N
ILLINOIS INSTITUTE y
OF TECHNOLOGY

Transforming Lives.Inventing the Future.www.iit.edu

Accelerated Introduction to CS
Using Java 5

CS201 1/ © 2004 lllinois Institute of Technology

Java 5 llluminated

An Active Learning Approach
Julie Anderson * Hervé Franceschi

Chapter 2
=Programming Building Blocks

=— Java Basics

Java Syntax

= Java Syntax for Instructions
— Keywords
— Operators
— Punctuations
= Java Syntax for Expressing Data
— Keywords
— Symbolic Names
— Data Types

CS201 3/

CS201

Java Basics

= Java Application Structure
= Data Types, Variables, and Constants

= Expressions and Arithmetic Operators

4/

Java Application Structure

= All programs consist of at least one class.

= See Example 2.1 SkeletonApplication for
standard form of Java application

= Java source code file must have the same
name as class with .java extension.

CS201 5/

CS201

Identifiers - Symbolic Names

= |dentifiers are used to name classes,
variables, and methods
= |dentifier Rules:
— Must start with a "Java letter"
«A-Z a-z _,$, and Unicode letters

— Can contain essentially any number of Java letters
and digits, but no spaces

— Case sensitive!!
* Number1 and number1 are different!
— Cannot be keywords or reserved words
» See Appendix A

6/

Program Building Blocks

= The Statement
— Performs some action
— Terminates with a semicolon (;)
— Can span multiple lines

CS201 7/

Building Blocks - The Block

= The Block
-0, 1, or more statements
— Begins and ends with curly braces { }
— Can be used anywhere a statement is allowed.

CS201 8/

Building Blocks - White Space

= Space, tab, newline are white space characters

= At least one white space character is required
between a keyword and identifier

= Any amount of white space characters are
permitted between identifiers, keywords,
operators, and literals

CS201 9/

Building Blocks - Comments

= Comments explain the program to yourself
and others
= Block comments
— Can span several lines
— Begin with /*
— End with */
— Compiler ignores all text between /* and */
= Line comments
— Start with //
— Compiler ignores text from // to end of line

CS201 10/

Data Types, Variables, and Constants

= We use Symbolic Names to refer to data

= We must assign a data type for very identifier
(symbolic name)

= Declaring Variables

= Primitive Data Types

= |Initial Values and Literals

= String Literals and Escape Sequences
= Constants

CS201 11/

Data Types
= For all data, assign a name (identifier) and a
data type
= Data type tells compiler:
— How much memory to allocate
— Format in which to store data
— Types of operations you will perform on data
= Compiler monitors use of data
— Java is a "strongly typed" language
= Java "primitive data types"
byte, short, int, long, float, double, char, boolean

CS201 12/

Declaring Variables

= Every Variable must be given a name and a
data type
= Variables hold one value at a time, but that
value can change
= Syntax:
dataType identifier;
or
dataType identifierl, identifier2, ..;
= Naming convention for variable names:
— first letter is lowercase
— embedded words begin with uppercase letter

CS201 13/

= Names of variables should be meaningful and
reflect the data they will store
— This makes the logic of the program clearer
= Don't skimp on characters, but avoid extremely
long names
= Avoid names similar to Java keywords

CS201 14/

Java Primitive Data Types

Integer Types - Whole Numbers

Type Size Minimum Value Maximum Value
R in Bytes
= byte, short, int, long , float, double, char, byte 1 128 127
boolean short 2 -32,768 32,767
int 4 -2, 147, 483, 648 2,147, 483, 647
o long 8 -9,223,372,036,854,775,808 9,223,372,036,854,775,807
primitive
/ \ Example declarations:
int testGrade;
integral boolean floating point int numPlayers, highScore, diceRoll;
//\\\ / \ short xCoordinate, yCoordinate;
byte char short int long float double byte agelnYears;
long cityPopulation;
CS201 15/ CS201 16/

Floating-Point Data Types

= Numbers with fractional parts

Type Size Minimum Value Maximum Value

in Bytes
float 4 1.4E-45 3.4028235E38
double 8 4.9E-324 1.7976931348623157E308

Example declarations:
float salesTax;
double interestRate;

double paycheck, sumSalaries;

CS201 17/

char Data Type

= One Unicode character (16 bits - 2 bytes)

Type Size Minimum Value Maximum Value
in Bytes
char 2 character character
encoded as 0 encoded as FFFF

