A MODEL OF TUTORING:
FACILITATING KNOWLEDGE INTEGRATION USING
MULTIPLE MODELS OF THE DOMAIN

BY
RAMZAN ALI KHUWAJA

Submitted in partia fulfillment of the
requirements for the degree of
Doctor of Philosophy in Computer Science
in the Graduate School of the
[linois Institute of Technology

Approved

Advisor

Chicago, Illinois
December, 1994






ACKNOWLEDGMENT

My path to, and through, the period of my life at lllinois Institute of Technology
owes much to many and it is here that | want to acknowledge the influence and support of
many different people.

| would like to thank my research advisor, Professor Martha Evens, for her
intellectual support, constant encouragement, understanding and patience throughout the
period of thisresearch. | feel extremely fortunate to have her as my advisor. | would like
to express my sincere appreciation to Dr. Allen Rovick and Dr. Joel Michael for their
expert advice and extremely valuable discussions during this research.

| would also like to thank my thesis committee, Dr. C. Robert Carlson, Dr. James
Kenevan, and Dr. Allen Wolach, for their attention and suggestions on my thesis.

| thank all my colleagues in the project group for their invaluable contributions,
comments, and cooperation.

| am forever indebted to my family for their loving care and understanding. | am
dedicating my thesis to my father, the late Madad Ali Khuwgja. He was a great father, a
great teacher, and a great man. | would like to express my deepest affection and love to
my fiancee, Jabeen, for her understanding and confidence in me.

| would also like to thank the Ministry of Education, Pakistan for their support
during the course of this research.

This work was supported by the Cognitive Science Program, Office of Naval
Research under Grant No. N00014-89-J-1952, Grant Authority Identification Number

NR4422554, to Illinois Institute of Technology. The content does not reflect the position
or policy of the government and no official endorsement should be inferred.

R.A.K.



TABLE OF CONTENTS

ACKNOWLEDGMENT . . . . . .
LISTOFFIGURES . . . . . . ..
ABSTRACT . . .

CHAPTER
. INTRODUCTION . .. ... ... . . . .

11 TwoProblems . . ... ... ... . .. ... ... ...,
12 Medical Education . . . .. ... ...
1.3 Needto Facilitate Active Learning: A Solution . . . ... ..
1.4 Tutoring: A Method of Facilitating ActiveLearning . . . . .
15 Machine Tutors: An Alternative to Skilled Human Tutors . .
151 Conceptua Viewof ITSs .. .............
152 SysemViewofITSs . ... ..............
1521 SystemView 1. SyssemModel . . ... ..

1522 System View 2: System Architecture . . . .

153 Physical Viewof ITSs . ... .............

16 Goasof ThisResearch . . . .. ... ... ..........
1.7 Organizationof theThesis . . .. ... ... .........

II. LITERATURE REVIEW: EARLY APPROACHES AND
SYSTEMS . . . . . .

2.1 A Classfication of Intelligent Computer-Based Educational
Systems . . ..
2.2 Research Approachesto the Design of Active
Teaching Systems: Why Study Human Tutors? . . . . . . ..
2.2.1 Multiple Expert Metaphor . . . . . . ... ... ...
2.2.2 Interactivity Between the Components of Multiple
Expert Metaphor: The Real Strengthof anITS . . . .
2.2.3 Approachesto the Inquiry of Tutoring Behavior . . .
2.2.3.1 Approach Based on Experience And
CommonSense . . .. ............
2.2.3.2 Approach Based on Rigorous
Experimentation . . ... ..........
2.2.3.3 Approach Based on Studies of Human
Tutors . . . . . ..
2.24 How “Expert” Should the Human Tutor Be? . . . ..
2.3 The Teacher as a Facilitator for Knowledge Integration:
The Current Theoretical Standpoint . . . . .. ... ... ..
2.3.1 TheFacilitation of Knowledge Transfer . . . . . . ..
2.3.2 The Facilitation of Knowledge Integration . . . . . .
2.3.3 The Facilitation of Knowledge Construction . . . . .
234 Jigsaw-PuzzleMetaphor . . . ... ... .......



CHAPTER

Page
2.4 Menta Models and Their Multiple Conceptualization:
Current Wave in Knowledge Representation for
Physical Systems . . . . . . ... ... ... . ........ 32
2.4.1 Knowledge Representation Hypothesis vs. Situated
Natureof Knowledge . . ... ... ......... 33
2.4.2 Qualitative Models of Physical Systems:
Mental Models . . . . .. ... 35
2.4.3 Mental Models and Their Instructiona
Significance . . . ... ... . o 37
2431 LearningasModel Tuning . . . . ... ... 37
2.4.3.2 Learning as Model Progression:
A Developmental Approach . . . . ... .. 39
2.4.3.3 ITSIE: A Learning Environment Based
onMultipleModels . . . . ... ... ... 40
2434 QuditativeModeling . . ... ... ... .. 41
2.4.35 ABEL: Multiple Representation of
Medical Knowledge . .. .......... 42
2.5 Pedagogy: Issuesfor Intelligent Tutoring Systems . . . . . . 43
2.5.1 Curriculum and Instruction: The Corelssues . . . . . 43
25.2 Ingtructional SystemDesign(ISD) . . . . . ... ... 44
2.5.3 Elaboration Theory of Instruction:
The“Zoom Lens’ Metaphor . . . . ... ....... 48
254 Implicationsof ISD for ITSResearch . . . . ... .. 50
255 View of Expertise: A Curriculumor A Model? . . . . 52
256 BIP. AnEarly Curriculum-Based ITS . . . . . .. .. 53

2.5.7 WUSOR: Superimposing an Instructional

Curriculum Network on an Operational

Model of Expertise . . . . ... ... ... ... ... 54
2.5.8 TowardsaTheory of Curriculum: An Attempt

to Unite Curriculum-Based and Model-Based

Themesof ITS . . ... ... ... ... ... .... 55
2.5.9 Selection and Sequencing Decisions:
General Principles . . . ... ... ... ....... 57
2.5.10 Pedagogy as Problem Solving: AnITS
NeedsaPlanning Mechanism . . ... ........ 59
25.11 Pedagogical Styles. Plan-Based, Opportunistic
or Embedded Contexts? . . . ... ... ....... 60
25.12 Levelsof Tutorial Planning Decisions . . . . . .. .. 61
2.5.13 Discourse Management Network: A Generic
Architecture for Discourse Planning . . . . . ... .. 62
2.5.14 Blackboard Architecture: A Flexible Control
Mechanismfor ITS . . . . .. ... ... ... ..... 63
2.6 KADS: A Generic Knowledge Based System
Development Methodology . . . . . . ... ... ...... 63
BACKGROUND OF CIRCSIM-Tutor PROJECT:
AHISTORICALTRACE . . ... ... . . . .. .. 65
3.1 Computer-Based Medical Systemsfor Teaching the
Baroreceptor Reflex . . . . ... ... ... ... ... .. .. 65
3.2 HEARTSIM: A Quantitative Model of CV System
with DidacticFeedback . . . . . ... ... ... ....... 65



CHAPTER Page
3.3 CIRCSIM: A HEARTSIM on PC With an

Expanded Didactic Capability . . . .. ... ... .. ..... 66
34 CIRCSIM-Tutor (v.0): BeginningofanITSEra . . ... ... 67
3.5 CIRCSIM-Tutor (v.1): Towardsan Effective Machine Tutor . 68
3.6 CIRCSIM-Tutor (v.2): First Fruit of This

ResearchMovement . . . . ... ... ... ... ....... 68

3.7 Characteristics, Capabilities and Research Issues
of Computer-Based Medical Systems for
Teaching the BR Reflex Developed Before and During the

CIRCSIM-TutorEra . . . .. ... ... ... .. ....... 68
3.7.1 Domain: ItsNature and the Way it

hasbeenModeled . . . .. ... ... ... ...... 69
3.7.2 Student Population Using the System

andtheir LearningContext . . . . ... ... ...... 74
373 TeachingGoas . ... .................. 75
3.7.4 Teaching Environment: TheProtocol . . ... ... .. 75
3.7.5 PredictionsTable: A Multi-Purpose Tool . . . . .. .. 77
3.7.6  Human Tutoring Experiment:

Keyboard-To-Keyboard Sessions . . . . ... ... .. 79

3.7.7 Cognitive Diagnosis. A Way the
System Uses Multiple Student Inputsto

Model the Student’sKnowledge State . . . . . . . . .. 83
3.7.8 Conceptual Model of Teaching/tutoring:
What, When, and How to Convey Knowledge . . . .. 85
IV. AN ITSDEVELOPMENT FRAMEWORK:
KNOWLEDGE ACQUISITION METHODOLOGIES . . . . .. .. 88
4.1 A Systematic ITS Development Framework:
Influencesand Structure . . . . . ... 88
4.2 Role of the Multiple Expert Metaphor in the
ITSDevelopment Framework . . . . . . ... ... ...... 92
4.3 A Usageof ITS Development Framework For
CIRCSIM-Tutor (V.3) . . . . . o e e e e e e 94
4.4 Knowledge Acquisition: A Modeling Activity . . . . ... .. 96

45 Knowledge Acquisitionin the
CIRCSIM-Tutor Context: A Collaborative

Process Between Knowledge Engineer and Expert . . . . . . . 97
4.6 Methods Used to Get Data about Domain and

Pedagogical Expertise . . . ... ... ... ... . ... ... 100
461 Interview . . . ... 100
4.6.2 Keyboard-To-Keyboard Tutoring:

A Formof LiveHuman Tutoring . . . ... ...... 101
4.6.3 Concurrent Verbalization: A Method

of Capturing Expert’s Problem-Solving Behavior . . . . 102
4.6.4 RetrospectiveVerbalization . . ... ... ... .. .. 102
465 GroupSessions . . . ... 103
46.6 Review . .. . . . . . . ... 103
4.6.7 Study of Previous Research Work Performed

inthe Pre and Post CIRCSIM-TutorEra . . . . . .. .. 104

Vi



CHAPTER

V1.

4.7

Task Structure: A Way of Representing

Problem-Solving Knowledge . . ... ...........

TUTORING QUALITATIVE REASONING FOR THE
FUNCTIONING OF THE BARORECEPTOR REFLEX:

A COGNITIVE MODEL

5.1
52

53

54
55

Introduction . . . .. .. . ... ...

Orientation and Limitations of the Model of
Tutoring Used in the Earlier Versions of

CIRCSIM-Tutor . . ... .. ... . . ... ....

Scope of the Model of Tutoring For

CIRCSIM-Tutor (v.3) . . . . . . i i it e e
531 Styleand Method of Tutoring . . . . ... .....
532 TutoringDoman . ... ...............
533 LeaningContext . . .. ...............
534 TeachingGoas . ...................
53,5 Natureof theTutoringTask . . ... ........
5.3.6 Learning Environment . . ... ... ........

Evaluation of Keyboard-To-Keyboard Experiments:

How Effective Our TutorsAre? . . . . .. ... ... ...

Nature of Expertisein Keyboard-To-Keyboard

Sessions: A CognitiveModel . . . . .. ... ... ...

5.5.1 Problem-Solving Behavior of

theDomainExpert . . ... .............

5.5.2 Tutoring Protocol: Pre-Session Behavior

oftheTutor . . . . . .. ... . . . ... ......

5.5.3 Problem-Solving Environment of Our

Keyboard-To-Keyboard Sessions . . . . . ... ..

5.5.4 A Classification of Rules of a Tutoring Protocol

5541 RulesFortheStudent . ... ... .. .
5542 RulesfortheTutor ... ... ... ....

5.5.5 Protocols of the Keyboard-To-Keyboard

SESSIONS . . . e e

5.5.6 Three Tutoring Protocols:

Common Characteristics . . . . . ... ... ....
55.7 TutoringProtocol 1 . . .. ... ..........
55.8 TutoringProtocol2 . . ... ... .........
55.9 TutoringProtocol 3 . ... ... ..........
5.5.10 A Comparison of Three Tutoring
Protocols: Conclusions . . . . ... ... .....
5.5.11 In-Session Behavior of the Pedagogy Expert . . . .

PEDAGOGY AND DOMAIN EXPERTS:

A CONCEPTUAL VIEW

6.1
6.2
6.3

Introduction . . . .. ...
A Conceptual Model of the Pedagogy Expert . . . . . . ..

Tutoring Cycle: A Process of Making the

Student Active WhileLearning . . . . ... ........

Vii

Page

104

106
106

107
108
110
111
111
111
111
112
112
114
116
119
120
121
121
124
125

126
127

130
131

140

140
140

143



CHAPTER Page

6.4 A Tutor'sViewoftheStudent . . . .. ... ... ...... 144
6.5 PedagogicPhase ... ... .................. 147
6.6 Major Decisons Made By the Pedagogy Expert . . . . . .. 152
6.6.1 What to Tutor: SelectionDecison . . ... ... .. 153
6.6.2 Whento Tutor: Grouping and
Sequencing Decisons . . . . ... ... 155
6.6.3 How to Tutor: Remediation Techniques . ... ... 158
6.7 Pedagogy ExpertinAction. . . ... ... .......... 158
6.8 A Conceptual Model of the Domain Expert . . . ... .. .. 161
6.9 Domain Knowledge Background For
CIRCSIM-Tutor (V.3) . . . . . o o i e e 164

6.10 Nature and a Use of the Domain Knowledge
By the Tutor and the Student in

Keyboard-to-Keyboard Sessions . . . . ... ... ...... 165
6.11 The Multi-Level Parametric Viewpoint . . . ... ... ... 173
6.12 Anatomical Perspective of theCV System . . . . ... ... 178
6.13 Mapping between the Perspectives . . . . . ... ...... 182
6.14 Modd Switching Behavior of Our Tutors:

Domain Models Viewed Through the Tutor'seEye . . . . . . 185
6.15 Integration Between Roles of the Tutor:

Shared Inference Processes . . . . . . . . ... ... L. 192
6.16 ResearchApproach . . ... ... ... ... ... ...... 193
6.17 Skilled Tutor AsDomainExpert . . . . ... ......... 194

6.17.1 TheInference Triangle: A Qualitative
Causal Reasoning Tool Used by the

DomanExpert . .. ... ... ............ 194
6.17.2 Think-Aloud Sessions: Results . . . . .. ... ... 201
6.18 Skilled Tutor As Expert in the Domain and in
theProcessof Tutoring . . . . . ... ... ... ....... 203
6.18.1 Nature of Integration between Two Roles
of the Skilled Human Tutor . . . . . ... ... ... 203
6.182 Analysis . . . .. ... 204
6.19 Shared Knowledge: “Glue” Between the Domain
andthePedagogy Experts . . . . ... ... ... ... ... 210
6.20 Theoretical Orientation of the Model of
Tutoring: Metaphorsthat Explain Our Tutors Behavior . . . 211
VIl. SYSTEM VIEW OF CIRCSIM-TUTOR(V.3) . .. ... ... .. 216
7.1 Introduction . . . . .. .. ... 216
7.2 System Point-Of-View: Context Dependent Issues . . . . . . 217
7.3 System Point-Of-View: Context Independent Issues . . . . . 218
7.4 Dimensionsof theSyssemModel . . ... ... ....... 220
7.4.1 Planning Dimension: Fueled By the Pedagogical
Prescriptions of the Conceptual Model . . . . . . .. 222
7.4.2 Curriculum Dimension: Provides Goals
ForTutoring . . ... .. ... ... ......... 224

