
1

Chapter 5

Flow of Control Part 1:

Selection

Topics

• Forming Conditions

• if/else Statements

• Comparing Floating-Point Numbers

• Comparing Objects

– The equals Method

– String Comparison Methods

• The Conditional Operator (?:)

• The switch Statement

Flow of Control
• Sequential

– Execute instructions in order

• Method calls

– Transfer control to method, execute instructions

in method, then return with or without a value

• Selection

– Execute different instructions depending on

data

• Looping

– Repeat a set of instructions for different data

Equality Operators

• Used to determine if values of two expressions

are equal or not equal

• Result is true or false

is not equal tobinary!=

is equal tobinary= =

MeaningType (number

of operands)

Equality

operators

Examples

• If int variable age holds the value 32:

(age == 32) evaluates to true

(age != 32) evaluates to false

Use the equality operators only with primitive

types and object references, not to compare

object data!

• Do not confuse the equality operator (==) with

the assignment operator (=).

2

Relational Operators
• Used to compare the values of two expressions

• Result is true or false

is greater than or

equal to

binary>=

is greater than binary>

is less than or

equal to

binary<=

is less than binary<

MeaningType (number of

operands)

Relational

Operators

Example

• If int variable age holds value 32:

(age < 32) evaluates to false

(age <= 32) evaluates to true

(age > 32) evaluates to false

(age >= 32) evaluates to true

Logical Operators

ORBinary||

ANDBinary&&

NOTUnary!

MeaningType (number of

operands)

Logical Operator

Operands must be boolean expressions!

Logical Operators

• The NOT operator (!) inverts the value of its operand.

If the operand is true, the result will be false; and if the

operand is false, the result will be true.

• The AND operator (&&) takes two boolean

expressions as operands; if both operands are true, the

result will be true, otherwise it will be false.

• The OR operator (||) takes two boolean expressions as

operands. If both operands are false, the result will be

false; otherwise it will be true.

Truth Table

falsefalsetruefalsefalse

truefalsetruetruefalse

truefalsefalsefalsetrue

truetruefalsetruetrue

a || ba && b!aba

For operator precedence, see Appendix B

Short-Circuit Evaluation

• For any logical operator, the operands are

evaluated left to right

• If the result of the logical operation can be

determined after evaluating the first operand,

the second operand is not evaluated.

– If the first operand of an || is true, the result

will be true

– If the first operand of an && is false, the

result will be false

• See Example 5.1 Logical Operators.java

3

Suppose we have three ints x, y, and z, and we

want to test if x is less than both y and z. A

common error is to express the condition this

incorrect way:

x < y && z // compiler error

Each operand of a logical operator must be a

boolean expression. This is correct:

x < y && x < z

Equivalence of Expressions

DeMorgan's Laws:

1. NOT(A AND B) = (NOT A) OR (NOT B)

2. NOT(A OR B) = (NOT A) AND (NOT B)

• Thus to find an equivalent expression:

– change && to ||

– change || to &&

– negate each operand expression

Negation of Equality and

Relational Operators

a < ba >= b

a <= ba > b

a > ba <= b

a >= ba < b

a == ba != b

a != ba == b

!(Expression)Expression

Examples

These expressions are equivalent:

(age <= 18 || age >= 65)

!(age > 18 && age < 65)

!(age > 18) || !(age < 65)

Simple if Statement

• Used when program should perform an operation

for one set of data, but do nothing for all other

data

• Syntax:

if (condition)

{

// true block

// executed if condition is true

}

• Curly braces are optional if true block contains only one

statement

Simple if Flow of Control

4

• Indent the true block of the if statement for

clarity

• Line up the open and closing curly braces under

the "i" in if

Simple if Example

• See Example 5.2 PassingGrade.java

public class PasingGrade {

publinc static main(String []args) {

if (grade >= 60)

System.out (“Pass”);

System.out (“No Good”);

}

}

Do not put a semicolon after the condition. Doing

so indicates that the true block is empty and can

cause a logic error at run time.

if /else

• Used when data falls into two mutually

exclusive categories and program should

perform different operations for each set

• Sample uses:

– If password is correct, welcome user;

otherwise, ask for reentry.