Example declarations:
char finalGrade;
char newline, tab, doubleQuotes;

CS201 18/

boolean Data Type

= Two values only:
true

false
= Used for decision making or as "flag" variables
= Example declarations:

boolean isEmpty;
boolean passed, failed;

CS201 19/

Assigning Values to Variables

= Assignment operator =
— Value on the right of the operator is assigned to the
variable on the left
— Value on the right can be a literal (text representing a
specific value), another variable, or an expression
(explained later)

= Syntax:
dataType variableName = initialValue;
Or
dataType variablel = initialValuel,
variable2 = initialValue2, ..;
CS201 20/

) Literals
= jnt, short, byte

Optional initial sign (+ or -) followed by digits 0 —
9 in any combination.
int testGrade = 100;
= Jong
Optional initial sign (+ or -) followed by digits 0—
9 in any combination, terminated with an L or
.

***Use the capital L because the lowercase /
can be confused with the number 1.

CS201 21/

Floating-Point Literals

= float

Optional initial sign (+ or -) followed by a floating-
point number in fixed or scientific format,
terminated by an For f.

= double

Optional initial sign (+ or -) followed by a floating-
point number in fixed or scientific format.

CS201 22/

char and boolean Literals

= char
— Any printable character enclosed in single quotes
— A decimal value from 0 — 65535
— \m', where \m is an escape sequence. For example,
‘In' represents a newline, and '\t' represents a tab
character.

= boolean
true or false

See Example 2.2 Variables.java

CS201 23/

Assigning the Values of Other Variables

= Syntax:
dataType variable2 = variablel;

= Rules:
1. variable1 needs to be defined before this statement
appears in the source code
2. variable1 and variable2 need to be compatible data
types; in other words, the precision of variable1 must
be lower than or equal to that of variable2.

CS201 24/

Compatible Data Types Sample Assignments
Any type in right column can be assigned to type in left = This is a valid assignment:
column: :
float salesTax = .05f;
Data Type Compatible Data Types double taxRate = salesTax;
byte byte
short byte, short = This is invalid because the float data type is
int byte, short, int, char | . L .
long byte, short, int, long, char ower In precision than the double data type:
float float, byte, short, int, long, char double taxRate = .05;
double float, double, byte, short, int, long, char float salesTax = taxRate;
boolean boolean
char char
CS201 25/ CS201 26/
String Literals String Concatenation Operator (+)
= String is actually a class, not a basic data type; = Combines String literals with other data types
String variables are objects for printing
= String literal: text contained within double quotes = Example:
String hello = "Hello";
- q q) String there = "there";
Example Of Strmgllterals. String greeting = hello + ' ' + there;
"Hello" i i
System.out.println(greeting);
"Hello world" Outout is:
"The value of x is " UipUyS:
Hello there
CS201 27/ CS201 28/
Common Error Trap Escape Sequences
= String literals must start and end on the same = To include a special character in a String,
line. This statement: use an escape sequence
System.out.println("Never pass a water fountain Character Escape Sequence
without taking a drink"); Newline \n
generates these compiler errors: Tab \t
unclosed string literal Double quotes \"
') ' expected Single quote \
= Break long Strings into shorter Strings and use the Backslash \
concatenation operator: Backspace \b
System.out.println("Never pass a water fountain" Carriage return \r
+ " without taking a drink"); Form feed \f

See Example 2.3 Literals.java

CS201 29/ CS201 30/

= Declare a variable only once

= Once a variable is declared, its data type
cannot be changed.

These statements:
double twoCents;
double twoCents = .02;

generate this compiler error:

twoCents is already defined

= Once a variable is declared, its data type
cannot be changed.

These statements:
double cashInHand;
int cashInHand;

generate this compiler error:

cashInHand is already defined

CS201 31/ CS201 32/
Constants E
= Value cannot change during program
execution = Use all capital letters for constants and separate
= Syntax: words with an underscore:
final dataType constantIdentifier = Exanuﬂe:
assignedvalue; final double TAX RATE = .05;

Note: assigning a value when the constant is declared
is optional. But a value must be assigned before the
constant is used.