7.4.3 Domain Knowledge Dimension: Containing
the Actual Knowledge that Needs to be
CommunicatedtotheStudent . . . . . .. ... ... 224

viii



CHAPTER Page

7.5 Tutoring Spaces. Another View of the System Model . . . . 225
7.5.1 Major Objective Space: Organizing a
Tutoring Session Around the Major Goals

oftheSystem . . . . .. ... ... ... ... ..., 230
7.5.2 Exercise Space: Developing aPersonalized
CV Problem Set FortheStudent . . . . . . ... ... 233
7.5.2.1 Different Approachesto Classifying
CVPoblems . . ............... 233
7.5.2.2 Developing aPersonalized Problem
SetfortheStudent . . . ... ........ 238
7.5.3 Unit Space: Taking Care of the Tutoring Protocol . . 241
7.5.4 Lesson Space: Initiating a Dialogue with
theStudent . . . . ... ... ... 244
7.5.5 Tutoring Episode Space: Handling Error
Patternsand Domain Topics . . . . . . ... ... .. 245
7551 TopicNetwork . ............... 246
7.55.2 Generating tutoring Episodes . . . . . . .. 249
7.5.6 Tutoring Hypothesis Space: Handling
Student Difficulties . . . . . . .. ... ... ... .. 255
7.5.7 Tutoring Issue Space: Handling Communication
withtheStudent . . . . ... ... ... ... ... 256
7.6 SystemMode: A Step TowardsaGenericITS . ... ... 258

VIll. ARCHITECTURE OF CIRCSIM-TUTOR (V.3):
IMPLEMENTING THE DOMAIN AND

THE PEDAGOGY EXPERTS . . ... ... ... .. ...... 260
8.1 Introduction . ... ... ... ... ... ... ... 260
8.2 Architecture of CIRCSIM-Tutor (v.3) . ... ... ..... 260
8.3 Architectural Equivalence of the Domain and the

Pedagogy Experts . . . . . ... ... .. ... 262

8.4 Object-Oriented Methodology: Developing and

Implementing the Components of Architecture of

CIRCSIM-Tutor (V.3) . . . . . o e e e e 264
8.5 Domain Knowledge Base: Providing General

Knowledge About the CV System to

CIRCSIM-Tutor (V.3) . . . . . o o e e e e 265
8.6 Domain Problem Solver: Providing Accessto the

Domain Knowledge and Inferencing about it for

CIRCSIM-Tutor (V.3) . . . . . o i i e e e 267
8.7 Instructional Planner: Containing the Reasoning
Mechanism for the Pedagogy Decison Making . . . . . .. 271
88 PanningEngine ... ... ..... ... ... . ..... 273
89 TutoringSpaces . ... ... ... 276
8.10 Curriculum: Containing Goals of CIRCSIM-Tutor (v.3) . . . 278
8.11 Tutoring History: Storing a Trace of Key Decisions
of thelnstructional Planner . . . . . . ... ... ... ... 279
8.12 A Runof thelnstructional Planner . . . . . .. ... ... .. 280



CHAPTER Page

IX. CONCLUSIONS, LIMITATIONS, AND

FUTUREDIRECTIONS . .. .. ... ... . .. ........ 281
9.1 Introduction . .. ... ... ... ... ... ... 281
9.2 Significance and Limitationsof ThisResearch . . . . . . .. 284
9.3 Future Research Directions . . . . ... ... ........ 286
APPENDIX
A. Results of an Evaluation Study for a Keyboard-To-Keyboard
TutoringMethod . . . . . ... ... .. ... .. 288
B. CV Problems. Their Combinations and Descriptions . . . . . . .. 292
C. A Listof Error Patterns and Student Difficulties . . . . ... ... 299
D. HowtoQuerytheDKRS . . . . . .. ... ... ... .. ..... 303
E. A Partia Trace of the Functioning of the Instructional Planner . . 318
REFERENCES . . . . . . . . . e 326



LIST OF FIGURES

Figure Page
2.1 A Classification of Computer-Based Educational Systems . . . . . . . 17
2.2 Jigsaw-PuzzleMetaphor . . . . ... ... ... ... . ... ... 31
3.1 Chronology of Events For the Research in the Computer-Based

Medical Teaching Systems Developed at Rush/IIT . . . ... .. .. 67
3.2 Teaching SystemsFor BRReflex: Facts . . . . . . ... ... ..... 69
3.3 Concept Map Used in CIRCSIM-Tutor (v.0) . . ... ......... 71
34 Concept Map Used in CIRCSIM-Tutor (v.2) . . . ... ... ..... 73
35 ThePredictionsTable . . ... ... ... ... ... ......... 78
3.6 Facts About the Keyboard-to-Keyboard Sessions . . . . . .. ... .. 80
3.7 Student and Tutor in aKeyboard-To-Keyboard Session . . . . . . .. 81
3.8 A Sample Segment From a Keyboard-To-Keyboard Session . . . . . . 83
4.1 StagesinthelTS Development Framework . . . . ... ... ... .. 89
4.2 Increasing Complexity of the Conceptual Model of ITS . . ... ... 93
4.3 InfluencesonExpertise . . . . . . . . .. ..o 98
4.4 A Sample Segment fromaThink-Aloud Sesson . . . . ... ... .. 101
45 A Task Structureto Solve DR Phaseof aCV Problem . . . . ... .. 105
5.1 Schematic View of a Cognitive Model of Tutoring Used in

Keyboard-To-Keyboard Sessions . . . . . ... ... ... ..... 115
5.2 TheTask Structure Used by theDomainExpert . . . . . ... ... .. 117
5.3 Truth Tableto Solve SS Phaseof aCV Problem . . . . . ... .. .. 119
54 TheTask Structure of Tutoring Protocol 1 . . . . . ... .. ... .. 128
5.5 The Task Structure of the Tutoring Protocol 2 . . . . . . ... ... .. 129
5.6 The Task Structure of the Tutoring Protocol 3 . . . . . . ... ... .. 131
5.7 Interaction Between Prediction Collection and Tutoring Phases . . . . 132
5.8 A Section of aKeyboard-To-Keyboard Transcript . . . . .. ... .. 135

Xi



Figure Page

59 A Listof Student’sand Tutor’'sPredictions . . . . .. ... ...... 137
6.1 Tutoring Cycleof CIRCSIM-Tutor (v.3) . ... ... ......... 143
6.2 A Schematic Representation of the Tutor’s View of the Student . . . . 145
6.3 A Space of Causes For the Student’s Wrong Predictions . . . . . . .. 146
6.4 Tutor ConfirmingaHypothesis . . . ... ... ............ 147
6.5 Tutor HandlingaStudent'sSlip . . . ... ... .. ... ....... 148
6.6 TutorinanExploratoryMode . . .. ... ... ... ... ...... 149
6.7 Tutor Directing the Student’sThinking . . . .. ... ......... 150
6.8 Tutor UsingaDefault Strategy . . . . . . ... .. ... ... .... 151
6.9 Tutor InvokingaGenericTopic . . . . . . . .. .. v 152
6.10 Summary of Decisions Supported by the Pedagogy Expert . . . . . .. 153
6.11 An Early Finish of the Tutor’sDefault Strategy . . . . . . .. ... .. 154
6.12 Flow Chart Representing the Dynamic Behavior of
thePedagogy Expert . . . . . . . . ... ... 160
6.13 Problem Solving: Applying a General Model to Form a
Situation-SpecificModel . . . . . .. ... L 161
6.14 (a) A General Model of CV System,
(b) A Situation-Specific Modelsof CV System . . . . ... ... .. 163
6.15 Selected Excerpts from a Keyboard-to Keyboard Tutoring Session . . . 167
6.16 A Schematic Representation of the Fundamental
Entitiesin the Parametric Viewpoint . . . . . .. .. ... ... ... 173
6.17 Thelntermediate Level ConceptMap . . . . . . . .. ... ... ... 174
6.18 TheDeeplLevel ConceptMap . . . . . ... .. ... ... ...... 175

6.19 A Fragment from the Multi-Level Parametric Viewpoint
oftheCV System . . . . . .. . ... . ... 176

6.20 An Schematic Representation of the Generic
Relationships between the Anatomical Concepts

Used in the Anatomical Viewpoint of theCV System . . . . . . . .. 179
6.21 A Domain Concept Hierarchy from the Anatomical Viewpoint . . . . . 180
6.22 The Semantic Structureof aDomainConcept . . . . . . ... .. ... 183

Xii



Figure
6.23
6.24
6.25
6.26

6.27
6.28
6.29
6.30
6.31
6.32

6.33

6.34

6.35
6.36
6.37
6.38
6.39
6.40
6.41

6.42
6.43

7.1
7.2

Page

The Semantic Structure of a Perturbation . . . . .. ... ... .... 185
Categoriesfor Domain Model Transitions . . . . .. ... ....... 187
A Schematic View of Transitions Between Domain Models . . . . . . 188
Tutor Systematically Guiding the Student to Make

Transitions BetweentheDomainModels . . . . . .. ... ... .. 189
Model Transitionsin SessionsUsing Protocol 1 . . . . . . .. ... .. 190
Model Transitionsin SessionsUsing Protocol 2 . . . . . . ... .. .. 191
Model Transitionsin SessionsUsing Protocol 3 . . . . . . ... .. .. 192
ThelnferenceTriangle . . . . . . . . .. . . ... . .. .. ...... 196
Examplesfor Compiled CognitiveProcesses . . . . . ... ... ... 198
Examples of Spreading, Originating, and Casual

Summation Operation . . . . . . . . . . ... ... 199
Possible Sequences of Cognitive Processes for Spreading,

Originating, and Causal Summation Operations . . . . . . ... ... 199
Flow Chart Representing the Task Structure Used

by theDomainExpert . . ... ... ... .. ... . ... ..... 201
Think-Aloud Sessions-Results . . . . . ... ... ... ... .... 202
Examples of Different Levelsof Articulation . . . . ... ... .. .. 202
Tutoring Sessons-Results . . . . . ... ... .. .. .. ..., 205
Cognitive FunctionsasQuestions . . . . . ... ... ... ...... 206
Cognitive Functionsas Explanations . . . . .. ... ... ...... 207
Cognitive FunctionasSummary . . . . . . . . . . . ... .. 207
A Use of the Inference Triangle to Generate the

DirectedLineof Reasoning . . . . .. ... ... ... ....... 208
The Inference TriangleasaCausal Equation . . . . . . ... ... .. 209
Examples Showing a Shift in the Direction of Use of

InferenceOperation . . . . . ... ... ... .. ... ... 210
Knowledge Layersin Lesgold’ s (1988) Framework . . . . ... .. .. 220
Knowledge Dimensions of the SyssemModd . . . . .. ... ... .. 221

Xiii



Figure Page
7.3 A Schematic View of the Generic Planning

Mechanism Used in the Planning Dimension . . . . . ... ... .. 222
7.4 SystemModel asaSet of TutoringSpaces . . . ... ... ...... 225
7.5 A Tutoring Space and Its Connections to
Different Typesof Knowledge . . . . . . .. ... ... ... .... 226
7.6 A Multi-Level View of the Planning Dimension . . . . .. ... ... 228
7.7 Transition Between TutoringStates . . . . . .. ... ... ...... 229
7.8 Goa Organization for the Mgor ObjectiveSpace . . . . ... ... .. 230
7.9 Planning Statesfor the Major ObjectiveSpace . . . . . ... ... .. 231
7.10 CV Procedure Categories Based on the DidacticGoals . . . . . . . .. 234
7.11 CV Procedure Categories Based on the
Default Procedure Difficulty Level . . . . . . . ... ... ... .. 235
7.12 CV Procedure Categories Based on Default Procedure
Description Difficulty Level . . . . . . ... ... ... ....... 236
7.13 A Partia Goal Organization for the ExerciseSpace . . . . .. ... .. 237
7.14 Planning Statesfor the ExerciseSpace . . . . . . . .. ... ... .. 239
7.15 Rulesto Decide about Procedure Difficulty and Description Levels . . 240
7.16 Goal OrganizationfortheUnitSpace . . .. ... ........... 242
7.17 Planning StatesfortheUnitSpace . . . . . . ... ... ... ... .. 243
7.18 Lesson Space Accessing the Topic Network . . . . . . ... .. ... 247

7.19 (@) A Partia Classification of Didactic Links,
(b) A Schematic View of Domain Topics Connected Via

DidacticLinks . . . . . . . . . 247
7.20 A Partia Network of CoreTopics . . . . ... .. ... ... ..... 248
7.21 Tutoring States for the Tutoring EpisodeSpace . . . . . . .. .. ... 249

7.22 Ordering Tactics Used in the Tutoring Episode Space
(here these are classified according to CV phases and are

arranged from highest to lowest default priority ranking) . . . . . .. 250
7.23 Core Causal Pathsfor DR at the Top Level of ConceptMap . . . . . . 252
7.24 Tutoring States for the Tutoring HypothesisSpace . . . . . . ... .. 255

Xiv



Figure Page
7.25 Tutoring Statesfor the Tutoring IssueSpace . . . . .. ... .. ... 257
8.1 Architecture of CIRCSIM-Tutor (v.3) . . . . . ... ... .. ..... 261
8.2 Outcome of Phases of the ITS Developmental Framework for
the Research Described inthisThesis . . . . . ... ... ... ... 263
8.3 A Partial Hierarchy of Classes Used in the Domain Knowledge Base . 266
84 A DomanKnowledgeBaseObject . . .. ... ............ 267
85 A SchematicViewoftheDKRS . . . ... ... ... .. ... .... 268
8.6 A Partia Hierarchy of Classes Used in the Domain Problem Solver . . 269
8.7 A Flow of Events Representing the Querying ProcessintheDPS . . . 270
8.8 Hierarchy of Classesfor the Instructional Planner . . . . . .. ... .. 271
8.9 FileOrganization for the Instructional Planner . . . . . . .. ... .. 272
8.10 Flow Charts Representing the Higher Level Planning Behavior
for thelnstructiona Planner . . . . . . .. ... ... ... ... .. 273
8.11 Detailed Behavior of the Planning Engine Shown in Figure8.10 . . . . 274
8.12 A Tutoring StateObject . . . . . . . . . .. ... . ... 276
8.13 A TutoringLink Object . . . ... ... ... ... ... ....... 277
8.14 Hierarchy of Classesfor the Curriculum . . . . .. ... ... .... 277
815 AGoal Object . . . . . . . . . e 278
8.16 Hierarchy of Classesfor the TutoringHistory . . . . .. ... ... .. 279
8.17 A TutoringHistory Object . . . . ... ... . ... ... ....... 280

XV



ABSTRACT

This thesis describes a model of tutoring. This model is intended for CIRCSIM-
Tutor (v.3) - an Intelligent Tutoring System (ITS) - that teaches the functioning of the
baroreceptor reflex to the first year medical students.

This model is based on the behavior of human tutors in the keyboard-to-keyboard
sessions. The mgjor theme of this model is that, in a problem-solving environment, it
hel ps the student integrate his/her knowledge into a coherent qualitative causal model of
the domain and solve problems in the domain. The key feature of this model is that it
uses multiple qualitative models of the domain in the process of facilitating knowledge
integration.

The development of this model of tutoring has been approached by using an ITS
development framework that views the development of an ITS as a modeling activity.
There are three major phases of this methodology. These are the conceptual phase, the
system phase, and physical phase. At each phase adifferent model of an ITS results.

The conceptual model, resulting out of the conceptual phase, dealsin this research
only with the domain and the pedagogy aspects of tutoring. The domain knowledge here
is consists of multiple qualitative models that are used to support decision making. This
decision making process considers three major functions: what to teach, when to teach,
and how to teach.

