

int

Method name and argument listReturn type

HOME

Result

• All balls appear at once

• Solution:

– Slow down the time between each drawing of

the ball.

– Erase the current ball before drawing the next

one

HOME

Slow Down the Execution

• We can slow down the animation by calling the

static wait method in the author's Pause class from

the while loop body

• Example:

Pause.wait(.03); // pause 3/100th of a second

wait(double seconds)

static method that pauses execution

for the number of seconds specified.

void

Method name and argument listReturn type

HOME

Erase the Ball

• To erase the previous ball before drawing the new ball

• Call clearRect method in Graphics class:

• Get window height by calling getHeight method in JApplet

class

clearRect(int x, int y,

int width, int height)

draws a filled rectangle in the background

color

void

Method name and argument listReturn type

getHeight()

returns the current height of the window in

pixels

int

Method name and argument listReturn type

HOME

Pseudocode for Animation

set starting (x, y) coordinate

instantiate the ball object

while (x + diameter is within the window)

{

draw the ball

pause

erase the ball

set (x, y) coordinate to next

drawing position

}

• See Example 6.8 RollABall2.java

HOME

Input Problems

• What happens if the user does not enter the data

type we request?

– The Scanner next… method generates an

InputMismatchException

– Program is terminated; remaining statements

are not executed.

• See Example 6.9 ReadInteger.java

HOME

Solving the Input Problem

• We can check before we read, that the next token

matches our expected input.

• The Scanner class provides hasNext… methods

for doing this. The hasNext… methods return true

if the next token can be read as the data type

specified.

HOME

Scanner Class hasNext… Methods

• Each method returns true if the next token in the

input stream can be read as the data type

requested, and false otherwise.

hasNext()boolean

hasNextBoolean()boolean

hasNextLong()boolean

hasNextShort()boolean

hasNextByte()boolean

hasNextFloat()boolean

hasNextDouble()boolean

hasNextInt()boolean

Method name and argument listReturn type

HOME

Reprompting for Valid Input

• If the hasNext method returns false, we need to

notify the user that the value typed is not valid and

reprompt for new input.

• First we need to flush the invalid input using the

nextLine method of the Scanner class. Then we

just ignore that input.

HOME

Scanner nextLine Method

• Pseudocode for type-safe input:
prompt for input

while (input does not match type requested)

{

flush input

reprompt

}

perform read

• See Example 6.10 TypeSafeReadInteger.java

nextLine()

returns the remaining input on the line
as a String

String

Method name and argument listReturn type

HOME

Constructing Loop Conditions

• The loop body is executed as long as the loop

condition evaluates to true

• So if we want to stop executing the loop when the

sentinel value is read, the loop condition has to

check that the value is NOT the sentinel

• Thus, the loop continuation condition is the

inverse of the loop termination condition.

HOME

Example: Menu Program

• Two sentinel values ('s' or 'S')

• We are inclined to form this **incorrect**

condition:

while (option != 'S' || option != 's')

• This causes an endless loop because one of the
conditions is always true

HOME

Constructing a Loop Condition

1. Define the loop termination condition, that is,

define the condition that will make the loop stop

executing.

2. Create the loop continuation condition – the

condition that will keep the loop executing – by

applying the Logical NOT operator (!) to the

loop termination condition.

3. Simplify the loop continuation condition by

applying DeMorgan's Laws, where possible.

HOME

DeMorgan's Laws (see Chapter 5)

• Set of rules to help develop logical expressions

that are equivalent

NOT(A AND B) is equivalent to

(NOT A) OR (NOT B)

NOT(A OR B) is equivalent to

(NOT A) AND (NOT B)

HOME

According to DeMorgan's Laws:

!(a && b)

is equivalent to

(!a) || (!b)

!(a || b)

is equivalent to

!a && !b

HOME

Negating Expressions

a > ba <= b

a <= ba > b

a < ba >= b

a >= ba < b

a = = ba != b

a != ba = = b

! (expression)expression

HOME

The Menu Condition Revisited
1. Define the loop termination condition:

(option == 'S' || option == 's')

2. Create the loop continuation condition by
applying the ! operator:

! (option == 'S' || option == 's')

3. Simplify by applying DeMorgan's Laws:
(option != 'S' && option != 's')

This condition is correct!