– If person is old enough to vote, issue a

voting card; otherwise, refuse the request.

if/else Syntax

if (condition)

{

// true block

}

else

{

// false block

}

• Again, curly braces are optional for either block that
consists of only one statement

• Note indentation of true and false blocks for readability

if/else Flow of Control

5

Example

• See Example 5.3 Divider.java

public class PasingGrade {

publinc static main(String []args) {

if (grade >= 60)

System.out (“Pass”);

else

System.out (“No Good”);

}

}

if/else if

• Used when data falls into multiple mutually

exclusive categories and program should do

different operations for each set

• Ex:

– Determine letter grade based on numeric

grade

– Determine ticket price (different prices for

child, adult, and senior)

if/else if Syntax

if (condition 1)

{

// true block for condition 1

}

else if (condition 2)

{

// true block for condition 2

}

…

else

// false block for all conditions

if/else if Flow of Control

if/else if Example

• See Example 5.4 LetterGrade.java

Finding the Smallest of Three

Numbers
read number1

read number2

read number3

if number1 is less than number2

smallest is number1

else

smallest is number2

if number3 is less than smallest

smallest is number3

See Example 5.5 FindSmallest.java

6

Nested if Statements

• if statements can be written as part of the true or false

block of another if statement.

• Typically, you nest if statements when more

information is required beyond the results of the first if

condition

• The compiler matches any else clause with the most

previous if statement that doesn't already have an else

clause.

• You can use curly braces to force a desired if/else

pairing.

Example

if (x == 2)

if (y == x)

System.out.println("x and y equal

2");

else

System.out.println("x equals 2,"

+ " but y does

not");

• The else clause is paired with the second if , that
is: if (y == x)

Another Example

if (x == 2)

{

if (y == x)

System.out.println("x and y equal

2");

}

else

System.out.println("x does not equal

2");

• With curly braces added, the else clause is paired with

the first if , that is: if (x == 2)

The "Dangling else"

• A dangling else is an else clause that cannot be
paired with an if condition

if (x == 2)

if (y == x)

System.out.println("x and y equal 2");

else // paired with (y == x)

System.out.println("y does not equal 2"

);

else // paired with (x == 2)

System.out.println("x does not equal 2");

else // no matching if!

System.out.println("x and y are not equal"

);

• Generates the compiler error: 'else' without 'if'

Example 5.6: Generate a Secret

Number
generate a secret random number between 1 and 10

prompt the user for a guess

if guess is not between 1 and 10

print message

else

if guess equals the secret number

print congratulations

else

print the secret number

if (guess is within 3 numbers)

print "You were close"

else

print "You missed by a mile"

print "Better luck next time"

Testing Techniques

• Execution Path Testing

– Develop a test plan that includes running the
program multiple times with data values that
cause all true and false blocks to be
executed.

– Check results against the program
specifications

• Black Box Testing

– Treat program like a black box (we don't
know how the code is written)

– Develop test data based on program
specifications

7

When testing your program, develop input values

that execute all possible paths and verify that

the logic correctly implements the program

specifications.

Comparing Floating-Point

Numbers
• With IEEE 754 floating-point representation,

minor rounding errors can occur in calculations

• See Example 5.8. We compute 11 * .1 two ways

1. Multiplying 11 * .1, the result is 1.1

2. Adding .1 11 times, the result is
1.0999999…

• These values will not compare as equal using
the equality operator (==)

• We get similar results when assigning the same
value to a float variable and to a double
variable, then comparing the values.

Solution

• Choose a small threshold value -- how close

should the values be to be considered equal?

• If the difference between the two values is less

than the threshold value, then we will consider

the two floating-point numbers to be equal.

• Hint: use the Math.abs method to compute the

difference.

• See Example 5.9 ComparingFloatingPoint.java

Comparing Objects

• The equality operator (==) compares object
references.