The system model, resulting out of the system phase, provides a generic
framework to represent three different types of knowledge. These are the planning
knowledge, the curriculum knowledge, and the domain knowledge. The system model
can also be viewed as consisting of a set of tutoring spaces. Each space is responsible for
performing one type of major decision of the tutor while interacting with the student. For
CIRCSIM-Tutor (v.3) the following tutoring spaces are used: the major-objective space,

the exercise space, the unit space, and the lesson space. The second model resulting out
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of the system phase is the architecture of the system. Here an object-oriented
methodology is used to develop some of the major components of this architecture.
These architectural components are coded using the Common Lisp Object System

on the Apple Macintosh.
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CHAPTERI
INTRODUCTION

“Reform” - this word, nowadays, is commonly heard in all educational settings
ranging from primary (Anderson, 1992) to professional education (Calderhead, 1988;
Jonas, 1978; McGuire et al., 1983; Rothstein, 1987). This reform movement is due to the
unsatisfactory state of our current educational system. According to Woolf (1986)
“education isin trouble” (p. 1). Anderson (1992) noted that “ The situation with respect
to low educational achievement has been raised to the status of a national crisis in
America’ (p. 1). Woolf (1986), citing the literature, further states that
... an NSF study says, “Most Americans are moving towards virtual scientific and
technological illiteracy” (National Science Foundation, 1983). Naisbitt says,
“The generation graduating from high school today is the first generation in
American history to graduate less skilled than its parents ...” (Naishitt, 1984). R.
Buckminister Fuller says, “ Classrooms are desensitizing, stultifying and boring.”
(Fuller, 1962) ... Andrew Molnar from NSF says that only 75% of the teachersin
America are qualified to teach the courses they are teaching (Molnar, 1986) ...
America will be short one million teachers within four years ... People graduate
without the basic skills necessary to function at the college level (pp. 1-2).

The problems are great and there is no single “magical” method available to improve the

current state of education. But what we can do is to adopt the “divide and conquer”

strategy and solve problems that are linked to this disastrous state of education, as far as

possible.

1.1 Two Problems

According to Anderson (1984) “Knowledge is not a basket of facts” but rather
“the essence of knowledge is structure” (p. 5). A study by Bloom (1984) shows that
conventional teaching, which means a teacher presenting material in front of 20 - 200
people, provides one of the least effective methods for educational delivery. In this

conventional form “too often school science and mathematicsis studied as a disembodied

set of facts and principles’ (Wheatley, 1991, p. 13). Here “the learner is assumed to be,



in the John Locke tradition, a tabula rasa” (Wheatley, 1991, p. 14). In such a situation,
as Anderson (1984) noted, the majority of students “are unlikely to make the inferences
required to weave the information ... into a coherent overall mental model” (p. 10).
Besides leaving student’s knowledge in a non-integrated (unstructured) form, the

second problem created by the current educational system is that it does not provide
opportunities for students to develop higher mental processes such as the ability to solve
problems (Bloom, 1984). Michael (1993) says that “ American education has, in general,
failed to prepare students ... to become problem solvers’ (p. 37). According to Bloom
(1984)

... Such higher mental processes ... enable the student to relate his or her learning

to the many problems he or she encountersin day-to-day living. These abilities ...

are retained and used long after the individual has forgotten the detailed specifics

of the subject matter taught in the schools. These abilities are regarded as one set

of essential characteristics needed to continue learning and to cope with a rapidly

changing world ... These higher mental processes are (also) important because
they make learning exciting and constantly new and playful. (p. 13).

Bloom further observes that

... teachersin United States typically make use of text books that rarely pose real
problems. These text books emphasize specific content to be remembered and
give students little opportunity to discuss underlying concepts and principles and
even less opportunity to attack real problems in the environments in which they
live. The teacher-made tests (and standardized tests) are largely tests of
remembered information ... (p. 13).

These two problems are related to each other. A student having knowledge in a
non-integrated form would not be able to correctly solve problems, because according to
Anderson (1980) problem solving requires a “goal-directed sequence of cognitive
operations” (p. 257). A “basket of facts’ lacks the needed structure to support the
required sequence of operations.

1.2 Medical Education

A demand for reform is not new in medical education (Rothstein, 1987; McGuire

et al., 1983; Jonas, 1978; Barrows & Tamblyn, 1980). A comprehensive report on the



reform of medical education was published as early as 1910 by the Carnegie Foundation.
This report was called the “Flexner Report.” Jonas (1978) summarized the main features

of thisreport, asfollows

The most important task of the medical education process would be to teach the
understanding and use of the scientific method. Thus the didactic-lecture/rote-
memorization method of teaching, and examinations would be of limited utility.
L ectures would be used primarily for introductions to and summations of subject
area. Examinations would be used more as learning experiences than as measures
of performance. The problem-solving method of instruction, i.e., the practical use
of the scientific method, would be widely employed. To the greatest extent
possible, basic medical science teaching would be integrated with and relevant to
clinical teaching. The use of the problem-solving method would, of course,
greatly facilitate this integration (p. 213).

It can be noted that Flexner in his report was also most concerned with the two main
problems mentioned in Section 1.1. After the publication of the Flexner report many
different (in some cases quite radical) models of medical education was adopted by
various medical colleges. Some of these models were: two-plus-two (Jonas, 1978), the
systems approach (Rothstein, 1987), and problem-based learning (Barrows & Tamblyn,
1980). Some even went further to suggest the inverted curriculum approach (Barrows &
Tamblyn, 1980). But as Jonas (1978) observes, the approach to teaching basic science
instruction most condemned by the Flexner Report is still used in many medical schools:
didactic lecturing, rote memorization, and frequent examinations.

A most recent comprehensive evaluation of the state of American medical
education was published by the Association of American Medical Colleges (Rothstein,
1987). This report contains a set of 27 recommendations. At least 9 of the 27
recommendations pertain, directly or indirectly, to the teaching of the basic biomedical
sciences (Michael, 1989). Again, the two problems of our current educational system
mentioned above are prominent in these recommendations.

1.3 Need to Facilitate Active L earning: A Solution

In the conventional teaching format, instruction is viewed as a process of

transmission (Wheatley, 1991). In this viewpoint, ideas and thoughts are communicated
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in the sense that meaning is packaged into words and “sent” to another who unpacks the
meaning from the sentences. Here the learner is like an sponge. This passive view of
learning is one of the major causes of turning students into memorizers and poor
problem-solvers. According to Wheatley (1991)
The workplace metaphor seems to describe activities in many classrooms.
Students are engaged in exchanging performances for grades, much as a worker’s
reward depends on their productivity. Students are “paid” for their products
(assignments, tests) with praise and grades.... Learning is not a goal of such a
work oriented environment, learning is a by-product of the “work” if it happens at
al (p. 13).

Current research in cognitive science is changing our view of how people learn.
As Resnick (1983) noted, in the last few years a new consensus on the nature of learning
has begun to emerge. She further noted that “This emerging conception of learning has a
direct bearing on how ... science ... can be taught most effectively” (p. 477).

Resnick (1983) described the evolving model of the learner in terms of a series of
propositions. (1) Learners do not passively receive knowledge but rather actively build
(construct) it. That is, as much as we would like to, we cannot put ideas in student’s
heads, they will and must construct their own meaning. (2) To understand something is
to know relationships. Human knowledge is stored in clusters and organized into
schemata that people use both to interpret familiar situations and to reason about new
ones. Bits of information isolated from these structures are forgotten or become
inaccessible to memory. (3) All learning depends on prior knowledge. Learners try to
link new information to what they already know in order to interpret the new material in
terms of established schemata. (4) Successful problem-solving requires a substantial
amount of qualitative reasoning. Good problem-solvers do not rush into applying a
formula or an equation. Instead, they try to understand the problem situation; they
consider aternative representations and relations among the variables. Only when they
are satisfied that they understand the situation and all the variables in it in a qualitative

way do they start to quantify it.



From these findings it can be argued that active forms of learning can provide a
solution to learning a non-integrated knowledge base. Active learning can also promote
the acquisition of problem-solving skills. But active learning requires the role of the
teacher to be radically changed. Here the teacher should create an environment that
encourages students to take responsibility for their own learning (Michael & Modell,
1993). This environment should be cooperative rather than competitive and here the
teacher should be afacilitator rather than a transmitter of knowledge (Wheatley, 1991).
Teachers also need to focus on the qualitative aspects of the problem situation (Resnick,
1983).

1.4 Tutoring: A Method of Facilitating Active L earning

One-on-one tutoring is a method that facilitates active learning in the student. In
this method the student and the tutor collaborate in the process of instruction (Goodyear,
1991). Here the tutor provides individualized instruction and attention to the student
(Wenger, 1987). Studies have shown that one-on-one tutoring is one of the most
effective educational delivery methods (Bloom, 1984; Anderson et al., 1985; Woolf,
1986; Cohen et a., 1982). A study by Bloom (1984) shows that students involved in one-
on-one tutoring seem to perform at about the 98th percentile as compared with students
who are traditionally trained (via the group instruction method). Hence, if our
educational system adopts tutoring as the educational delivery method then students will
be active while learning. This would probably help them to build coherent models of
domain from the subject matter content, which would not only help to enhance their
understanding but also help to develop their problem-solving skills. So if tutoring is so
advantageous why are students still learning in groups via the traditional classroom
teaching method? As Galdes (1990) noted that “ The answer is simple - there just aren’t

enough skilled human tutors to do all of the necessary tutoring” (p. 2).



1.5 Machine Tutors. An Alternativeto Skilled Human Tutors

One possible solution to the shortage of human tutors is to build computer-based
tutoring systems that are as effective as human tutors. These computer-based tutors are
often referred to as Intelligent Tutoring Systems (ITS).

It would be incorrect to suggest that intelligent tutoring systems will solve all the
problems of current educational system (Woolf, 1986) but it is possible that these
machines might solve some of the problems (e.g., see Section 1.1) that are responsible for
the current disastrous state of education.

Research on ITS started in the 1970’ s (Clancey, 1992; Woolf, 1988a). Since then
many systems have been built but only a few are in actual use (Clancey, 1992; Galdes,
1990). Studies have shown that tutoring by computers can be more effective than class
room teaching (Anderson et al., 1989; Reiser et al., 1991). However, it appears that
human tutors still outperform machine tutors (Merrill et al., 1992). These findings raise
the following questions for the ITS community: Why are human tutors so effective, and
how can we make machine tutors better? Also why are only afew of the tutors built so
far in use (Galdes, 1990)?

The development of an ITS is a complex task (Woolf, 1988b) and requires a
multidisciplinary approach (Kearsley, 1987). As Kearsley (1987) noted, the design and
development of ITS “lie at the intersection of computer science, cognitive psychology,
and educational research” (p. 3). In order to make this design and development process
clearer, we will describe ITS from three different viewpoints: the conceptual view, the
system view, and the physical view.

1.5.1 Conceptual View of ITSs. This view of ITS is concerned only with the

conceptual issues underlying the target tutoring expertise. Two main issues dominate
here: the nature of tutoring expertise and the variables influencing tutoring expertise.
Galdes (1990) claims that the goal of ITS research is “to build computer-based

systems which emulate skilled human tutors’ (p. 2). Although all researchers may not



agree with this view of ITS development, studies have shown that human tutoring
provides the best educational delivery method so far known (Bloom, 1984). Does this
mean that tutoring by humans always provides the most effective method of instruction?
Anania (1983), in a review of three studies of tutoring vs. group instruction, found that
tutoring is not always better. Her review showed that group instruction is better than
tutoring when the teachers are trained and the tutors are untrained. In areview of thirteen
studies of tutoring vs. group instruction, Ellson (1976) found that only five of these
studies clearly showed that tutoring was effective in improving cognitive skills. From
this, Ellson concluded that

The success of tutoring cannot be attributed to individual attention. If individual

attention were the critical operating factor then all tutoring should be successful,

but as the review has shown, only some is successful, perhaps less than half ...

Thereisno magic in individual attention.

These studies raise the question of what makes human tutors effective? One
explanation for the effectiveness of human tutoring is that it is the “skilled tutoring that
provides the magic” (Galdes, 1990, p. 2). Skilled tutoring requires expertise in both the
domain and in the process of tutoring (Khuwaja et a., in preparation (a)). A human tutor
lacking either of these skills will not be able to perform optimally in a tutoring situation.
Breuker (1988) has concluded that experienced users (domain experts) are not necessarily
good tutors. This conclusion has aso been drawn by Fletcher (1984). On the other hand,
expert tutors lacking expertise in the domain are also not optimally effective because, as
Jones et a. (1979) observed in their study, “no amount of (teaching) strategies can make
up for the lack of knowledge in a subject matter.”

As mentioned above, a skilled human tutor acts as an expert in the domain
(domain expert) and in the process of tutoring (expert tutor) while communicating with
the student. The expert tutor is a composite role. In this capacity the human tutor
diagnoses the student’ s problems, plans the feedback and communicates it to the student.

These three roles of the tutor have been identified since the early days of ITS research



(Wenger, 1987; Barr & Feigenbaum, 1982). But as Wenger (1987) observed, most of
these early efforts “concentrate on some of these issues (roles) at the expense of others”
(p. 14). The research methodology used in early studies was correct but those systems
only began to investigate the tutor’s expertise in different domains (Galdes, 1990). Also
it is relatively easy to isolate a role of the tutor for investigation and tempting to
generalize findings over domains and tutoring situations. Almost all research efforts, so
far, have ignored the question of integration between roles of the tutor or adopted a
primitive view based on speculation.

If we want ITSs to be as effective as skilled human tutors then we must not only
investigate the different roles of the skilled human tutor but also the processes integrating
theseroles. Stevenset al. (1982) have also emphasized this theme as

In much of psychology, there has been a bias towards emphasizing highly general,
domain-independent mechanisms that are supposedly central to the instructional
process. Our work demonstrates that such a perspective is incomplete without a

detailed consideration of domain-specific knowledge, its representation and its
interaction with more general aspects of cognition (p. 13).

It is now well established that people use multiple representations of the physical
world when interacting with it (Collins, 1985; Gentner & Stevens, 1983). A mental
model in this context can be defined as “an internal representation of a physical system
used by a person or a program to reason about processes involving that system” (Wenger,
1987, pp. 45-46). Although research on mental models is an active area in artificial
intelligence (Al) and cognitive psychology, only recently have afew efforts been geared
to emphasize its utility from a pedagogical standpoint. Most of these research efforts are
concerned only with the learner’ s viewpoint, i.e., what models the learner possesses and
how these models can be tuned to yield the desired responses (Collins, 1985). An
alternative to this educational approach is the question: How does the tutor use his/her
multiple conceptual/mental models of the domain to remedy student misconceptions and

to help learners build correct mental models of the domain?



Another variable only briefly considered in ITS research is the environment in
which the tutor and the student communicate. This variable is of central importance to
the researchers involved in the development of learning environments. It is true that in
some human tutoring situations this variable is of little importance. For example, in one
form of face-to-face tutoring the tutor and the student mainly use verbal means for
communication. In this case only simple rules of verbal communication need to be
followed. But thisisnot the casein al tutoring situations. In some tutoring situations the
tutor and the student need to follow a complicated set of rules which, for example,
determine the way different objects (e.g., charts, tables) are used while tutoring. These
environments can also convey, implicitly, part of the problem-solving methodology that
the tutor wants the students to discover. In these situations it is valuable to investigate
how these environments are created by the tutor and how they impact on the various roles
of the tutor.

The proper conceptual view of an ITS is literally incomplete without the
consideration of appropriate variables influencing the tutoring expertise of the tutor.
Ignorance of this aspect of the conceptual view of ITSis clear in the literature (e.g., see
Galdes, 1990). Researchers are tempted by the “generality hypothesis’ (White &
Frederiksen, 1990) to generalize their findings, ignoring crucial variables (e.g., type of
domain, educational setting, tutoring situation, goals of the tutor, knowledge level of
students) affecting tutoring expertise. The result of this ignorance is theories having
holes that can not be filled when these variables change! Thisis also one reason that after
almost two decades of research, human tutors still out perform machine tutors (Merrill et
al., 1992) and the majority of ITSs are inapplicable in rea educational settings! It istrue
that we are still in the exploratory phase of ITS development and as Galdes (1990) noted,
“currently, we are still building an empirical base of knowledge and descriptive theories
of what skilled human tutors do” (p. 80). But if we ignore the true context of our

research, by ignoring the variables making up the context, our knowledge base will be
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inconsistent and incomplete and retard the development of a unified theory of ITS
development, if such atheory is possible.

