
1

Home 

Chapter 10

Object-Oriented Programming 

Part 3:

Inheritance, Polymorphism, and 

Interfaces

Date Chapter

11/6/2006 Chapter 10, start Chapter 11

11/13/2006 Chapter 11, start Chapter 12

11/20/2006 Chapter 12

11/27/2006 Chapter 13

12/4/2006 Final Exam

12/11/2006 Project Due

Home Home 

Topics

• Inheritance Concepts

• Inheritance Design

– Inherited Members of a Class

– Subclass Constructors

– Adding Specialization to the Subclass

– Overriding Inherited Methods

• The protected Access Modifier

• Abstract Classes and Methods

• Polymorphism

• Interfaces

Home 

Inheritance Concepts

• A common form of reuse of classes is inheritance.

• We can organize classes into hierarchies of 

functionality.

• The class at the top of the hierarchy (superclass) 

defines instance variables and methods common to 

all classes in the hierarchy.

• We derive a subclass, which inherits behavior 

and fields from the superclass.

Home 

A Sample Vehicle Hierarchy

• This hierarchy is depicted using a Unified 

Modeling Language (UML) diagram.

• In UML diagrams, arrows point from the subclass 

to the superclass.



2

Home 

Superclasses and Subclasses

• A superclass can have multiple subclasses.

• Subclasses can be superclasses of other 

subclasses.

• A subclass can inherit directly from only one

superclass.

• All classes inherit from the Object class.

Home 

Superclasses and Subclasses

• A big advantage of inheritance is that we can write 

common code once and reuse it in subclasses.

– Generalization

• A subclass can define new methods and instance 

variables, some of which may override (hide) 

those of a superclass.

– Specialization

Home 

Specifying Inheritance 

• The syntax for defining a subclass is to use the extends

keyword in the class header, as in

accessModifier class SubclassName

extends SuperclassName

{

// class definition

}

• The superclass name specified after the extends keyword is 

called the direct superclass.

• As mentioned, a subclass can have many superclasses, but 

only one direct superclass.

Home 

An Applet Hierarchy
• When we wrote an applet,

we defined a subclass.

• We say that inheritance implements 
an "is a" relationship, in that a subclass
object "is a" superclass object as well.

• Thus, RollABall "is a" JApplet (its 
direct superclass), Applet, Panel, 
Container, Component, and
Object.

• RollABall begins with more than 
275 methods and 15 fields inherited
from its 6 superclasses.



3

Home 

The Bank Account Hierarchy

• The BankAccount class is

the superclass.

– Instance variables:

• balance (double)

• MONEY (final DecimalFormat)

– Methods:

• Default and overloaded constructors

• deposit and withdraw methods

• balance accessor

• toString

• See Example 10.1 BankAccount.java (next slide)

Home 

BankAccount.java  1/3

import java.text.DecimalFormat;

public class BankAccount {

public final DecimalFormat MONEY

= new DecimalFormat( "$#,##0.00" );

private double balance;

public BankAccount( )   {

balance = 0.0;

}

public BankAccount( double startBalance )   {

deposit( startBalance );

}

Home 

BankAccount.java 2/3

public double getBalance( )   {

return balance;

}

public void deposit( double amount )   {

if ( amount >= 0.0 )

balance += amount;

else 

System.err.println( "Deposit amount must be 

positive." );

}

Home 

BankAccount.java 3/3

public void withdraw( double amount )   {

if (  amount >= 0.0 && amount <= balance )

balance -= amount;

else

System.err.println( "Withdrawal amount must be positive "

+ "and cannot be greater than balance" );

}

public String toString( )

{

return ( "balance is " + MONEY.format( balance ) );

}

}



4

Home 

The CheckingAccount Class

• We derive the CheckingAccount subclass from
BankAccount:

public class CheckingAccount extends BankAccount

{ }

• A subclass inherits all the public members of a 
superclass. Thus, the CheckingAccount class inherits