• See Example 6.11 CellService.java

HOME

Do not check for the sentinel value inside a while

loop. Let the while loop condition detect the

sentinel value.

Note in Example 6.11 that no code in the loop checks for

's' or 'S'. Because the while loop condition does the

checking, the option variable can never have the value 's'

or 'S' inside the loop body. This is true because we use a

priming read and an update read.

HOME

A Compound Loop Condition

• Suppose we want to animate the ball so that it rolls

diagonally.

• In this case, we will have two possible events:

– the ball has passed the horizontal border

– the ball has passed the vertical border

HOME

Develop the Loop Condition

1. Loop termination (ball is out of bounds)
(ball.getX()+ diameter > windowWidth

|| ball.getY()+ diameter > windowHeight)

2. Loop continuation (ball is not out of bounds)
! (ball.getX()+ diameter > windowWidth

|| ball.getY()+ diameter > windowHeight)

3. Simplify (ball is in bounds)
(ball.getX()+ diameter <= windowWidth

&& ball.getY()+ diameter <= windowHeight)

• See Example 6.12 RollABall3.java

HOME

Testing Techniques

1. Does the program produce correct results

with a set of known input values?

2. Does the program produce correct results if

the sentinel value is the first and only

input?

3. Does the program deal appropriately with

invalid input?

HOME

Testing Technique 1

1. Does the program produce correct results with

known input?

• To verify, select input values, calculate by hand,

and compare output to hand-calculated values

• Check boundary values

– Such as lowest or highest expected values

• Check "edge" values of if statements

For Example, with this if condition:
(age >= 18)

we should test the program with values 17, 18, and 19

HOME

Testing Techniques 2 and 3

2. Does the program produce correct results if the

sentinel value is the first and only input?

Result: the while loop is not executed; will

reported results be correct?

Test: Enter sentinel value at first prompt

3. Does the program deal appropriately with invalid

input?

Possible results: an Exception is generated or an

incorrect action is performed

Test: Enter invalid data

HOME

The do/while Loop

• Unlike the while loop, the condition for the

do/while loop is evaluated at the end of the loop

• Thus, do/while loop executes at least once

• Some uses for a do/while loop:

– Validate user input

– Ask if user wants to repeat an operation

HOME

do/while Syntax

//initialize variables

do

{

// body of loop

} while (condition);

//process the results

HOME

do/while Flow of Control

HOME

Example:Validate User Input

• Prompt user inside the do/while loop

• Condition is true if user entered invalid data, so

looping continues until user enters valid data.

• See Example 6.13 ValidateInput.java

HOME

• Do not use an if statement to validate input

because it will catch invalid values entered the

first time only.

• A do/while loop will continue to prompt the user

until the user enters a valid value.

HOME

To Repeat an Operation

• Example code to prompt user to play again.

do

{

// code to play a game

System.out.print("play again? ")

String answer = scan.next();

} while (answer.equalsIgnoreCase("yes"));

HOME

The for Loop

• Ideal when you know the number of iterations to

perform before the loop begins

• Examples:

– Find the sum of 5 numbers

– Find the maximum of 20 numbers

– Print the odd numbers from 1 to 10

HOME

The for Loop Syntax

for (initialization; loop condition; loop update)

{

// loop body

}

Notes:

• semicolons separate terms in the loop header

• no semicolon follows the loop header

• curly braces are required only if more than

one statement is in the loop body

HOME

for Loop Flow of Control

HOME

for Loop Flow of Control

1. The initialization statement is executed

(once only).

2. The loop condition is evaluated. If the

condition is true, the loop body is

executed.

3. The loop update statement is executed,

and the loop condition is reevaluated (#2).

• And so on, until the condition is false.

HOME

Using a Loop Control Variable

• A loop control variable is usually used for

counting.