Studies like these are essential in understanding the processes underlying the
target tutoring expertise. The conceptual view alows us to concentrate on the theoretical
aspects underlying tutoring expertise without getting bogged down in the system and
physical views that are required to implement conceptual views in machine executable
form on acomputer. It would be incorrect to totally reject the influence of the system and
the physical view on the conceptual view of TS because ultimately we want a theory of
tutoring expertise whose prescriptions can be implemented in a machine form.

15.2 System View of ITSs. An ITSis a program, a piece of software, and its

purpose is to engage the student in an instructional activity. Unlike the conceptual view,
which is concerned with natural tutoring expertise, the system view is concerned with the
organization of tutoring expertise as a computational system. Here the behavior of the
ITS results from the coordination of its components. The system view is influenced by
the conceptual view. The characteristics of the system view, in turn, influence the
physical view. The system view of the ITS can be conveniently divided into two
subviews explained as follows.

15.2.1 System View 1: System Model. Through thisview an ITS can be

seen as an instructional system. Here the tutoring theory of the conceptual view is
realized as a computational model, but still this view is not related to the actual
implementation formalism needed to realize the system as a computer program.

An ITS viewed from this perspective deals with two major issues: curriculum and
instruction (Halff, 1988). The curriculum issuesinvolve the representation, selection, and
sequencing of material to be presented to students, whereas instructional issues involve
the presentation of that material to students. Halff (1988) noted that

For teaching methods such as lectures, which are less dynamic than tutoring, both
curriculum and instruction can be developed prior to delivery, with as much or as

little accountability to instructional principles as the developers feel is needed.
Tutoring systems afford no such luxury because a tutor, human or machine, is
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bound to tailor the selection, sequencing, and methods of delivering instruction to
meet the ever-changing needs of individual students (p. 80).

Lesgold (1988) claims that “intelligent instructional systems developed to date
have explicit representation of the target (domain) knowledge but at best only implicit
representations of the curriculum knowledge, the scope and sequencing of lessons” (p.
118). A lack of this explicit representation of curriculum is one of the causes of sub-
optimal performance of ITS.

Empirical studies have shown that human tutors perform a number of tasks that
are hierarchically arranged (Goodyear, 1991). A proper execution of these tasks produces
a successful management of an effective tutoring session. These tutorial tasks are usually
classified at different levels of abstraction. One such classification comprises the major
(core) objective level, exercise (or problem selection) level, unit level, lesson level, and
discourse level. An ITS not only needs to explicitly represent its curriculum, but also
needs to arrange it so that it can support a complete hierarchy of tutorial tasks.

The selection, sequencing and presentation of the curriculum to students by an
ITS requires a sophisticated planning mechanism. The need for explicit representation of
the curriculum adds further complications to this planning mechanism. This planning
mechanism, regardless of the particular theory of tutoring on which it is based, should
meet the ever changing needs of individual students. One of the currently popular
opportunistic instructional planning mechanisms, which plans at the local discourse level,
iISMENO-TUTOR (Woolf, 1984). On the other hand, the IDE-INTERPRETER (Russell,
1988) attempts to represent plans at higher levels of abstraction, but this system lacks
power at the local discourse level (Woo et a., 1991). Currently there have been attempts
to combine local discourse planning with global (or higher level) planning (Woo et al.,
1991). But again these systems lack explicit representation of the curriculum and fail to

plan tutorial tasks at sufficiently high levels. At this point there is a need for a system
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model that uses a sophisticated planning mechanism (fueled by the tutoring prescriptions
at the conceptual level) and also makes use of explicit curriculum and domain knowledge.

15.2.2 System View 2: System Architecture. Thisview bringsthe ITS

a step closer to its realization in a machine executable form. Through thisview an ITS
can be seen as a software system. Software engineering principles shape this view of an
ITS. But this view is still independent of the actual implementation formalism. Major
concerns here include: the design of different modules and the communication between

the modules.

1.5.3 Physical View of ITSs. AnITS seen through this view is amachine coded
program. Here each module of the system view is transformed into a chunk of code that
executes on amachine. Major concerns here are the selection of a hardware platform and
the implementation formalism to realize the I TS as an executabl e software program.

1.6 Goalsof This Research

This research is a part of the project that is primarily aimed at developing an
Intelligent Tutoring System called CIRCSIM-Tutor (v.3). The knowledge domain of this
system is cardiovascular (CV) physiology, specifically the baroreceptor reflex, that part
of the cardiovascular system responsible for maintaining a more or less constant blood
pressure (Berne & Levy, 1993). The main educational goals of thisITS are (1) that the
students, using this system, acquire a qualitative, causal model of the cardiovascular
system, and (2) that they learn a problem-solving method that enables them to solve any
problem in the domain.

The primary goal of my research isto design and develop the Domain Knowledge
Base, the Domain Problem Solver, and the Instructional Planner of CIRCSIM-Tutor
(v.3). These components are designed to play two roles of a skilled human tutor - the
domain expert and the pedagogy expert.

This research has developed a model of tutoring that, in a problem-solving

environment helps the student to integrate his/her knowledge into a coherent qualitative



13

causal model of the domain. The key feature of this model is that it uses multiple
conceptual models of the domain in the process of facilitating knowledge integration.
The primary tutoring style assumed by this model is Socratic dialogue (Wenger, 1987).
This research adds to our knowledge in several areas.

(1) The design of an ITS development methodology. The three ITS viewpoints
(see Section 1.5) correspond to the three major phases in the development of an ITS. |
have used this methodology to develop the above mentioned components of CIRCSIM-
Tutor (v.3).

(2) Analysis and development of the conceptual model of the domain and the
pedagogy expertise. Thisincludes an analysis of the interaction between the domain and
the pedagogy expertise and its implication on the process of tutoring. Here | have also
analyzed the influence of the tutoring environment on the process of tutoring.

(3) Development of the system model for the domain and the pedagogy expert.

(4) Development of the system architecture for CIRCSIM-Tutor (v.3).

(5) Implementation of the domain knowledge base, the domain problem solver,
and the instructional planner.

1.7 Organization of the Thesis

This thesis consists of nine chapters. Chapter Il describes a review of the
literature. It concentrates on the early Intelligent Tutoring System (ITS) development
approaches and various I TSs built as aresult of use of these approaches. It first describes
aclassification of ITS. Next it reviews various I TS development approaches. Then a set
of theories are described that view the tutor from different points of view (e.g., facilitator
of knowledge integration). Next the mental model approach is described as the most
recent and popular paradigm for knowledge representation in intelligent systems. This
chapter then describes a set of important pedagogical issues relating to the design and
development of an instructional system. Finally, this chapter ends with a brief

description of one of the most popular knowledge based development methodologies,
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KADS. This methodology has had a significant influence on the ITS development
methodology developed for this Research.

Chapter 111 describes the background of the research described in this thesis. A
historical trace of the development of computer based medical systems to teach the
functioning of the baroreceptor reflex is presented. This trace has been divided into two
major periods. pre CIRCSIM-Tutor and CIRCSIM-Tutor eras. The pre CIRCSIM-Tutor
era mainly deals with Computer Aided Instruction (CAIl) systems (e.g., HEARTSIM)
developed primarily at the Rush Medical College. During the CIRCSIM-Tutor era, a set
of ITSs have been developed as a joint venture between the lllinois Institute of
Technology and Rush Medical College. This chapter describes in detail the
characteristics, capabilities, and research issues of most of the systems developed during
these eras.

Chapter 1V first describes the ITS development framework developed for this
research. This framework combines the key features of a knowledge based system
development methodology and an instructional system design methodology. Next, this
chapter explains the usage of this methodology in the development of CIRCSIM-Tutor
(v.3). Here knowledge acquisition is described as a modeling activity. This chapter ends
with adetailed description of methods to capture raw expertise for this research.

Chapter V basically sets the stage for the remaining chapters of this thesis,
beginning with a sketch of the theme of this research - a cognitive model of tutoring.
This chapter describes the limitations of the tutoring models used in the earlier versions
of CIRCSIM-Tutor. Next, it describes the scope and generality of the model of tutoring
developed in thisresearch. Thismodel considers only the domain and the pedagogy roles
of an effective human tutor. The pedagogy role here deals with both the pre-session and
the in-session behaviors of the tutor. A detailed analysis of the pre-session behavior of
our tutor in the keyboard-to-keyboard sessions is described. An analysis of the in-session

behaviors of the tutor isleft for the next chapter of thisthesis.
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Chapter V1 describes the conceptual view of our model of tutoring. Here only the
pedagogy and the domain expert roles are considered. This chapter starts with a detailed
view of the in-session behavior of the pedagogy expert. Next, it describes the conceptual
model for the domain expert. Then it describes an study that investigated the integration
between these two roles of the tutor. This chapter ends with a description of the
theoretical orientation of this model of tutoring. Here the behavior of the tutor is
described using two metaphors - the jigsaw puzzle metaphor and the zoom-lens
metaphor.

Chapter VII describes the system model for the CIRCSIM-Tutor (v.3). This
model is an attempt to integrate the curriculum-based and the model-based themes of
ITSs. The system model is also presented as a generic model that could be used to
develop a system in any domain. Two views of this model are presented. In the first
view the knowledge in an ITS is organized into three different dimensions: the planning
dimension, the curriculum dimension, and the domain knowledge dimension. In the
second view the system model consists of a set of tutoring spaces. This chapter then
describes the contents of each tutoring space used in CIRCSIM-Tutor (v.3) in detail.

Chapter V111 describes the design of the architecture of CIRCSIM-Tutor (v.3) and
the transformation of the system model into architectural components. The architecture
of CIRCSIM-Tutor (v.3) is based on an object-oriented methodology. This chapter then
describes the design and implementation of each architectural component developed
during this research.

The thesis concludes in Chapter | X with a discussion of the significance of this

research, describes some of its limitations, and gives suggestions for future research.
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CHAPTERII

LITERATURE REVIEW:
EARLY APPROACHES AND SYSTEMS

2.1 A Classification of I ntelligent Computer-Based Educational Systems

It isnow commonly accepted that research on Intelligent Tutoring Systems (ITS),
also sometimes called Intelligent Computer Aided Instructional (ICAI) systems, started as
a distinct approach with a dissertation by Carbonell (1970a) and with his system
SCHOLAR (Coallins et al., 1975; Carbonell, 1970b; Barr & Feigenbaum, 1982; Clancey,
1987a). Since this beginning, this research has developed in many directions (Kearsley,
1987; Galdes, 1990). Broadly speaking, two major schools of thought have evolved and
produced two different types of system: learning environments and active teaching
systems (Goodyear, 1991; Galdes, 1990). As Goodyear (1991) noted, the builders of
learning environments have adopted “models which favor learner-directed exploration,
negotiation of purpose, or the acquisition of higher-level cognitive skills” (p. 9), whereas
the builders of active teaching systems “have adopted pedagogical models which could
be described as instructional, goal-directed, system-led or content-driven” (pp. 8-9).

The educational philosophies underlying these two types of system form a
continuum (Figure 2.1). At one extreme of this continuum lie the learning environments
that support free exploratory (or discovery) learning, e.g., the LOGO system (Papert,
1980). The fundamental epistemological concept underlying LOGO is "it is more
important to help children learn how to develop and debug their own theoriesthan it isto
teach them theories we consider correct” (Wenger, 1987, p. 125). A repeated conclusion
from experience with these environments in practice is that students tend to require some
additional assistance or guidance to take full advantage of their exposure. Another type
of learning environment is called a reactive learning environment (Barr & Feigenbaum,

1982). These systems are designed to improve on the discovery learning approach by
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making more of the underlying domain and its structure visible to the student (Brown,
1983). With discovery learning, the student is on his own to discover any structure
inherent in the learning environment, but, as Brown (1983) noted, “much of the time he
(the student) will appear to be wandering aimlessly down the garden path in search of
some insight.” In contrast, reactive learning environments are designed to prevent too

much wandering by the student.

LEARNING ENVIRONMENT ACTIVE TEACHING SYSTEMS
| | 1
TGS g
LEARNING LEARNING MIXED-INITIATIVE DIAGNOSTIC
- ] ] ] -
< | | | >
LOGO SOPHIE, WEST, SCHOLAR, WHY,  PROUST
STEAMER, WUSOR, MENO-TUTOR,
QUEST EUROHELP  CIRCSIM-Tutor

Figure2.1 A Classification of Computer-Based Educational Systems

The second major category of ITS is active teaching systems (see Figure 2.1).
These systems deliver instruction and monitor guided practice. In other words these
systems make the structure of the domain visible and accessible and also help to lead the
student through his/her domain knowledge. Active teaching systems are subclassified as:
coaching systems (Breuker, 1988; Barr & Feigenbaum, 1982), mixed-initiative tutors
(Barr & Feigenbaum, 1982; Wenger, 1987), and diagnostic tutors (Kearsley, 1987).

As the name suggests, coaching systems view the instructional system as a coach.
Here the system’s main task is “to look over the student’ s shoulder and decide whether to
help the student around a particular pitfall or let him succumb to the pitfall so that he can

learn to detect when he is on the wrong path” (Galdes, 1990, pp. 20-21). In other words a
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coaching system observes the student’ s performance quietly and provides advice that will
help the student to perform better (Kearsley, 1987).

Mixed-initiative tutors engage the student in a two-way conversation and attempt
to teach the student via the Socratic method of guided discovery (Kearsley, 1987). As
Galdes (1990) noted, the Socratic method here “refers more to a basic question-answering
and dialogue approach (Resnick, 1977) than to the original method devel oped by Socrates
(Jordan, 1963; Hayman, 1974; Plato, 1974)” (p. 20).

Diagnostic tutors, according to Galdes (1990), “debug a student’s work once the
student has completed the problem or reaches an impasse” (p. 21). These programs are
driven by a bug library that identifies the misconceptions that students may have in
solving a problem (Kearsey, 1987).

Goodyear (1991) noted that the advocates of learning environments nowadays
“tend to distance themselves from mainstream research, for example, by rejecting the
most widely used descriptive term for an Al-based teaching system - intelligent tutoring
system” (p. 9). From now on, for the purposes of this proposal, | will restrict the term
ITS to mean just active teaching systems.

2.2 Research Approachesto the Design of Active Teaching Systems:
Why Study Human Tutors?

Tutoring is a method of educational delivery. In order to use this method one
needs to make many decisions, for example, (1) what type of knowledge needs to be
tutored? Here possibilities are: factual knowledge, procedural knowledge, conceptual
knowledge, basic principles, or a combination of these. (2) What is the nature of the
educational setting? For example, will tutoring be a part of or peripheral to the course
under consideration. If itisa part of the course then how much of the curriculum will it
cover? On the other hand, if it is peripheral to the course then on what aspects of the
curriculum will it concentrate? (3) What is the educational level for which this tutoring

method needs to be used? This could range from primary to professional education.
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These decisions, in a way, are variables determining the nature of tutoring used in an
educational system.

Tutoring studies performed by, for example, Bloom (1984), Collins et a. (1975),
Fox(1993), Putnam (1987), Littman et al. (1985), and Galdes(1990), have used different
variables and there are no systematic criteria yet available to compare these studies! In
such a situation it is difficult to generalize the effectiveness of a study under one set of
conditionsto asimilar study having a different set of conditions.

A survey of literature indicates that many of the researchers agree that tutoring is
the most effective educational delivery method. One reason for this general agreement is
that certain studies (for example, performed by Bloom (1984)) have clearly demonstrated
the effectiveness of tutoring compared to other methods of educational delivery. These
studies have provided a basis for the first-order generalization that tutoring as a method of
educational delivery, without regards to the variables on which it depends, is most
effective. | absolutely agree that the field of TS is now sufficiently mature to strive for a
more detailed classification of variables on which tutoring depends. But for the purposes
of this proposal | will stick with the first-order generalization of the effectiveness of
tutoring mentioned above.