– the MONEY instance variable

– The getBalance, deposit, withdraw, and toString
methods

• See Example 10.3 CheckingAccountClient.java (next 
slide)

Home 

CheckingAccountClient.java

public class CheckingAccountClient {

public static void main( String [] args )   {

CheckingAccount c1 = new CheckingAccount( );

System.out.println( "New checking account: " + c1 );

c1.deposit( 350.75 );

System.out.println( "\nAfter depositing $350.75: " + c1 );

c1.withdraw( 200.25 );

System.out.println( "\nAfter withdrawing $200.25: " + c1 );

}

}

Home 

private Members

• Superclass members declared as private are NOT
inherited, although they are part of the subclass.

• Thus, the balance instance variable is allocated to all
CheckingAccount objects, but methods of the
CheckingAccount class cannot directly access balance.

• To set or get the value of balance, the CheckingAccount
methods must call the withdraw, deposit, or getBalance
methods of the Superclass BankAccount.

• This simplifies maintenance because the BankAccount
class enforces the data validation rules for balance.

Home 

protected Members
• protected members are inherited by subclasses 

(like public members), while still being hidden 
from client classes (like private members). 

• Also, any class in the same package as the 
superclass can directly access a protected field, 
even if that class is not a subclass. 

• Disadvantage:
– Because more than one class can directly access a 

protected field, protected access compromises 
encapsulation and complicates maintenance of a 
program. 

– For that reason, we prefer to use private, rather than 
protected, for our instance variables.



5

Home 

Inheritance Rules

nononoprivate methods

no, must call accessors

and mutators

no, must call accessors

and mutators

noprivate fields

noyes, by calling method 

from subclass methods 

yesprotected 

methods

no, must call accessors

and mutators

yes, by using field 

name

yesprotected fields

yesyes, by calling method 

from subclass methods

yespublic methods

yesyes, by using field 

name

yespublic fields

Directly Accessible by 

Client of Subclass?

Directly Accessible by 

Subclass?

Inherited 

by 

subclass?

Superclass 

Members

Home 

Subclass Constructors

• Constructors are not inherited.

• However, the subclass can call the constructors of 

the superclass to initialize inherited fields.

• Implicit invocation

– The default constructor of the subclass automatically 

calls the default constructor of the superclass

• For explicit invocation, use this syntax:

super( argument list );

If used, this statement must be the first statement in the 

subclass constructor

Home 

CheckingAccount Constructors

public CheckingAccount( )

{

// optional explicit call 

// to BankAccount default constructor

super( );                 

}

public CheckingAccount( double startBalance )

{

// explicit call to BankAccount

// overloaded constructor

super( startBalance ); 

}

• See Examples 10.4 (BankingAccount.java V2 & 
10.5 CheckingAccount.java V2)

Home 

BankAccount.java Version 2
import java.text.DecimalFormat;

public class BankAccount {

public final DecimalFormat MONEY = new DecimalFormat( "$#,##0.00" );

private double balance;

public BankAccount( )   {

balance = 0.0; 

System.out.println( "In BankAccount default constructor" );

}

public BankAccount( double startBalance ) {

if ( balance >= 0.0 )    balance = startBalance;

else  balance = 0.0;

System.out.println( "In BankAccount overloaded constructor" );

}

public String toString( )

{

return ( "balance is " + MONEY.format( balance ) );

}

}



6

Home 

CheckingAccount.java Version 2

public class CheckingAccount extends BankAccount {

public CheckingAccount( )    {

super( ); // optional, call BankAccount constructor

System.out.println( "In CheckingAccount "

+ "default constructor" );

}

public CheckingAccount( double startBalance )    {

super( startBalance ); // call BankAccount constructor

System.out.println( "In CheckingAccount "

+ "overloaded constructor" );

}

}

Home 

Common Error

Trap

• An attempt by a subclass to directly access a 

private field or call a private method defined in a 

superclass will generate a compiler error. 