– We set its initial value in the initialization

statement

– We check its value in the loop condition

– We increment or decrement its value in the

loop update statement

HOME

Example: Find Sum of 5 Integers

set total to 0

for i = 1 to 5 by 1

{

read integer

add integer to total

}

print the total

See Example 6.15 Sum5Numbers.java

HOME

Update Increment Can Be > 1

• Print the even numbers from 0 to 20

set output to an empty String

for i = 0 to 20 by 2

{

append i and a space to output

}

print the output String

See Example 6.16 PrintEven.java

HOME

Loop Control Variable Scope

• When a loop control variable is declared inside

the for loop header, it cannot be referenced after

the loop

for (int i = 0; i < 3; i++)

{
System.out.println(i); // ok

}
System.out.println(i); // error: i undefined

HOME

To Reference i After the Loop

int i; // declare i before loop

for (i = 0; i < 3; i++)

{

System.out.println(i);

}

System.out.println(i); // ok

HOME

Decrementing the Loop Variable

• Print a string backwards:
set backwards to an empty String

read a sentence

for i = (length of sentence – 1)

to 0 by –1

{

get character at position i

append character to backwards

}

print backwards

• See Example 6.17 Backwards.java

HOME

Drawing a Bull's Eye Target

• Draw 10 concentric circles

– All circles have the same center point

– Each circle has a different diameter

• To alternate colors (black & red), we use a toggle

variable

– variable alternates between two values

• We must draw the circles from the largest to the

smallest to avoid covering the smaller circles.

HOME

Pseudocode for Bull's Eye

initialize color to black

for diameter = 200 to 20 by –20

{

instantiate a circle

draw the circle

if color is black

set color to red

else

set color to black

}

• See Example 6.18 Bullseye.java

HOME

Testing for Loops

• An important test for for loops is that the starting

and ending values of the loop variable are set

correctly.

• For example, to iterate 5 times, use this header:

for (int i = 0; i < 5; i++)

or this header:

for (int i = 1; i <= 5; i++)

HOME

Processing a String (named word)

• Forward direction:

– Correct:

for (int i = 0; i < word.length(); i++)

– Incorrect:

for (int i = 0; i <= word.length(); i++)

• Reverse direction:

– Correct:

for (int i = word.length() - 1; i >= 0; i--)

– Incorrect:

for (int i = word.length(); i >= 0; i--)

for (int i = word.length() - 1; i > 0; i--)

HOME

Testing for Loops

• Test with data that causes for loop to execute 0

times (no iterations).

• Example: Test Example 6.17 Backwards.java with

an empty sentence.

HOME

Nested Loops

• Loops can be nested inside other loops; that is, the

body of one loop can contain another loop.

• A while loop can be nested inside another while

loop or a for loop can be nested inside another for

loop.

• A for loop can be nested inside a while loop and a

while loop can be nested inside a for loop.

HOME

Example: Grocery Checkout

look for a customer in line

while (there is a customer in line)

{

set total to $0.00

reach for first item

while item is not the divider bar

{

add price to total

reach for next item

}

output the total price

look for another customer in line

}

HOME

Nested for Loop Execution

• Inner loop executes all its iterations for each

single iteration of the outer loop

• Example: how can we print this?

1

1 2

1 2 3

1 2 3 4

1 2 3 4 5

HOME

Analysis

• The highest number we print is the same as the

line number.

for line = 1 to 5 by 1

{

for number = 1 to line by 1

{

print number and a space

}

print a new line

}

See Example 6.19 NestedForLoops.java

Backup

HOME

Finding Factors

• We'll let the user enter positive integers, with a 0

being the sentinel value.

• For each number, we'll find all its factors; that is,

we will find all the integers that are evenly

divisible into the number

• We will not process 1 or the number itself.

• If a number is evenly divisible by another, the

remainder after division will be 0. Thus, the

modulus operator (%) will be useful.

HOME

Finding Factors (con't)

• To find all the factors of a number, we can test all

integers from 1 up to the number, counting all

those whose remainder after division is 0.

• But: The number 1 is a factor for every number.

• So we can begin testing at 2.

• And because 2 is the smallest possible factor,

there's no need to test integers higher than

number / 2. Thus, our range of integers to test will

be from 2 to number / 2.

HOME

Finding Factors Pseudocode
read first number // priming read

while number is not 0

{

print "The factors for number are "

for factor = 2 to (number / 2) by 1

{

if number % factor is 0

print factor and a space

}

print a new line

read next number // update read

}

HOME

Finding Factors (con't)

• If no factors are found, the number is prime.

• We need a flag variable

– We set the flag to false before starting the for

loop that checks for factors.

– Inside the for loop, we set the flag to true when

we find a factor.

– After the for loop terminates, we check the

value of the flag. If it is still false, we did not

find any factors and the number is prime.

• See Example 6.20 Factors.java