Studies have shown that tutoring by humans is more effective than currently
known educational delivery methods (Bloom, 1984; Cohen et a., 1982). Onegoal of ITS
research is to make machine tutors at least as effective as human tutors (Galdes, 1990).
However, it appears that human tutors still outperform machine tutors (Merrill et al.,
1992). In light of these findings, the obvious approach to improving ITS design is to
study the behavior of the human tutors. But, as this section will report, thisis only one of
the approaches used.

2.2.1 Multiple Expert Metaphor. Research on tutoring has shown that human

tutors, while in the process of tutoring, perform a number of tasks (Collins et al., 1975;

Woolf & Cunningham, 1987; Littman, 1991; McArthur et al., 1990). These tasks can be
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grouped into the following major activities: act as an expert in the domain, act as an
expert in the process of tutoring, act as an expert in the process of diagnosing the
student’s problems, and act as an expert in the process of communicating his/her
responses to the student. None of the studies cited above explicitly tested the competence
of their tutors before the experiments, and there is no agreed upon method of testing
available. The word expert, used in listing these varied tutor activities | introduced, is
only to emphasize the relative competence of the tutors with respect to the students
participating in the experiments (i.e., these tutors are not necessarily experts compared to
the talent available in the field of education).

The most widely accepted model for the design of the ITS is based upon the
multiple expert metaphor (Breuker, 1990; Self, 1988; Wenger, 1987; Polson &
Richardson, 1988). According to this metaphor, an ITS consists of a set of experts that
communicate with each other and coordinate their activities to create effective tutoring
behavior. The most commonly used components that take part in this process are the
domain expert, student expert (or student modeler), pedagogical expert, and
communication expert. The domain expert characterizes the knowledge and strategies
needed for expert performance in a domain (Bonar, 1984). The student expert is also
called a student modeler because it represents the tutor’s estimate of the student’s
understanding of the material to be taught (Barr & Feigenbaum, 1982). In other words
this expert “uncovers a hidden cognitive state (the student’s knowledge of the subject
matter) from observable behavior” (VanLehn, 1988, p. 55). The pedagogy or tutoring
expert, using a theory of tutoring, provides assistance to the student, monitors and
criticizes the student, and selects problems and remedial materia for the student (Halff,
1988; Wenger, 1987; Clancey, 19874). The communication expert processes the flow of
communication in and out of the system. Wenger (1987) noted that “whereas the
pedagogical module (expert) decides the timeliness and content of didactic actions, the ...

(communication expert) takes care of their final form” (p. 21).
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It isinteresting to note that this multiple expert metaphor for the ITS devel opment
matches with the roles that are responsible for the activities the human tutors perform in a
one-on-one tutorial setting. It is immaterial, from the point of view of this proposal,
whether the study of human tutors motivated the multiple expert metaphor for ITS design
or vice versa. But it is obvious that studying human tutors certainly will enhance our
understanding of the process underlying their effective behavior and help us to improve
the design and the behavior of ITS. Such empirical studies will also naturally support the
system model (see section 1.5.2) of the ITS.

For the sake of consistency | will use the multiple expert metaphor to describe,
also, the behavior of the human tutors. But in order to distinguish the behavior of the
human tutor from the ITS, | will use the word role for the human tutor and the word
component for the machine tutor (ITS). With this distinction in mind, the behavior of the
human tutor can be described as a collection of four roles (domain expert, pedagogy
expert, student expert, and communication expert) which he/she performs while
interacting with the student in a tutoring situation. On the other hand, the conceptual
model of the machine tutor is composed of four components (domain expert, pedagogy
expert, student expert, and communication expert), which interact to create its behavior.

This discussion would certainly be incomplete without mentioning a recent
criticism of the multiple expert metaphor. According to Breuker (1990)

In the ITS literature (e.g., Wenger, 1987) a confusion of functions, types of
knowledge and agents is very persistent. In general it is explained that an ITS
consists of a “classical” triad (Self, 1988) of a domain, student and didactic
expert. In fact the roles of these “agents’ overlap: in particular in diagnosing.
This overlap is not a serious problem, unless it is preserved in the functional
decomposition, and worse: in the architecture of an ITS. Because this metaphor is
used over and over again it may have been the cause for so many inarticulated ITS
architectures (pp. 50-51).
This criticism of the multiple expert metaphor raises a very fundamental issue for ITS

research. | believe that this metaphor is helpful at the conceptual level (see section 1.5.1),

but | also agree with Breuker that this metaphor should not be carried over to the
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implementation level. This is the approach | have taken for this research. For further
discussion of thisissue see section 3.3.

2.2.2 Interactivity Between the Components of Multiple Expert M etaphor:

TheReal Strength of an ITS. As| said earlier, the multiple expert paradigm is the one

most popularly used in the design of the ITS. But as Park et a. (1987) noted, because of
the size and complexity of most ITS, researchers typically focus on only one or two
components of the ITS at a time and ignore the others. For example SCHOLAR
(Carbonell, 1970b) and WHY (Collins et al., 1975) emphasize knowledge representation
(domain expert) and tutorial dialogues (pedagogy expert). BUGGY (Brown & Burton,
1978), DEBUGGY (Burton, 1982), and PROUST (Johnson & Soloway, 1984a)
emphasize student modeling issues (student expert). MENO-TUTOR (Woolf &
McDonald, 1985) emphasizes tutorial discourse strategies (pedagogy expert and
communication expert). This partial and isolated approach was justifiable in these early
systems because these research efforts only started to unfold the nature of the processes
underlying effective but complex tutoring behavior.
The multiple expert metaphor is a powerful modularization tool which breaks a
complex behavior into its components to facilitate understanding. But one drawback of
this approach is that it puts too much emphasis on the notion that sum of the components
makes up the whole. Thisideais nicely explained by Burns & Parlett (1991)
It isdifficult to separate the dancer from the dance; nevertheless in Foundations of
Intelligent Tutoring Systems (Polson & Richardson, 1988), the fundamental
anatomy was used to discuss research issues within each of the separate
components ... Because designing intelligent tutors is such an interdisciplinary
activity, attending to the anatomy piece by piece often ignores the synergy that a
wholly integrated system could achieve (p. 2).

Agreeing with Burns & Parlett (1991), | think now it is time for the ITS research

community to focus on a new interpretation of the multiple expert metaphor, which not

only emphasizes the individual components but also the interactivity between them which

is “the real strength and centerpiece of individualized instruction necessary to ITSs
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(Burns & Parlett, 1991, p. 3). Similar arguments have been made by Goodyear (1991).
According to Goodyear (1991), many researchers would now characterize “the central
problems as being to do with integration or interdependence - that knowing about the
BITS (Bitsof an ITS) will not tell us how to put them together, or that the nature of each
of the BITS is strongly determined by its relation to the whole” (p. 9). One obvious
method of inquiry into this aspect of tutoring behavior is to study human tutors because
they provide an excellent example in which all the roles are integrated to yield effective
tutoring behavior.

2.2.3 Approaches to the Inquiry of Tutoring Behavior. A number of

approaches have been used to develop the individual “experts’ of an ITS. For the sake of
clarity, I will discuss these approaches only in the context of developing the pedagogy
expert of the ITS. As| said earlier, the pedagogy expert of an ITS using a model/theory
of tutoring, provides assistance to the student, monitors and criticizes the student, and
selects problems and remedial material for the student (Halff, 1988; Clancey, 1987a;
Wenger, 1987). Broadly speaking three approaches have been used to develop a
model/theory of tutoring for the pedagogy expert of the ITS (VanLehn, 1993).

2.2.3.1 Approach Based on Experience And Common Sense. In this

approach the model/theory of tutoring is based on the author’s experience (VanLehn,
1993) or observations of tutors (Galdes, 1990). These theories consist of heuristics, such
as “Do not interrupt too often,” and “ Follow up an abstract definition with several
examples and at least one negative example” (VanLehn, 1993, p. 3). One of the major
objections to this approach is, since these theories are not based on careful empirical
work, these theories are probably incomplete and possibly incorrect. Examples of
systems that used this approach are WEST (Burton & Brown, 1979), which teaches
arithmetic skills, WUSOR (Goldstein, 1982), which teaches logic and probability, and
GUIDON (Clancey, 1987b), which teaches diagnosis and therapy prescription for

infectious diseases. Galdes (1990) has given two more reasons for not using this
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approach. (1) This approach can contradict facts: The initial version of PROUST

(Johnson & Soloway, 1984b) was developed using this approach. An evaluation of this
early version indicated that the system was atotal failure (Johnson & Soloway, 1984b).
One reason for this failure was that the method of diagnosis used by the system was not
able to handle real student input. The new version of this system used a theory of
programming bugs based on empirical studies of the kinds of programming errors real
students make (Spohrer & Soloway, 1986). This example shows that theories based upon

experience or common sense may not always beright. (2) This approach may not give us

the right context: According to Galdes (1990) “A second problem with intuitions is that
the “rightness” or “wrongness’ often depends on the context where we want to apply it.”
(p. 30). For example in WEST (Burton & Brown, 1979) twelve pedagogical principles
are used. One of these principles states “Do not tutor on two consecutive moves no
matter what” (Burton & Brown, 1979). The purpose of this principle is “to keep the
student’s interest from being destroyed” (Galdes, 1990, p. 32). Here Galdes (1990)
argues that this principle is fine for a game situation where students may not be highly
motivated. But, is this principle also equally applicable for a system which teaches
students how to deal with life threatening issues? The fact is that the right context for
applying such principles can not be defined without empirical evidence.

2.2.3.2 Approach Based on Rigorous Experimentation. In this

approach a careful experimentation is conducted to build a prescriptive theory of tutoring.
This approach deals with simple hypotheses which when proven yield lists of heuristics
such as “Immediate feedback is better than delayed feedback” (VanLehn, 1993, p. 4).
This is a slow approach but probably the best one in the long run to understand the
process of tutoring (VanLehn, 1993). But, as VanLehn (1993) noted, this approach tends
“not to produce a unified theory of how to tutor, at least not very quickly” (p. 4).

2.2.3.3 Approach Based on Studies of Human Tutors. In this

approach, researchers study human tutors to develop a model/theory of tutoring. | think
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thisis the best approach to develop an ITS. Research has shown that tutoring by humans
isthe best method of educational delivery (Bloom, 1984). Hence basing the design of the
ITS on these empirical studies will increase our chance of building a system that is as
effective as human tutors. Some I TSs that were based upon the study of human tutors are
SCHOLAR (Carbonell, 1970b), WHY (Collins et al., 1975), MENO-Tutor (Woolf &
McDonald, 1985), PROUST (Johnson & Soloway, 1984a), EUROHELP (Breuker, 1990),
and TP (Littman, 1991).

Aswe have seen in Section 2.2.1, at the conceptual level the complex behavior of
the human tutor and the ITS can be decomposed into similar roles/'components using the
multiple expert metaphor. This means that the study of human tutors can be applied
directly to the design of ITS at the conceptual level. Another advantage of studying the
behavior of human tutors is that the integration between the multiple experts of an ITS, a
largely ignored aspect of ITS, can be explored.

2.2.4 How "Expert” Should the Human Tutor Be? Although studying human

tutorsis the best approach to the design of the ITS, one important question one still needs
to ask is: how expert should the human tutor be to participate in the experiment?
Goodyear (1991) states that “the pressing need in the ITS field is not for
knowledge about optimal ways of teaching, but for knowledge about how to do any kind
of teaching” (p. 13). A survey of the literature on tutoring systems indicates that most of
the researchers would agree with Goodyear. The tutors in most of the empirical studies
performed either lacked expertise in the process of tutoring or in the domain knowledge.
Collins et al. (1975) performed an empirical study of human tutoring to improve
the performance of the SCHOLAR system. Four tutors and six students participated in
thisstudy. Collinset al. (1975) reported that the two of the tutors who participated in the
experiment “have extensive teaching experience at the college level, though neither has
taught geography (the domain of SCHOLAR system). The third and fourth tutors each

taught only one session, and did not prepare nearly as extensively as the first two tutors.
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The students were employees at BBN” (p. 54). To develop an ITS for the domain of
introductory computer programming for the Lisp programming language, Anderson et al.
(1985) performed an study of human tutors. McKendree et al. (1984) reported that in this
study five of the tutors were psychology and computer science students “who had prior
experience as teaching assistants or private tutors for Lisp.” The tutors participating in
the Fox (1993) study were graduate students in chemistry, physics, computer science and
mathematics who had all worked as tutors before.

Most of the human tutoring studies reported in the literature, also, do not
explicitly state the level of expertise of their subjects. Admittedly “it is certainly true that
it is very difficult to get universal agreement on the quality of a teaching performance,
even harder to get agreement on the validity of the knowledge on which that performance
may be based” (Goodyear, 1991, p. 13). But, for example, studies performed by Anania
(1983) and Ellson (1976) concluded that tutoring by humans is not always better than
group instruction! Galdes (1990) proposed that the effectiveness of human tutors liesin
the skills they have in the domain and in the process of tutoring. A human tutor lacking
either of these skills will not be able to perform optimally in a tutoring situation
(Anderson, 1988; Breuker, 1988; Fletcher, 1984; Jones et al., 1979). In thelight of these
findings it is imperative that human tutoring studies should explicitly state the level of
expertise of their subjects and the standards by which this expertise are measured. This
will help ITS research move towards a long term goal of making ITS's at least as
effective as the best human tutors.

The literature on studies of differences between novice and expert teachers (e.g.,
Berliner, 1986; Leinhardt & Greeno, 1991) also have shown that expert teachers,
compared to the novices, possess a variety of skills that make the process of teaching
much more effective. Berliner (1986) provided a list of reasons for studying expert
teachers. He further states that “the design of an intelligent tutoring system requires

versatile output. That is, expert tutoring systems need a wide range of instructional
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options to choose from and some decision rules about when to use these options. Expert
teachers are likely to have more of that kind of knowledge than ordinary teachers’ (p. 6).
This section will be incomplete without mentioning some of the problems in
studying human tutors. Berliner (1986) and Galdes (1990) contain a comprehensive
coverage of these issues. | describe them briefly here for the sake of completeness. The
first two problems deal with the methodology used in the observation of human tutors.

) Methods are Not Well-Defined. Galdes (1990) argues that human experts

possess tactical knowledge and since this knowledge can not be easily articulated,
researchers involved in the study need to rely on other methods of getting this knowledge.
According to her, “previous studies of human tutors demonstrated that no standard
methods exist for uncovering this tacit knowledge” (p. 67). Analyses of data obtained
through some methods also vary for two reasons. “First, the analysis method used
depends on which specific variables the researcher wants to study ... Second, the analysis
method varies according to the level of detail desired in the result.” Asaresult each new
study of human tutors needs to develop its own methodol ogy.

II) Methods are Time Consuming. The knowledge acquisition is usually

regarded as the most time consuming process in the design of an Al system (Wielinga et
a., 1987). AnITS, being an Al system, is not an exception here.

[11) No Definite Criteria are Available for the Identification of Expert

Tutors. According to Berliner (1986) there are no definite and objective criteria
available to identify an expert human tutor. This situation exists at all levels of
educational practice.

V) The Confounding of Experience and Expertise. Berliner (1986) states that

Another problem we encountered occurred because mere experience is simply not
believed by most people to correlate highly with expertise in pedagogy. Perhaps
this is because our problems are so ill structured. Perhapsit is due to the lack of
external criteria. But for whatever reasons, the problems of studying expertisein
pedagogy are harder than in some other fields because of the widespread belief
that we need to separate expertise from experience and to study how experience
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changes people without necessarily turning them into experts. Thisis not easy (p.
9.

V) What Knowledge Systems are Used in Pedagogy? According to Berliner

(1986), another problem in studying human teachers is in “understanding what domains
of knowledge are used by expert teachers in accomplishing their tasks” (p. 9). Some
researchers argue that the subject matter knowledge is important. Others argue that the
teacher’s personal knowledge of self is important (e.g., Lampert, 1984). “One scholar
(Elbaz, 1981) has identified dozens of domains of knowledge that are drawn on by
teachers to accomplish their tasks’ (Berliner, 1986, p. 9).