• To set initial values for private variables, call the 

appropriate constructor of the direct superclass.

• For example, this statement in the overloaded

CheckingAccount class constructor calls the 

overloaded constructor of the BankAccount class:

super( startBalance );

Home 

Software Engineering 

Tip 

Overloaded constructors in a subclass should 

explicitly call the direct superclass constructor to 

initialize the fields in its superclasses. 

Home 

Inheritance Rules for Constructors

noyes, using 

super( arg list )

in a subclass constructor

noconstructors

Directly Accessible by 

Client of Subclass Using 

a Subclass Reference?

Directly Accessible by 

Subclass?

Inherited 

by 

subclass?

Superclass 

Members



7

Home 

Adding Specialization

• A subclass can define new fields and methods.

• Our CheckingAccount class adds

– these instance variables:

• monthlyFee, a double

• DEFAULT_FEE, a double constant

– these methods:

• setMonthlyFee, the accessor

• getMonthlyFee, the mutator

• applyMonthlyFee, which charges the 

monthly fee to the account.

Home 

The applyMonthlyFee Method 

• Because balance is private in the BankAccount

class, the applyMonthlyFee method calls the 

withdraw method to subtract the monthly fee from 

the balance:

public void applyMonthlyFee( )

{

withdraw( monthlyFee );

}

• See Examples 10.7 (CheckoingAccount V3& 10.8

CheckingAccountCLient V3)

Home 

CheckingAccount.java V3      1/2

public class CheckingAccount extends BankAccount {

public final double DEFAULT_FEE = 5.00;

private double monthlyFee;

public CheckingAccount( )    {

super( ); // optional

monthlyFee = DEFAULT_FEE;

}

public CheckingAccount( double startBalance, double
startMonthlyFee ) {

super( startBalance ); // call BankAccount constructor

setMonthlyFee( startMonthlyFee );

}

Home 

CheckingAccount.java V3      2/2

public void applyMonthlyFee( ) {

withdraw( monthlyFee );

}

public double getMonthlyFee( ) {

return monthlyFee;

}

public void setMonthlyFee( double newMonthlyFee ) {

if ( monthlyFee >= 0.0 )

monthlyFee = newMonthlyFee;

else 

System.err.println( "Monthly fee cannot be negative" );

}

}



8

Home 

CheckingAccountClient.java V3

public class CheckingAccountClient {

public static void main( String [] args )    {

CheckingAccount c3 = new CheckingAccount( 100.00, 7.50 );

System.out.println( "New checking account:\n"

+ c3.toString( ) + "; monthly fee is "

+ c3.getMonthlyFee( ) );

c3.applyMonthlyFee( );  // charge the fee to the account

System.out.println( "\nAfter charging monthly fee:\n"

+ c3.toString( ) + "; monthly fee is "

+ c3.getMonthlyFee( ) );

}

}

Home 

Software Engineering 

Tip 

The superclasses in a class hierarchy should 

contain fields and methods common to all 

subclasses. 

The subclasses should add specialized fields and 

methods.

Home 

Overriding Inherited Methods

• A subclass can override (or replace) an inherited 

method by providing a new version of the method. 

• The API of the new version must match the 

inherited method

• When the client calls the method, it will call the 

overridden version.

• The overridden method is invisible to the client of 

the subclass, but the subclass methods can still call 

the overridden method using this syntax:

super.methodName( argument list )

Home 

The toString Method

• The toString method in the CheckingAccount class 
overrides the toString method in the BankAccount
class.

• The subclass version call the superclass version to 
return balance.

public String toString( )

{

return super.toString( )

+ "; monthly fee is " 

+ MONEY.format( monthlyFee );

}

• See Examples 10.9 & 10.10



9

Home 

Inheritance Rules for Overridden 

Methods

noyes, using 

super.methodName(

arg list )

nopublic or 

protected 

inherited 

methods that 

have been 

overridden 

in the 

subclass

Directly Accessible by 

Client of Subclass Using 

a Subclass Reference?