• Example:

– If d1 and d2 are two Date object
references, then

(d1 == d2)

evaluates to true only if d1 and d2 point to
the same object, that is, the same memory
location.

*** The equality operator does not compare
the data (month, day, and year) in those
objects.

Comparing Object Data

• To compare object data, use the equals method

• Example (with d1 and d2 Date object
references):

d1.equals(d2)

returns true if the month, day, and year of d1 equals the
month, day, and year of d2.

equals(Object obj)

returns true if the data of the object

obj is equal to the data in the object used to

call the method

boolean

Method name and argument listReturn

type

Comparing Date Objects

• See Example 5.10 ComparingObjects.java

8

• Do not use the equality operators (==, !=) to

compare object data; instead, use the equals

method.

Comparing Strings

• Strings are objects

• Thus to compare two Strings, use the equals
method

• Example: s1 and s2 are Strings

s1.equals(s2)

returns true only if each character in s1 matches
the corresponding character in s2

• Two other methods of the String class also can
be used for comparing Strings:

equalsIgnoreCase

compareTo

The equalsIgnoreCase Method

• Example:

String s1 = "Exit", s2 = "exit";

if (s1.equalsIgnoreCase(s2))

System.exit(0);

equalsIgnoreCase(String str)

compares the value of two Strings, treating

uppercase and lowercase characters as equal.

Returns true if the Strings are equal; returns false

otherwise.

boolean

Method name and argument listReturn type

The compareTo Method

• A character with a lower Unicode numeric
value is considered less than a character with a
higher Unicode numeric value.

• a is less than b and A is less than a

• See Example 5.11 ComparingStrings.java

compareTo(String str)

compares the value of the two Strings. If the

String object is less than the String argument, str, a

negative integer is returned. If the String object is

greater than the String argument, a positive number

is returned; if the two Strings are equal, 0 is

returned.

int

Method name and argument listReturn type

The Conditional Operator (?:)

• The conditional operator (?:) contributes one

of two values to an expression based on the

value of the condition.

• Some uses are

– handling invalid input

– outputting similar messages.

• Syntax:

(condition ? trueExp : falseExp)

If condition is true, trueExp is used in the expression

If condition is false, falseExp is used in the expression

Equivalent Code

• The following statement stores the absolute
value of the integer a into the integer absValue.

int absValue = (a > 0 ? a : -a);

• The equivalent statements using if/else are:
int absValue;

if (a > 0)

absValue = a;

else

absValue = -a;

See Example 5.12 DoorPrize.java

See Appendix B Operator Precedence

9

The switch Statement

• Sometimes the switch statement can be used

instead of an if/else/if statement for selection.

• Requirements:

– we must be comparing the value of a

character (char) or integer (byte, short, or

int) expression to constants of the same types

Syntax of switch

switch (char or integer expression)

{
case constant1:

// statement(s);

break; // optional

case constant2:

// statement(s);

break; // optional

…

default: // optional

statement(s);

…

}

Operation of switch

• The expression is evaluated, then its value is

compared to the case constants in order.

• When a match is found, the statements under

that case constant are executed in sequence

until either a break statement or the end of the

switch block is reached.

• Once a match is found, if other case constants

are encountered before a break statement, then

the statements for these case constants are also

executed.

Some Finer Points of switch

• The break statements are optional. Their job is

to terminate execution of the switch statement.

• The default label and its statements, are also

optional. They are executed when the value of

the expression does not match any of the case

constants.

• The statements under the case constant are also

optional, so multiple case constants can be

written in sequence if identical operations will

be performed for those values.

Example: a Simple Calculator

• Prompt user for two doubles (num1, num2) and a char

(operation), which can be 'a' for addition or 's' for

subtraction

switch (operation)

{

case 'a':

result = num1 + num2;

break;

case 's':

result = num1 - num2;

break;

}

A Case-Insensitive Calculator

switch (operation)

{

case 'a':

case 'A':

result = num1 + num2;

break;

case 's':

case 'S':

result = num1 - num2;

break;

}

• See Examples 5.13 and 5.14