2.3 TheTeacher asa Facilitator for Knowledge | ntegr ation:
The Current Theor etical Standpoint

This section describes the current theoretical standpoints of the teaching
philosophy used in ITS research. This discussion is based upon the ideas of Ohlsson
(1991) who described three theories of teaching that are relevant for ITS research and
“form a sequence, in the sense that each theory is aresponse to an inherent problem in the
preceding theory” (p. 26). These theories are described briefly asfollows.

2.3.1 The Facilitation of Knowledge Transfer. Ohlsson (1991) called the

“facilitation of knowledge transfer” theory as the first-order theory of teaching. This
theory “views teaching as the communication of subject matter” (p. 25) and paints the
traditional view of pedagogy. Although current ITS research does not subscribe to this
point of view, much of the school practice still rests on this theory of pedagogy
(Wheatley, 1991). From this viewpoint ideas and thoughts are communicated in the
sense that meaning is packaged into words and sent to another who unpacks the meaning
from the sentences. Here the learner is like an sponge (Wheatley, 1991). According to
Ohlsson (1991) “this theory of teaching is radically inadequate” (p. 27). A teacher using
this theory needs to make two types of decisions. what to say and how to say it. These

decisions require the teacher to have “a codification of the subject matter, and he or she
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needs to know effective methods for the presentation of each unit of the subject matter”
(Ohlsson, 1991, p. 28).

The first-order theory of teaching “implicitly assumes that the teacher knows the
extent of the student’s previous knowledge” (Ohlsson, 1991, p. 34). Current educational
practice does not rest on individualization of instruction. Also from Lesgold s (1988)
two fundamental laws of instruction we know that “not everyone who passes a test on a
topic knows what appears to have been tested,” and “not everyone who fails atest on a
topic lacks the knowledge that appears to have been tested” (p. 118). It follows that in
order for the teacher to have an accurate estimate of previous knowledge, he or she must
diagnose the knowledge state of the individual student. This requirement givesrise to the
need for the second-order theory of teaching.

2.3.2 The Facilitation of Knowledge Integration. According to Ohlsson

(1991), the second-order theory of teaching says that “to teach is to correct the learner’s
mental representation of the subject matter” (p. 35). According to this theory the learner
possesses some representation of the subject matter but this representation is either
incomplete or incorrect or both. “The job of the teacher is to provide remediation for the
discrepancies between the learner’'s representation and the complete and correct
representation” (Ohlsson, 1991, p. 35). In other words, the goal of teaching is that the
learner ultimately integrates his’her view of the domain into a correct, coherent, and
desired model of the domain. This theory makes up the current view on which amost all
ITS are based (Ohlsson, 1991). The maor theme of this theory is the process of
cognitive diagnosis, which can be described as the process of “inferring what the student
does and does not know on the basis of his or her performance on some diagnostic task”
(Ohlsson, 1991, pp. 34-35).

In accordance with this theory, the instruction generated by the teacher should be
tailored to the knowledge state of the learner. A presentation of the subject matter about

a particular misconception, for example, is not enough because different students need
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different presentations for the same misconception. The problem with this theory is that
“the description of a deviation between the student’ s mental representation of the subject
matter and the correct representation does not entail any conclusion about which tutorial
message might cause the learner to correct that deviation” (Ohlsson, 1991, p. 42).
Ohlsson (1991) concluded that a learning theory can only drive the content of a needed
tutorial message. This conclusion givesriseto the third-order theory of teaching.

2.3.3 The Facilitation of Knowledge Construction. The third-order theory,

according to Ohlsson (1991), paints a future view of teaching theory. According to this
theory, teaching is the process of facilitating knowledge construction. In other words “to
teach is to help the learner improve his or her current world view” (p. 43). This theory,
although most promising, is not yet sufficiently fully developed to help in building ITSs.
Ohlsson (1991) defined productive learning sequences as a sequence of learning events
(e.g., to replace a vague idea with a clearer one, to generalize an idea) which leads to a
better view of the subject matter. “To teach is, in this theory, neither to communicate the
subject matter, nor to remedy cognitive errors, but to arrange situations in which
productive learning sequences are likely to occur” (Ohlsson, 1991, p. 44).

2.3.4 Jigsaw-Puzzle Metaphor . In this section | will elaborate on the second-

order theory of teaching because it is most commonly used in the current generation of
ITSs. The research reported in this proposal is also based on this theoretical standpoint. |
will also introduce the jigsaw-puzzle metaphor to further facilitate the understanding of
thistheory.

The goal of the teacher, in the second-order theory, is to correct the learner’s
mental representation of the subject matter. Here the teacher provides remedia material
so that the discrepancies between the learner's representation and the complete and
correct representation can be removed. The teacher using this theory needs to know how
the subject matter knowledge is encoded in the learner (at some particular moment in

time)? Ohlsson (1991) listed a set of four types of actions that a teacher needs to make:
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(1) “Which subject matter topic is to be taught?’ (2) “How does an expert represent that
topic?’ (3) “Which deficiency does the mental representation of this student suffer from

at thismoment in time?’ and (4) “How can that deficiency be remediated?’
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The activities of the teacher using this theory can be visualized as if he/she is
solving ajigsaw-puzzle (see Figure 2.2). This puzzleis analogous to the learner’ s mental
representation of the subject matter (Figure 2.2 (b)). The puzzle solving process starts
with a partially completed puzzle, representing the learner’ s mental representation at that
point intime. This processis partially guided by the teacher’ s knowledge of the domain
(Figure 2.2 (@)). Thejob of the tutor isto identify (i.e., perform cognitive diagnosis) on
pieces of the puzzle (chunks of knowledge), which are missing or/and correctly and
incorrectly placed.

After this piece by piece identification process, the teacher needs to put all the
pieces together correctly (integrate them into a model of the domain) to complete this
process of puzzle solving. Unlike a person solving ajigsaw puzzle, the teacher in red life
does not have physical access to the student’s mental state of the subject matter
knowledge. He/she can only, using various teaching actions (e.g., asking questions,
providing a summary), help the student integrate his’/her knowledge into a coherent,
correct and desired mental model of the domain. Although second-order teaching theory
is more sophisticated than any metaphor of it can portray, the jigsaw-puzzle metaphor
captures the essential ingredients of this theory. Another reason for introducing the
jigsaw-puzzle metaphor is that it will help me explain, in latter chapters, the tutoring
model developed in this research. | will refer to the second-order theory as the
knowledge integration theory of tutoring.

2.4 Mental Modelsand Their Multiple Conceptualization: Current Wavein
Knowledge Repr esentation for Physical Systems

From the beginning, ITS research has concentrated more on the subject matter
knowledge than other aspects of the teacher’s expertise (Wenger, 1987). According to
the multiple expert metaphor (see section 2.2.1), this knowledge is contained in the
domain expert component of the ITS. Anderson (1988) called this component the
backbone of the ITS. He further states that “a powerful instructional system cannot exist

without a powerful body of domain knowledge” (p. 21). Artificial Intelligence provides a
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number of paradigms to represent this knowledge. In this section we will concentrate on
one paradigm of knowledge representation, one that is currently a principal focus of ITS
research, qualitative representation of mental models for physical systems.

2.4.1 Knowledge Representation Hypothesis vs. Situated Nature of

Knowledge: Al Might be Coming to a Decision Paint. Artificial intelligence systems,

including ITSs, deal with knowledge, hence one major concern of these systems is to
represent knowledge. In fact knowledge representation is one of the oldest and most
active areas of Al research (Brachman & Levesque, 1985; Reichgelt, 1991). Some of the
most popular formalisms of knowledge representation are formal logic-based
representations (Moore, 1985), procedural representations (de Kleer et al., 1985),
production systems (Davis et al., 1985), semantic networks (Brachman, 1985), frame-
based representations (Minsky, 1985), qualitative reasoning (Brown & de Kleer, 1984;
Forbus, 1984; Gentner & Stevens, 1983), and connectionism (Rumelhart et a., 1986).
Besides the many differences between these formalisms, it has been agreed that
they (except connectionism) are based on a methodological assumption that Brian Smith
(1985) has called the knowledge representation hypothesis. This hypothesis states that
Any mechanically embodied intelligent process will be comprised of structural
ingredients that a) we as external observers naturally take to represent a
propositional account of the knowledge that the overall process exhibits, and b)
independent of such external semantical attribution, play aformal but causal and
essential role in engendering the behavior that manifests that knowledge (p. 33).
In other words, any system, whether it be human or artificial, that shows intelligent
behavior, is assumed to contain a knowledge base as a substructure. The knowledge base
is amore or less direct encoding of the knowledge that the system has available. The
knowledge base is manipulated by a separate substructure, which is often called the
inference engine. The inference engine processes the symbols in the knowledge base in

order to generate intelligent behavior.
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The connectionist approach, on the contrary, challenges this hypothesis. This
approach, unlike other approaches that deal with the modeling of mind, model the brain
to capture the intelligent behavior (Rumelhart et al., 1986). Most of the knowledge
representation formalisms used in ITS research are consistent with the knowledge
representation hypothesis.

Is there any relationship between knowledge representation formalisms (or more
generally the knowledge representation hypothesis) and current teaching/tutoring
theories? So far not much attention has been devoted to thisinquiry, but with the current
up coming theories of situated cognition (Brown et al., 1989a; Brown et al., 1989b;
Brown, 1990), | think we in the ITS community sooner or later need to reinvestigate the
fundamental assumptions behind the computational approaches to tutoring.

Most of the Al community, as Brachman & Levesgue (1985) noted, agree that “it
isin the knowledge itself that the power lies’ (p. xv). As a consequence it is believed
that the power of an ITS resides in the detailed explicit knowledge base that represents
the system’ s understanding of the process of tutoring in its domain. This belief promotes
the assumption that knowledge is a “integral, self-sufficient substance, theoretically
independent of the situationsin which it islearned and used” (Brown et al., 1989a, p. 32).
Situated cognition theories reject “the idea that human memory is a place where
representations are stored ... knowledge does not consist of structures that exist
independently in the mind ... knowledge, as a capacity to behave, develops during the
course of interactivity” (Clancey, 1992, pp. 23-24).

Much research investigating situated features of cognition remains to be done
(Brown, 1990) before it can radically challenge and change current educational practices
and the direction of ITS research. Researchers like John Seely Brown, Allan Coallins,
William Clancey, who are also the pioneers of ITS research, are most enthusiastic about

this new approach to the study of cognition and learning (Brown et a., 1989a; Collins et



35

al., 1989; Clancey, 1992). The following paragraph from (Brown, 1990) reflects their

vision of future ITS research.

At present, the ITS community confronts a profound and exciting challenge. Asa
result of our central concern with learning, we find ourselves at the heart of an
emergent epistemology. It is, therefore, members of this community who are
most likely to find themselves uncovering better and much needed, models of the
architecture of cognition, because it is this community that is most closely
coupled to - or situated in - the fully blooded complexity of human learning
activity. Thus, if we meet this challenge correctly, it may well be that, instead of
ITS being merely one subset of the overall schema of Al, we will, instead, find
that it is Al that becomes one subset of the overall schemaof ITS (pp. 280-281).

2.4.2 Qualitative M odels of Physical Systems: Mental Models. A knowledge

representation formalism that is concerned with the cognitive modeling of physical
systems is currently getting greater attention in Al and cognitive psychology (Wenger,
1987). It is thought that the knowledge used in this formalism underlies our ability to
mentally simulate and reason about dynamic processes (Anderson, 1988). The models of
physical systems resulting from a use of this formalism are called mental models or
conceptual models.

As mentioned earlier, the research on mental models interests both the Al and the
cognitive psychology communities. However, the goals of these two communities are
not necessarily the same (Anderson, 1980; Winston, 1984). Asaresult, aterm may mean
different things to different people in these communities. The mgjor goal of this section
is to clarify the different terms used in the context of mental model research before |
review some of the major effortsin this area.

I will use Norman’'s (1983) classification of concepts used in mental model
research. According to Norman we need to distinguish between four different things. (1)
The target system is the system that a person is learning or using. (2) The conceptual
model that is developed to provide an accurate, consistent and complete representation of
the target system. (3) Mental models are “naturally evolving models. That is, through

interaction with a target system, people formulate mental models of that system”
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(Norman, 1983, p. 7). (4) The scientist’s conceptualization of amental model is“amodel
of amodel” (Norman, 1983, p. 8).

In the case of ITS, the target system is the domain with which it is concerned.
“Conceptual models are invented by teachers, designers, scientists, and engineers’
(Norman, 1983, p. 7). Inaway aconceptual model isamodel of amoddl, i.e,, it is based
upon the mental model of the person who designed it. Norman (1983), based upon his
research work, listed a number of observations on mental models. (1) “Mental models
are incomplete.” (2) “People’s abilities to run their models are severely limited.” (3)
“Mental models are unstable.” (4) “Mental models do not have firm boundaries: similar
devices and operations get confused with one another.” (5) “Mental models are
unscientific.” (6) “Mental models are parsimonious. often people do extra physical
operations rather than the mental planning that would allow them to avoid those actions.”
and (7) Mental models are qualitative (Collins, 1985). It is impossible to capture a
mental model of aperson. We only, at best, can get a conceptualization of that model.

Mental models mean different things for different researchers. For example,
Wenger (1987) defined a mental model as “an internal representation of a physical
system used by a person or a program to reason about processes involving that system”
(pp. 45-46). From Norman’s (1983) point of view this definition could correspond to a
mental model, a conceptual model or a conceptualization of a mental model. White &
Frederiksen (1990) defined a mental model as “a knowledge structure that incorporates
both declarative knowledge ... and procedural knowledge ..., and a control structure that
determines how the procedural and declarative knowledge are used in solving problems’
(p. 100). Notice here again, from Norman’s point of view, this definition could refer to a
mental model, conceptual model or conceptualization of a mental model. In fact, most Al
researchers do not distinguish between mental and conceptual models. In this proposal,

while discussing my research work, | will preserve this distinction.
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2.4.3 Mental Models and Their Instructional Significance. Despite the fact

that research on mental models is becoming popular, only a few efforts, to date, have
been geared to explore their application for instructional purposes. This section reviews
some of these efforts.

2.43.1 Learning as Model Tuning. WHY (Collins et a., 1975) is

regarded as a classical system in ITS history. This system deals with causal reasoning in
the domain of meteorology. Research on this system has contributed to our
understanding of many aspects of ITS development, but here | will only concentrate on
its contribution to the research on mental models. In an early version of WHY,
knowledge of the domain was represented in a hierarchy of scripts to capture
stereotypical sequences of events. These fixed sequences were designed to capture both
the temporal and causal relations between events in a way that is easily amenable to
inspection (Stevens et al., 1982). But soon designers of the system realized that this
representation of knowledge is limited to linear relationships between events. “We
believe that representing knowledge about physical processes requires multiple
representational view points ... Our script structures provide one of these ... This
representational viewpoint is important, but equally important is the functional
viewpoint” (Stevenset al., 1982, p. 15). This perspective/viewpoint considers the various
elements involved in domain processes, and their functions in the interactions that give
rise to various events in the domain. Although both viewpoints describe the same
phenomena, their respective emphases are different. Since they highlight different
aspects of processes, they will lead to different presentations of the subject and to the
perception of different misconceptions (Stevens & Collins, 1980).

This project in itslater years became more theoretical (Wenger, 1987). One of the
themes that emerged from this research was that people maintain multiple representations
of the domain or system that they study or interact with. Learning in this scenario is

"largely a process of refining models so that they correspond better with the real world"
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(Stevens & Callins, 1980). A possible list of operations used to refine models is adding,
replacing, deleting, generalizing and differentiating parts of the model (Stevens &
Collins, 1980). Models that people possess are runnable. These models allow us to
consider alternative possibilities and to derive predictions about novel situations.
Students' underlying misconceptions “derive from simplifications or distortions in their
models’ (Stevens & Callins, 1980, p. 183).