Directly Accessible by 

Subclass?

Inherited 

by 

subclass?

Superclass 

Members

Home 

Common Error

Trap

• Do not confuse overriding a method with 
overloading a method.   

– Overriding a method:

• A subclass provides a new version of that 
method (same signature), which hides the 
superclass version from the client.

– Overloading a method: 

• A class provides a version of the method, 
which varies in the number and/or type of 
parameters (different signature). A client of the 
class can call any of the public versions of 
overloaded methods. 

Home 

The protected Access Modifier

• Declaring fields as private preserves 

encapsulation.

– Subclass methods call superclass methods to set the 

values of the fields, and the superclass methods enforce 

the validation rules for the data.

– But calling methods incurs processing overhead.

• Declaring fields as protected allows them to be 

accessed directly by subclass methods.

– Classes outside the hierarchy and package must use

accessors and mutators for protected fields.

Home 

protected fields: Tradeoffs

• Advantage:
– protected fields can be accessed directly by subclasses, 

so there is no method-invocation overhead.

• Disadvantage:
– Maintenance is complicated because the subclass also 

needs to enforce validation rules.

• Recommendation:
– Define protected fields only when high performance is 

necessary.

– Avoid directly setting the values of protected fields in 
the subclass. 

• See Examples 10.11, 10.12, & 10.13



10

Home 

abstract Classes and Methods

• An abstract class is a class that is not completely 

implemented.

• Usually, the abstract class contains at least one 

abstract method.

– An abstract method specifies an API but does 

not provide an implementation.

– The abstract method is used as a pattern for a 

method the subclasses should implement.

Home 

More on abstract Classes

• An object reference to an abstract class can be 

declared. 

– We use this capability in polymorphism, 

discussed later.

• An abstract class cannot be used to instantiate 

objects (because the class is not complete). 

• An abstract class can be extended.

– subclasses can complete the implementation 

and objects of those subclasses can be 

instantiated.

Home 

Defining an abstract class 

• To declare a class as abstract, include the abstract

keyword in the class header:

accessModifier abstract class ClassName

{

// class body

}

Home 

Defining an abstract Method 

• To declare a method as abstract, include the 

abstract keyword in the method header:

accessModifier abstract returnType 

methodName( argument list );

• Note: 

– The semicolon at the end of the header 

indicates that the method has no code.

– We do not use open and closing curly braces



11

Home 

Example Hierarchy

• We can define a Figure

hierarchy.

• The superclass is Figure,

which is abstract. (In the

UML diagram, Figure is 

set in italics to indicate 

that it is abstract.

• We will derive two 

subclasses: Circle and

Square.

Home 

The Figure Class
public abstract class Figure

{

private int x;

private int y;

private Color color;

// usual constructors, accessors,

// and mutators

// abstract draw method

public abstract void draw( Graphics g );

}

• All classes in the hierarchy will have an (x, y) 

coordinate and color. Subclasses will implement 
the draw method.

Home 

Subclasses of abstract Classes

• A subclass of an abstract class can implement all, 

some, or none of the abstract methods.

• If the subclass does not implement all of the 

abstract methods, it must also be declared as 

abstract.

• Our Circle subclass adds a radius instance 

variable and implements the draw method.

• Our Square subclass adds a length instance 

variable and implements the draw method.

• See Examples 10.15, 10.16, 10.17, & 10.18

Home 

Restrictions for Defining 

abstract Classes 
• Classes must be declared abstract if the class 

contains any abstract methods.

• abstract classes can be extended. 

• An object reference to an abstract class can be 

declared.

• abstract classes cannot be used to instantiate 

objects.



12

Home 

Restrictions for Defining 

abstract Methods

• abstract methods can be declared only within an 

abstract class.

• An abstract method must consist of a method 

header followed by a semicolon.