= See Example 2.4 Constants.java

CS201 33/

= Declare constants at the top of the program so
their values can easily be seen

= Declare as a constant any data that should not
change during program execution

CS201 34/

Expressions and Arithmetic Operators

= The Assignment Operator and Expressions
= Arithmetic Operators

= Operator Precedence

= Integer Division and Modulus

= Division by Zero

= Mixed-Type Arithmetic and Type Casting

= Shortcut Operators

CS201 35/

Assignment Operator

Syntax:

target = expression;

expression: operators and operands that evaluate
to a single value

--value is then assigned to target

--target must be a variable (or constant)
--value must be compatible with target's data
type

CS201 36/

Examples: Assighment

int numPlayers = 10; // numPlayers holds 10

numPlayers = 8; // numPlayers now holds 8

int legalAge = 18;

int voterAge legalAge;

The next statement is illegal
int height = weight * 2; // weight is not defined
int weight = 20;
and generates the following compiler error:
illegal forward reference

CS201 37/

Arithmetic Operators

Operator Operation

+ addition

- subtraction

* multiplication

/ division

Y% modulus (remainder
after division)

CS201 38/

Example

= See Example 2.7 SimpleOperators.java
Page 65

CS201 39/

Operator Precedence

Operator Order of Operation
evaluation

() left - right | parenthesis for
explicit grouping

| % left - right | multiplication,
division, modulus

+ - left - right | addition,
subtraction

= right - left | assignment

CS201 40/

Example

You have 2 quarters, 3 dimes, and 2 nickels.
How many pennies are these coins worth?

int pennies = 2 * 25 + 3 * 10 + 2 * 5;
= 50 + 30 + 10
= 90

CS201 41/

Another Example

Translate x into Java:
2y

// incorrect!
double result = x / 2 * y;

=X "y
2

// correct
double result = x / (2 *y);

CS201 42/

CS201

Integer Division & Modulus

= When dividing two integers:
— the quotient is an integer
— the remainder is truncated (discarded)
= To get the remainder, use the modulus operator
with the same operands

= See Example 2.8 DivisionAndModulus.java

43/

CS201

Division by Zero
= Integer division by 0:
Example: int result = 4 / 0;
= No compiler error, but at run time, JVM

generates ArithmeticException and program
stops executing

= Floating-point division by 0:
— If dividend is not 0, the result is Infinity

— If dividend and divisor are both 0, the result is
NaN (not a number)

= See Example 2.9 DivisionByZero.java

44/

CS201

Mixed-Type Arithmetic

= When performing calculations with operands of
different data types:

— Lower-precision operands are promoted to higher-
precision data types, then the operation is performed

— Promotion is effective only for expression evaluation;
not a permanent change

— Called "implicit type casting"
= Bottom line: any expression involving a floating-
point operand will have a floating-point result.

45/

Rules of Promotion
Applies the first of these rules that fits:

1. If either operand is a double, the other operand is
converted to a double.

2. If either operand is a float, the other operand is converted
to a float.

3. If either operand is a long, the other operand is converted
to a long.

4. If either operand is an int, the other operand is promoted
to an int

5. If neither operand is a double, float, long, or an int, both

operands are promoted to int.

46/

CS201

Explicit Type Casting
= Syntax:

(dataType) (expression)

Note: parentheses around expression are optional
if expression consists of 1 variable

= Useful for calculating averages
= See Example 2.10, MixedDataTypes.java

47/

Shortcut Operators

++ increment by 1 —-— decrement by 1
Example:
count++; // count = count + 1;

count——; // count = count - 1;

Postfix version (var++, var--): use value of var
in expression, then increment or decrement.

Prefix version (++var, --var):increment or
decrement var, then use value in expression

See Example 2.11 ShortcutOperators

48/

More Shortcut Operators
Operator Example Equivalent

+= a+=3; a=a+3;

-= a-=10; a=a-10;

= a’=4; a=a*4

= al=7; a=al7;

Yo= a%=10; |a=a%10;
CS201 49/

Operator Precedence

Operator Order of Operation

evaluation
() left - right paren.thesis for explicit
grouping
++ - right - left | preincrement, predecrement
o= right - left | postincrement, postdecrement
* /% left - right | multiplication, division, modulus
+ - left - right | addition or String
concatenation, subtraction
j += —-= *=|right - left |assignment

CS20 T

CS201

Common Error Trap

= No spaces are allowed between the
arithmetic operator and the equals sign

= Note that the correct sequence is +=, not =+
Example: add 2to a

// incorrect
a =+ 2; // a = +2; assigns 2 to 2

// correct
a += 2; // a=a+ 2;

50/