Recently a very interesting development has taken place in this line of research.
This development is concerned with the componential view of mental models (Collins,
1985; Collins & Gentner, 1983). There are two important aspects to thisview. First, the
various models people possess are hierarchically organized. These models “support one
another in areductionistic fashion where some relations in one model can be explained in
terms of another, lower-level model” (Wenger, 1987, p. 47). Second, each level of these
hierarchies can be viewed as a combination of component models. A subset of
component models forms a view of the subprocesses of the domain under consideration.

Notice that thisline of research is very consistent with the second-order theory of
tutoring (see section 2.3.2 & 2.3.4). Inlight of thisresearch, the student can be viewed as
possessing a hierarchy of mental models. Each level of this hierarchy contains a number
of component models of the domain. The process of tutoring here can be viewed as
probing the student models at successive deeper levels. Student misconceptions can here
be associated with either missing or faulty component models. The remediation process
by the tutor can then involve strategies specific to the types of component models in
guestion. The jigsaw-puzzle metaphor (see section 2.3.4) can still be used here to explain
the tutor’s task. But here, instead of two dimensions, the tutor is dealing with a three
dimensional puzzle! Each piece of the puzzle is more like a component model of the
domain. Tutoring in this scenario isindeed more difficult but if it is done properly, we

hope, it will be more effective.
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Although the notion of learning as model tuning is a useful idea, it puts a heavy
burden on the diagnostic process. Also, identifying all of the relevant component models
is not an easy task in complex domains. No matter how much effort one puts into
collecting component models of adomain, it is always possible that the student begins a
tutoring session with a domain model that is never seen by the tutor. In such a situation
even a powerful diagnostic method will fall short of fully effective performance.

2.4.3.2 Learning as Modedl Progression: A Developmental Approach.

QUEST (White & Frederiksen, 1990; White & Frederiksen, 1986) is a learning
environment (see section 2.1) and its domain of application is electrical circuits. The goal
of this system is that the student develops runnable models of electrical circuits so as to
be able to predict the status of components and perform a small set of troubleshooting
operations. The theme of thisresearch is to investigate successions of mental models that
correspond to increasing levels of expertise about the principles of the domain. QUEST
views experts as using a set of mental models. The transition from novice to expert is
seen as one of model evolution, in which students progress through a series of upwardly
compatible models, each adequate to solve a particular subset of the problems. The
theory states that the student should be able to progress though a series of models in
learning about the domain. The qualitative, causal models used in this system “serve to
drive circuit simulations, and to generate causal explanations of circuit behavior ... The
central feature of the approach is that, at each stage of learning, the model driving the
computer simulation represents the mental model that the student is to acquire” (pp. 99-
100). The mental models used in QUEST are in actuality the conceptual models
(Norman, 1983) of the domain.

This research also introduced some concepts of the typology of mental models.
The three dimensions that White & Frederiksen (1990) proposed were: perspective, order,
and degree of elaboration. The model perspective represents a lateral progression in the

multi-dimensional space of models. Lateral progression serves to represent alternative
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means of understanding the domain. “The perspective of a model refers to the nature of
the model’ s reasoning in explaining a circuit’s operation” (p. 105). The order of a model
reflects the order of the derivatives that are used to describe changes. In other words,
order relates to whether the model is based on binary values of states (e.g., on/off,
open/close), and properties (e.g., conductive/non-conductive), or based on first-order or
second-order derivatives - zero, first and second order models respectively. Elaboration
is the third dimension in which models can vary. This dimension controls the degree of
constraints to vary the sophistication of model. Expertise in this learning scenario
represent the proper fusion of models of various perspectives, orders, and degrees into a
coherent and global mental model of the domain.

White & Frederiksen (1990; 1986) place less emphasis on diagnostic and remedial
activities. For them it is more important to “refine the progressions of mental models and
associated problems’ (Wenger, 1987, p. 97). Notice that this is just opposite to the
research approach taken by Stevens & Collins (1980). Wenger (1987) has most
appropriately stated an important concern regarding this research effort, as follows

The central question of integration of multiple conceptualizations, mentioned by
White & Frederiksen as a key to deep understanding, is not yet addressed
serioudly - in particular, the issue of the meaning of concepts in electricity in the
context of the student’s model of the world. The conceptual integration almost

inevitably involves an interactive process whereby analogies to existing concepts
are tuned and implicit assumptions exposed (p. 97).

2433 ITSIE: A Learning Environment Based on Multiple M odels.

ITSIE (Intelligent Training Systems in Industrial Environments) is a learning
environment based on multiple qualitative models (Sime & Leitch, 1992). This system
uses ideas from the method of cognitive apprenticeship (Collins et al., 1989) and can be
used in two modes: free exploration or apprenticeship. The authors of this system claim
that the advantage of the approach used in this system “is that it enables the teaching of
multiple models of a physical system, teaching not only the models themselves, but also

their strengths and limitations and how each can serve a different purpose during
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problem-solving” (p. 122). Unlike WHY and QUEST the development of this system
seems not to be driven by an explicit theory.

This research has defined five modeling dimensions. Each model in this systemis
characterized by the position it holds in each of these dimensions. (1) Scope: “it
describes the area of the domain covered by the model.” (2) Generality: “it is the degree
to which it represents generic knowledge.” (3) Abstraction: “it relates to the quality
space used to represent values in the model.” (4) Approximation: “It relates to the
accuracy of the model.” (5) Granularity: “It relates to the level of detail of the model”
(Sime & Leitch, 1992, p. 117).

The models used in this system are conceptual rather than mental models of the
domain. From the examples provided (Sime & Leitch, 1992) it seems that the system
makes use of a primitive model of the student. This system, like WHY and QUEST, uses
multiple models of the domain, but, unlike the research conducted in the context of
WHY, it advocates the use of a simple student modeling capacity.

2.4.3.4 Qualitative Modeling. This section describes, very briefly, two

seminal research efforts on qualitative modeling. These provide very general and
theoretical frameworks that can be used in ITS research for the formation, as well as the
use, of causal models of the domain. It isinteresting to note that both of these research
efforts were motivated by two classical ITS research projects - SOPHIE (Brown et al.,
1982) and STEAMER (Stevens & Raoberts, 1983).

SOPHIE is regarded as a classical ITS. The domain of this project is the
troubleshooting of electric circuits. This project went through three successive phases.
SOPHIE-I (Brown et a., 1982) is areactive learning environment. SOPHIE-II (Brown et
a., 1982) is an articulated expert system that provides qualitative explanations of
meaningful measurements and decisions. Although SOPHIE-II provides multiple
gualitative explanations, it, like SOPHIE-I, is based upon a general-purpose electronic

simulator called SPICE, which is qualitative. Experiments carried out using SOPHIE-I11



42

revealed that both novices and experts preferred to reason in qualitative and causal terms.
SOPHIE-III (Brown at a., 1982) employed human-like reasoning. Further work on this
project by de Kleer and Brown (1983) led to a principled framework to represent and use
gualitative, causal models of physical systems. This modeling process is used in a
computer program ENVISION. Wenger (1987) noted that: “In contrast with most
psychological approaches ... (de Kleer & Brown’'s work) does not attempt to capture the
way people in general use mental models; rather, it aims to formalize the informal,
gualitative reasoning of experts with a language and calculus for constructing causal
models’ (p. 74). Recently this work has led to a proposal for a qualitative physics that
can be used as an alternative to mathematically-based physics in certain applications
(Brown & de Kleer, 1984).

STEAMER (Stevens & Roberts, 1983) attempts to teach a qualitative appreciation
of a complex system - the steam propulsion plant of a ship - through an interactive
inspectable simulation based on a mathematical model. Multiple levels of graphical
abstractions are used to convey different degrees of conceptual fidelity. Like SOPHIE,
STEAMER has also inspired research into qualitative reasoning and explanation, leading
to the formulation of qualitative process theory (Forbus, 1984). Forbus investigated the
way people think about physical processes and this resulted in an attempt to encode
causality as perceived by people in general - a form of naive physics. With respect to
knowledge representation, SOPHIE and STEAMER led to the formation of two
complementary approaches: one based upon physical systems and their components, and
the other based upon physical processes.

2435 ABEL: Multiple Representation of Medical Knowledge. This

section describes a medical expert system in which domain knowledge is represented at
multiple levels. Although this system is not used for instructional purposes, its
knowledge representation scheme presents an interesting case, which could be utilized in

an ITS design.
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ABEL is a medical expert system that provides expert consultation in cases of
electrolyte and acid-base disturbances (Patel et al., 1984; Patel, 1988). The causal
knowledge of ABEL is organized in a multi-level representation. Patel argues that a
physician’s knowledge is expressed at various levels of detail. These levels are classified
as clinical, intermediate and pathophysiological. At the shallowest level the causal
knowledge of ABEL is expressed in terms of diseases and their clinically observable
manifestations. At the deepest level this knowledge includes detailed biochemical and
pathophysiology mechanisms. The intermediate and pathophysiological levels are
successive elaborations of information at the clinical level.

The notion of elaboration used in ABEL is very important from a pedagogical
standpoint. In fact the elaboration of domain knowledge forms a major theme of my
research reported in this proposal.

2.5 Pedagogy: Issuesfor Intelligent Tutoring Systems

One of the experts in the multiple expert metaphor (see Section 2.2.1) deals with
the pedagogical issues (e.g., curriculum, instruction) involved in the working of an ITS.
This expert, called the pedagogy expert, is the theme of this section. This expert contains
a theory of tutoring. In other words it has a set of specifications of what instructional
material the system should present and how and when it should present it. As Wenger
(1987) noted, the idea of representing pedagogical knowledge explicitly in an ITS is
relatively recent. Researchers have paid more attention to the representation of subject

matter than to pedagogical knowledge.

2.5.1 Curriculum and Instruction: The Corelssues. All instructiona systems
(including 1TSs) deal with two major issues: curriculum and instruction. Halff (1988)
says that the problem of curriculum can be broken into two problems: "formulating a
representation of the material, and selecting and sequencing particular concepts from that
representation” (p. 81), whereas the problem of instruction deals with the actual

presentation of the selected concepts to the student.
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Halff (1988) defines these terms in the context of ITSs. Instructional designers
(Romiszowski, 1981, 1984) define these terms dlightly differently. For example, Popham
& Baker (1970b) define the curricular question as dealing with the ends: "an educator
who is involved with curricular questions is exclusively concerned with determining the
objectives of the educational system” (p. 82), whereas the instructional question deals
with the means, i.e., "the procedures for accomplishing those objectives’ (p. 82).

The word curriculum itself is used by authors rather more freely. For example,
according to Wenger (1987) "a curriculum is quite clearly a plan” (p. 397), while for
Imbeau et al. (1988) and Romiszowski (1981, 1984) the word curriculum means the
subject matter, organized into structures of different shapes (e.g., linear, pyramidal,
spiral).

Since the topic of this section concerns both ITS developers and instructional
designers and these two communities do not necessarily use the same vocabulary for
these concepts (Park et al., 1987), | will explain the differences in terminology as this
section proceeds.

The representation of the subject matter (knowledge representation in the ITS
jargon) is one of the most important issues involved in curriculum because its structure is
supposed to support the selection, sequencing, and presentation issues of pedagogical
activity. Inthe ITSfield, the problem of the representation of subject matter belongs to
the domain expert and selection, sequencing, and presentation of the subject matter are
the responsibilities of the pedagogy expert. This separation of curriculum issues in an
ITS, athough it supports the modularity hypothesis (Halff, 1988), is, in fact, a mixed
blessing (see Section 2.2.1).

2.5.2 |nstructional System Design (1SD). The field of instructional system

design has a long history as a discipline that is concerned with understanding and
improving one aspect of education: the process of instruction (Reigeluth, 1983b). The

field of ITSisrelatively new and it would not be wise to omit the exploration of I1SD asa
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source of ideas for the design of the pedagogy expert in an ITS. In this section | will
briefly discuss some of the major issues of 1SD and their relevance to I TS research.

There are many viewpoints of 1SD (Gagne & Briggs, 1979; Pirolli & Greeno,
1988; Reigeluth, 1983a; Reigeluth, 1987). In this section | will mainly be describing the
viewpoint proposed by Romiszowski (1981, 1984). According to Romiszowski (1981),
ISD is athree phase process. In the first phase precise and useful objectives (also called
goals or aims) of the instructional system are established. Notice that this phase is
concerned with the first problem of curriculum - subject matter representation. The
second phase is concerned with planning viable routes to achieve already established
objectives. Notice that this phase is concerned with the selection, sequencing, and even
presentation problems of curriculum and instruction (see Section 2.5.1). The third phase
is concerned with the testing of already planned routes to the established objectives. In
other words I1SD is concerned with “analysis, synthesis, and evaluation” (Romiszowski,
1981, p. 4) phases. Romiszowski (1981) has further divided each of these phases into
four layers to make this design process more modular.

Here | will focus on one aspect of the analysis phase - developing objectives for
an instructional system. This phase is analogous to the knowledge analysis (or
acquisition) in ITS. The purpose of this section is not to revisit the issue of knowledge
representation (see Section 2.4) but to show the interdependence between domain
expertise and pedagogy expertise.

It should be noted that all four levels of the analysis phase are mainly concerned
with the development of objectives for an instructional system (Romiszowski, 1981). If
we equate the process of collecting objectives with knowledge acquisition in ITS, it isnot
surprising that ITS developers also spend more time on the knowledge acquisition and
representation phase than any other aspects of the system and emphasize these problems

more (Anderson, 1988).
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Words like goals, aims, and purposes are sometimes used synonymously with
objectives (or educational objectives). But according to Romiszowski (1981) unlike the
other terms, an educational objective, “is a precise statement of intent” (p. 43). He
further states that

An aim may be stated in input terms (e.g., to teach history), or process terms (e.g.,
to solve maths problems). An objective is aways stated in output (or product)
terms. It is also stated more precisely. For example, the am “to solve maths
problems” would transform into an objective (or rather a set of objectives) thus:

(1) Given maths problems of the following types (specify). (2) The students
should solve them. (3) To the following standard of speed and accuracy (specify)

(p. 43).
This definition of an educational objective isin the behaviorist tradition. Inthe ITSfield
the word goal is more popular (Lesgold, 1988). Also it is not necessarily restricted to
output or product terms. The objectives of an instructional system form ahierarchy. This
hierarchy has more commonly the following levels: course objectives, unit objectives,
lesson objectives, and exercise objectives.

Two more popularly used methods of developing educational objectives are task
analysis and topic (or subject matter) analysis (Gagne & Briggs, 1979; Pirolli & Greeno,
1988; Romiszowski, 1981).

According to Romiszowski (1981) “atask is a coherent set of activities (steps,
operations, or behavior elements) which leads to a measurable end result. The steps of a
task are therefore interrelated” (p. 83). The task analysis procedure breaks down the
target task into its components (or steps). This procedure also yields an operational
sequence (which may or may not be the best instructional sequence). The steps of the
task are then converted into intermediate objectives. Gagne & Briggs (1979) have
developed a special kind of task analysis method called the learning-task analysis. This
method yields learning hierarchies. A learning hierarchy represents an intellectual skill
(Aronson & Briggs, 1983) in a graphical form. In alearning hierarchy the target skill is

at the top and below it are all the essential prerequisites (called learning prerequisites).
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Essential prerequisites are those subordinate skills that must have been previously learned
to enable the learner to reach the target objective. A learning hierarchy provides a guide
for planning the sequence in which the objectives should be achieved. Even though the
task analysis that resultsin constructing a learning hierarchy proceeds from the top down,
the instruction is sequenced from the bottom up.