• abstract methods cannot be called.

• abstract methods cannot be declared as private or 

static.

• A constructor cannot be declared abstract.

Home 

Polymorphism

• An important concept in inheritance is that an 

object of a subclass is also an object of any of its 

superclasses. 

• That concept is the basis for an important OOP 

feature, called polymorphism.

• Polymorphism simplifies the processing of various 

objects in the same class hierarchy because we can 

use the same method call for any object in the 

hierarchy using a superclass object reference.

Home 

Polymorphism Requirements

• To use polymorphism, these conditions must be 

true:

1. the classes are in the same hierarchy.

2. all subclasses override the same method.

3. a subclass object reference is assigned to a 

superclass object reference. 

4. the superclass object reference is used to call 

the method.

Home 

Example
• Example 10.19 shows how we can simplify the 

drawing of Circle and Square objects.

• We instantiate a Figure ArrayList and add Circle
and Square objects to it.

ArrayList<Figure> figuresList

= new ArrayList<Figure>( );

figuresList.add( new Square( 150, 100,

Color.BLACK, 40 ) );

figuresList.add( new Circle( 160, 110,

Color.RED, 10 ) );

…

• In the paint method, we call draw this way:
for ( Figure f : figuresList )

f.draw( g );



13

Home 

Polymorphism Conditions

• Example 10.19 shows that we have fulfilled the 

conditions for polymorphism:

1. The Figure, Circle, and Square classes are in 

the same hierarchy.

2. The non-abstract Circle and Square classes 

implement the draw method.

3. We assigned the Circle and Square objects to 

Figure references.

4. We called the draw method using Figure

references.

Home 

Interfaces

• A class can inherit directly from only one class, 

that is, a class can extend only one class. 

• To allow a class to inherit behavior from multiple 

sources, Java provides the interface. 

• An interface typically specifies behavior that a 

class will implement. Interface members can be 

any of the following: 

• classes

• constants

• abstract methods

• other interfaces

Home 

Interface Syntax

• To define an interface, use the following syntax:
accessModifier interface InterfaceName

{

// body of interface

}

• All interfaces are abstract; thus, they cannot be 

instantiated. The abstract keyword, however, can 

be omitted in the interface definition. 

Home 

Finer Points of Interfaces

• An interface's fields are public, static, and final.

– These keywords can be specified or omitted. 

• When you define a field in an interface, you must 
assign a value to the field.

• All methods within an interface must be abstract,
so the method definition must consist of only a 
method header and a semicolon. 

– The abstract keyword also can be omitted from 
the method definition. 



14

Home 

Inheriting from an Interface

• To inherit from an interface, a class declares that it 

implements the interface in the class definition, 

using the following syntax:
accessModifier class ClassName

extends SuperclassName

implements Interface1, Interface2, …

• The extends clause is optional. 

• A class can implement 0, 1, or more interfaces.

• When a class implements an interface, the class 

must provide an implementation for each method 

in the interface. 

Home 

Example

1. Define an abstract class Animal with one abstract

method (See Example 10.22):
public abstract void draw( Graphics g );

2. Define a Moveable interface with one abstract 

method:
public interface Moveable

{

int FAST = 5; // static constant

int SLOW = 1; // static constant

void move( ); // abstract method

}

Home 

Derived Classes

• TortoiseRacer class

– extends Animal class

– implements Moveable interface

– implements draw and move methods

• TortoiseNonRacer class

– extends Animal class

– (does not implement Moveable interface)

– implements draw method only

• See Examples 10.21, 10.22, 10.23, & 10.24

Home 

Backup



15

Home 

Final Methods and Classes

• A method that is declared final can’t be overridden

• A class that is declared final can’t be a superclass

– All methods in a a final class are final

Home 

Abstract Classes Example

• Shape

– Defines all methods that are common to our 
shapes

• Point

– Inherits these methods

• Circle

– Inherits some and overrides some other 
methods

• Cylinder 

– Inherits some and overrides some other 
methods

Shape

Point

Circle

Cylinder

Home 

Shape

• Shape is an abstract superclass

• It still contain implementations of methods area 
and volume which are inheritable

– Shape provide an inheritable interface (set of 
services)

– All subclasses can use or override these 
interfaces (methods)

• The point here is that subclasses can inherit 
interface and/or implementation from a
supperclass

Home 

Shape Example: Shape Class

public abstract class Shape extends Object {

// return shape's area , overridden when it make since
public double area()    { 

return 0.0; 
}
// return shape's volume, overridden when it make since
public double volume()    { 

return 0.0; 
}
// abstract method must be overridden by all concrete 
// subclasses to return appropriate shape name
public abstract String getName();   

}  // end class Shape



16

Home 

Shape Example: Point Class 1/2
public class Point extends Shape {

protected int x, y; // coordinates of the Point
public Point()     {

setPoint( 0, 0 ); 
}

public Point( int xCoordinate, int yCoordinate )     {
setPoint( xCoordinate, yCoordinate ); 

}
public void setPoint( int xCoordinate, int yCoordinate )    {

x = xCoordinate;
y = yCoordinate;

}
public int getX()    { 

return x; 
}

Point inherits (NOT overridden) both volume 

and area methods of shape (zero)

Home 

Shape Example: Point Class 2/2

public int getY()     { 
return y; 

}
• // convert point into String representation
• public String toString()    { 
• return "[" + x + ", " + y + "]";
• }
• // return shape name, an implementation of the abstract method
• public String getName()     { 
• return "Point"; 
• }
• }  // end class Point

If getName is not defined here, then point would have been an 

abstract class and no objects of it can be instantiated

Home 

Shape Example: Circle Class 1/2
public class Circle extends Point {  // inherits from Point

protected double radius;

public Circle()    {
// implicit call to superclass constructor here
setRadius( 0 );  

}

public Circle( double circleRadius, int xCoordinate, int yCoordinate )  {
// call superclass constructor
super( xCoordinate, yCoordinate );
setRadius( circleRadius );  

}

public void setRadius( double circleRadius )    { 
radius = ( circleRadius >= 0 ? circleRadius : 0 ); 

}

public double getRadius()     { 
return radius; 

}

Circle inherits the volume method from 
point(zero) and overrides the area method

Home 

Shape Example: Circle Class 2/2
• // calculate area of Circle, overrides area of Shape 

• public double area()    { 
• return Math.PI * radius * radius; 
• }

• // convert Circle to a String represention

• public String toString()    { 
• return "Center = " + super.toString() + 
• "; Radius = " + radius;
• }

• public String getName()    { 
• return "Circle"; 
• }
• } // end class Circle

If getName is not defined here, then area() version of Point  

class would be inherited



17

Home 

Shape Example: Cylinder Class 1/2
public class Cylinder extends Circle {

protected double height;  // height of Cylinder

public Cylinder()    {
setHeight( 0 );

}

public Cylinder( double cylinderHeight, double cylinderRadius, int 
xCoordinate, int yCoordinate )    {

super( cylinderRadius, xCoordinate, yCoordinate );
setHeight( cylinderHeight );

}

public void setHeight( double cylinderHeight )   { 
height = ( cylinderHeight >= 0 ? cylinderHeight : 0 ); 

}

public double getHeight()  {
return height; 

}

Cylinder overrides both volume and area 
methods

Home 

Shape Example: Cylinder Class 2/2

• public double area()   {
• return 2 * super.area() + 2 * Math.PI * radius * height;
• }

• public double volume()     { 
• return super.area() * height; 
• }

• public String toString()    {
• return super.toString() + "; Height = " + height; 
• }

• public String getName()    {
• return "Cylinder"; 
• }
• } // end class CylinderIf getName is not defined here, then area() version of Circle

class would be inherited

Home 

Shape Example: Test Class 1/3

• import javax.swing.JOptionPane;
• public class Test {                // test Shape hierarchy
• public static void main( String args[] )
• {   // create shapes
• Point point = new Point( 7, 11 );          
• Circle circle = new Circle( 3.5, 22, 8 );  
• Cylinder cylinder = new Cylinder( 10, 3.3, 10, 10 );
• // create Shape array 
• Shape arrayOfShapes[] = new Shape[ 3 ];
• // aim arrayOfShapes[ 0 ] at subclass Point object
• arrayOfShapes[ 0 ] = point;
• // aim arrayOfShapes[ 1 ] at subclass Circle object
• arrayOfShapes[ 1 ] = circle;
• // aim arrayOfShapes[ 2 ] at subclass Cylinder object
• arrayOfShapes[ 2 ] = cylinder; 

Home 

Shape Example: Test Class 2/3

• // get name and String representation of each shape
• String output =
• point.getName() + ": " + point.toString() + "\n" +
• circle.getName() + ": " + circle.toString() + "\n" +
• cylinder.getName() + ": " + cylinder.toString();
•
• // loop through arrayOfShapes and get name,
• // area and volume of each shape in arrayOfShapes
• for ( int i = 0; i < arrayOfShapes.length; i++ ) {
• output += "\n\n" + arrayOfShapes[ i ].getName() + 
• ": " + arrayOfShapes[ i ].toString() +
• "\nArea = " + 
• precision2.format( arrayOfShapes[ i ].area() ) +
• "\nVolume = " +
• precision2.format( arrayOfShapes[ i ].volume() );
• }



18

Home 

Shape Example: Test Class 3/3
• // get name and String representation of each shape
• String output =
• point.getName() + ": " + point.toString() + "\n" +
• circle.getName() + ": " + circle.toString() + "\n" +
• cylinder.getName() + ": " + cylinder.toString();
• // loop through arrayOfShapes and get name,
• // area and volume of each shape in arrayOfShapes
• for ( int i = 0; i < arrayOfShapes.length; i++ ) {
• output += "\n\n" + arrayOfShapes[ i ].getName() + 
• ": " + arrayOfShapes[ i ].toString() + “\nArea = " + 
• precision2.format( arrayOfShapes[ i ].area() ) + "\nVolume = " +
• precision2.format( arrayOfShapes[ i ].volume() );
• }
• JOptionPane.showMessageDialog(null,output, "Demonstrating 

Polymorphism");
• System.exit( 0 );
• }
• }  // end class Test

Home 

Defining an Interface 

public interface StockWatcher { final String sunTicker = "SUNW"; final String oracleTicker = "ORCL"; final String ciscoTicker = "CSCO"; void valueChanged(String tickerSymbol, double newValue); } 

Home 

example
• applet that implements the StockWatcher interface: • public class StockApplet extends Applet implementsimplementsimplementsimplementsStockWatcherStockWatcherStockWatcherStockWatcher { ... – public void valueChanged(String tickerSymbol, double newValue) – { • if (tickerSymbol.equals(sunTicker)) {} • else if (tickerSymbol.equals(oracleTicker)) { ... } • else if (tickerSymbol.equals(ciscoTicker)) { ... } – }

Home 

} 



19

Home 

Warning! Interfaces Cannot Grow 

• Suppose that you want to add some functionality to StockWatcher. For 
instance, suppose that you want to add a method that reports the current stock 
price, regardless of whether the value changed:– public interface StockWatcher { • final String sunTicker = "SUNW"; • final String oracleTicker = "ORCL"; • final String ciscoTicker = "CSCO"; • void valueChanged(String tickerSymbol, doublenewValue);• void currentValue(String tickerSymbol, doublenewValue);– }

Home 

Warning! Interfaces Cannot Grow 

• However, if you make this change, all classes that 

implement the old StockWatcher interface will 

break because 

– they don’t implement the interface anymore! 