Another method of generating objectives for an instructional system is based on
subject matter analysis. This method is concerned with the structure of concepts and
principlesin the subject matter domain rather than with the behaviors that are involved in
the performance of atask. According to Romiszowski (1981) a subject matter “is made
up of acoherent set of elements (or teaching points or rules) which are interrelated into a
sequence or a structure (a complex set of interrelationships which are not perhaps
sequentially structured)” (p. 85). Usually the subject matter experts perform this task of
analyzing the domain. Instead of exploiting the natural relationships of the domain,
sometimes the theoretical arguments are used to structure the contents of the domain
(e.g., the elaboration theory (Reigeluth & Stein, 1983) suggests the structuring of the
subject matter based on the elaboration sequences). As Romiszowski (1981) noted,
transforming elements of a subject matter into performance objectives is not always an
easy job. One solution to this problem is to use a taxonomy of educational objectives.
One such taxonomy, quite popularly used in cognitive domains, was developed by Bloom
(1956).

The type of course influences the relationship between the objectives. “This
relationship may be a strict sequential dependence, one objective being impossible to
achieve until another has been learned or it may be a thematic relationship of a looser
character (for example some objectives cohere because they deal with the same general
topic)” (Romiszowski, 1981, p. 281). The objectives for an educational activity form a

structure that is more popularly called the curriculum structure. Some of the curriculum
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structures based upon the type of course are linear, spiral, core, pyramidal, project
centered and inquiry centered (Romiszowski, 1981).

The question of sequencing the curriculum for an instructional system is handled
more explicitly in the design phase. There are many influencing factors that determine
the sequence decisions for the course being planned. Some of these are: the type of
instructional course, the general philosophical or theoretical viewpoint regarding the
nature of learning and instructional processes. For example, Anderson et al.’s (1990)
tutoring systems use amodel tracing methodology, which helps in the topic selection and
sequencing decisions. This methodology is based on the ACT* learning theory.

Romiszowski (1981) listed a set of general purpose methods which are also used
to sequence instruction for a course. These are explained briefly as follows. (1) From
simple to complex: here, subject matters entities that are smple to learn should be taught
first. (2) From known to unknown: “implying that learning should be so planned as
always to commence from a concept or procedure that the learner has already mastered
and expanding his activities by carefully building on his base” (p. 291). (3) From
particular to general: “implying that general principles should be introduced by means of
examplesfirst.” (p. 291). (4) From concrete to abstract: in one sense it is the same as the
rule of particular to general but “also being taken in the sense implied by the viewpoints
of Piaget, Bruner and their followers ..., concerning the learning cycle of concrete
experiences followed by analysis followed by generalization in abstract terms and then
back to more concrete experiences’ (p. 291).

2.5.3 Elaboration Theory of Instruction: The “Zoom Lens’ Metaphor.

Besides general heuristics, based on experience, for the design of the instructional
system, researchers have also developed formal theories that can be used to develop an
instructional system. In this section | will discuss the elaboration theory of instruction
(Reigeluth & Stein, 1983). The purpose of this section istwo-fold. First, it will give the

reader a flavor of the theoretical work in the field of instructional design. Second, and
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more important, the elaboration theory has an interesting parallel with the model of
tutoring | am proposing.

A theory, in the instructional design field, does not necessarily covers all of the
aspects of the instructional design process (Reigeluth, 1983b; Landa, 1983). Reigeluth &
Merrill (1979) have proposed a framework for instructional design (see Pirolli & Greeno
(1988) for another example of such a framework). Based on this framework, the
elaboration theory is a macro level theory of instruction. At the macro level, a theory
deals with representation, sequencing, and selection of a number of topics (objectives,
goals, or issues). Using Halff’'s (1988) terminology (see section 2.5.1) the elaboration
theory deals with the curriculum rather than the instructional issues. An example of a
theory which deals at the micro level (i.e., concerned with the instructional issues) is
Merrill’s (1983) component display theory. A comprehensive coverage of the elaboration
theory can be found in (Reigeluth & Stein, 1983; Reigeluth et al., 1980). Here | will
discuss, very briefly, afew of its key themes.

The elaboration theory is comprised of three models of instruction and a system
for prescribing these models in accordance with the goals and purposes of a course.
These three models are based on the major type of knowledge used in the course. These
models are: the conceptually organized model, the procedurally organized model, and the
theoretically organized model.

According to Reigeluth & Stein (1983) “studying a subject matter through the
elaboration model is similar in many respects to studying a picture through a zoom lens
on amovie camera’ (p. 340). A person starts with awide-angle view that allows him/her
to see the complete picture and its parts but without details. Then the person using the
lens zooms in to see more details of the parts of the picture. In this metaphor, Reigeluth
& Stein (1983) assumes that “instead of being continuous, the zoom operates in steps or
discrete levels” (p. 340). After studying a part of the picture the person can zoom out

again to the wide angle view to see other parts of the picture and analyze the context of
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the inspected parts with the whole picture. The person can continue the zooming in and
zooming out operation at several levels and parts of the picture to analyze the picture at
sufficient depth.
In asimilar way, the Elaboration theory of instruction starts the instruction with a
special kind of overview of the simplest and most fundamental ideas within the
subject matter; it adds a certain amount of complexity or detail to one part or
aspect of the overview; it reviews the overview and shows the relationships
between the most recent ideas and the ideas presented earlier; and it continues this
pattern of elaboration followed by summary and synthesis until the desired level
of complexity has been reached on all desired parts or aspects of the subject
matter (Reigeluth & Stein, 1983, p. 341).

The key of the elaboration theory’s simple-to-complex sequence is that it helps to
ensure that the student is always aware of the context and importance of the different
ideas that are being taught. This sequence, as Reigeluth & Stein (1983) states, is an
extension of Ausubel’s (1968) subsumptive sequencing, Bruner’s (1966) spiral
curriculum, and Norman’s (1973) web-learning. Other characteristics of the elaboration
theory’s simple-to-complex sequence, as Reigeluth & Stein (1983) claims, are that it
helps to build stable cognitive structures and “provides meaningful application-level

learning from the very first lesson” (p. 337).

2.5.4 Implications of ISD for ITS Research. Relativeto I1SD, ITSresearchisa

new field of study. Both of these fields have many similar interests. Asaresult, one can
expect that research in one of these fields will also contribute to the other. Several
researchers have already started to attempt to combine these fields into a unified
framework (e.g., see Pirolli & Greeno, 1988). In this section | will be mainly concerned
with aone sided view, theimplications of 1SD for ITS.

Halff (1988) noted that most instructional research istangentially relevant to ITS,
“either because it addresses other forms of instruction or is simply not sufficiently
oriented to design to be of direct help” (p. 97). Galdes (1990) has also shown similar
concerns. But ISD, which is a branch of instructional research, is a mixed blessing for

ITS (Halff, 1988).
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There are two major advantages of ISD research for ITS. First, ISD offers a
framework for the comprehensive treatment of instructional design. ITS lags badly in
this area, maybe because it is still in an exploratory phase of research (Galdes, 1990). As
Halff (1988) noted “the chances of finding an intelligent tutor that meets the needs of a
randomly chosen application are quite small indeed. By contrast, ISD offers a top-down
approach that covers a large area of the instructional waterfront” (p. 98). Second, ISD
proposes a comprehensive decomposition of the design process. The ITS design process
overlaps greatly with ISD but it is not sufficiently comprehensive. In other words, many
ITS skip the system viewpoint (see section 1.5.2). Maybe thisis one of the reasons that
the majority of ITSsare still not apart of real educational settings.

There are a'so two major reasons why ISD research is not of much use for ITS (at
least directly). First, although 1SD provides prescriptions for a wide variety of
instructional settings, it does not much emphasize tutoria situations (Halff, 1988; Galdes,
1990). “Tutoring, after all, is an expensive and uncommon instructional method, and for
this reason alone may have failed to capture the attention of the ISD community” (Halff,
1988, p. 99). It is probably evident from Section 2.5.2 that almost all 1SD theories and
models prescribe methods for instructional situations (e.g., lecturing) that are less
dynamic than tutoring. In these instructional situations both curriculum and instruction
can be developed prior to delivery. “Tutoring systems afford no such luxury because a
tutor, human or machine, is bound to tailor the selection, sequencing, and methods of
delivering instruction to meet the ever-changing needs of individual students’ (Halff,
1988, p. 80). Second, most 1SD theories and models are meant to be used by the
instructional designers. These lack the specificity necessary for formalization and
programming on a computer (Breuker, 1988; Halff, 1988; Galdes, 1990).

All in al, it is appropriate to encourage efforts to shorten the gap between these
two fields so that each one can benefit from the other. The following sections will show

many direct or indirect influences of 1SD on the development of ITSs.
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255 View of Expertise: A Curriculum or A Model? In the previous section

we have seen that 1SD concentrates on the issues of objectives (goals or aims). The two
most popularly used methods of collecting and structuring objectives for a course are task
analysis and subject-matter (or topic) analysis. These methods can also be called
knowledge structuring methods (Park et al., 1987). The task analysis method is more
natural for courses that concentrate on tasks (cognitive or psychomotor). Subject matter
analysisis more natural for courses that are a primary source of instruction for a subject
matter area. Most of the coursesin current educational systemsfall in this category. The
distinction | have made here is not strictly followed by instructional designers. For an
example of the task analysis approach to topic analysis see Romiszowski (1981).

In the ITS field knowledge structuring techniques are more popularly called
knowledge representation methods (Park et al., 1987). Most of the research has
concentrated on the problem-solving domains (Wenger, 1987; Galdes, 1990). Here more
emphasis is being placed on developing cognitive models of expertise for problem-
solving tasks. Reigeluth & Stein (1983) called this an information-processing approach
to task analysis. These models are different in two respects from the knowledge
structures resulting from the task analysis methods of ISD. First, these models are
runnable to yield a simulation of the expert behavior. Second, these models emphasize
the order in which tasks must be performed as opposed to the order in which they must be
learned (Reigeluth & Stein, 1983).

Only afew ITS built to date have emphasized basing their architectures purely
around subject-matter organization. These ITS use methods of developing knowledge
structures that are analogous to the methods of subject-matter analysis that are popular in
ISD. According to Wenger (1987) these I TSs emphasize a curriculum view of domain
expertise as opposed to amodel view of expertise. For the sake of clarity | will call these

two opposing types of ITS curriculum-based ITS, e.g., BIP (Barr et a., 1976), WUSOR
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(Goldstein, 1982), MHO (Lesgold et al., 1989) and model-based ITS, e.g., LISP Tutor
(Anderson et al., 1990), QUEST ( White & Frederiksen, 1990).

| have already described some model-based ITS in Section 2.4. In the next few
sections | will describe some of the seminal ITS that emphasize the curriculum view of
ITS. Thisline of research is currently proposing an integral view of these two opposing
perspectives of ITS (Wenger, 1987).

25.6 BIP: An Early Curriculum-Based ITS. BIP (Basic Instructional

Program) is one of the pioneering ITS that introduced the notion of curriculum-based
ITS. The domain of thisITS isintroductory programming in BASIC (Barr et al., 1976).
BIP-I represents its knowledge in a network, called the curriculum information network.
This network has three layers called techniques, skills, and tasks. Techniques are at the
top of network and represent the issues of expertise in the BASIC programming language
(e.g., output single value). These techniques are composed of lower-level knowledge
units called skills (e.g., print numeric variable). Thelast layer contains tasks that exercise
the skills of the network (e.g., Task Horse - write a program that prints the string
“HORSE”). Techniquesin the first layer are ordered using prerequisite relations.

BIP-1 uses a problem-selection method based on a fairly straight forward
optimization process. This method first constructs a set of skills to be exercised. Then
another set is constructed to contain the skills that are sufficiently mastered. Finally, a
task has been searched that exercises the greatest number of skills in the required set.
Here the emphasis has been on finding atask that is not beyond the student’ s reach.

BIP-11 (Wescourt et a., 1977) augments the curriculum information network in an
important way. Here the skill level is greatly expanded and a number of domain
independent relationships are introduced between the nodes of this level. The generic
relationships representing the pedagogy information used are: analogical relations, class-

object relations, functional dependencies and relative difficulty (Wescourt et al., 1977).
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The nodes of the skill layer in BIP-11 have aso been changed to the primitive elements of
the domain (e.g., control structure, if-then constructs).

One of the major criticism of BIP (and for a curriculum-based ITS in general) is
that, unlike a model-based ITS, it does not have an operational model of expertise. Asa
result BIP' s diagnostic capabilities and its usefulness as an active programming tutor are
limited. Once a program has been completed, “BIP ssimply testsit on a set of input/output
pairs without any analysis of the algorithm” (Wenger, 1987, p. 111).

2.5.7 WUSOR: Superimposing an Instructional Curriculum Network on an

Operational Model of Expertise. WUSOR (Goldstein, 1982) provides a coaching
environment for the computer game WUMPUS. This project concentrates more on the
knowledge representation issues, with an attempt to include domain independent
relationships in its domain knowledge in such a way that they help in pedagogical
decision making. WUSOR s the first attempt to combine the curriculum-based and
model-based features of ITS in asingle architecture. Three versions of this system was
developed, namely WUSOR-I, WUSOR-I1, and WUSOR-111 (Goldstein, 1982).

WUSOR-I is an expert-based coach. The domain knowledge in the expert is
organized as production rules. This version does not have any tutorial strategies. Asa
result it always interrupts student when he/she is not making optima move according to
the expert’ s classification.

WUSOR-II used a detailed student model to improve the pedagogical
effectiveness of the system. Research on this version formalized the “overlay theory of
student modeling, which has become a standard paradigm in ITS” (Wenger, 1987, p.
137).

WUSOR-I11 introduced the notion of genetic graph (Goldstein, 1982). The nodes
of this graph represent the elementary sub-skills (i.e., individual rules). These nodes are
connected by evolutionary relations such as generalization/specialization, analogy,

deviation/correction, simplification/refinement. “The word genetic refers to Piaget’s
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notion of genetic epistemology because this representation attempts to capture the
evolutionary nature of knowledge” (Wenger, 1987, p. 141).

The genetic graph provides two major features which help in the system’s
pedagogical decision making process. First, it facilitates the process of topic collection
based upon the current context of the system. Second, it supports generation of multiple
explanations based upon the evolutionary relations between its nodes. Goldstein (1982)
argues that an I TS that represents expertise only using domain dependent relationshipsis
not as powerful as a system employing a generic graph like representation; they fail to
take advantage of the fact that the new knowledge of the learner evolves from old
knowledge by processes like analogy, generalization, debugging and refinement.
Goldstein (1982) noted that a genetic graph despite its many advantages does not solve
the tutoring problem. Furthermore, creating a static graph, like a genetic graph is not
easy for a complex domain. Although WUSOR-III is the first attempt to bring the
curriculum-based and model-based themes together, its solution is not elegant in the
sense that a more fundamental, and theoretically based formalism is needed.

25.8 Towardsa Theory of Curriculum: An Attempt to Unite Curriculum-

Based and M odel-Based Themes of ITS. We now know that domain expertise alone is

not enough to effectively perform pedagogical tasks (Lesgold et al., 1989; Anderson,
1988; Breuker 1988). Tutoring requires both domain and pedagogy expertise. Pedagogy
expertise uses domain knowledge. Pure expert models of the domain usually lack the
knowledge that guides the pedagogy expertise. Lesgold et al. (1989) define the
curriculum knowledge as “the specification of the goal structure that guides the teaching
of abody of expertise” (p. 342). Educational researchers, including ITS developers, often
treat the domain expertise and curriculum (curriculum goals) as the same. Lesgold et al.
(1989) further states that
They (instructional system designers) assume that expertise can be split apart

easily “at its joints’ (to use Plato’s phrase) and that curriculum is a natural
hierarchy of goals and subgoals to teach the natural units of expertise. There
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appear, however, to be many different plans for splitting apart expertise especially
when it involves complex performances (p. 342).
As we have seen, WUSOR was the first system that made an attempt to superimpose an
information curriculum network on an operational model of expertise. But again it
equated each unit of domain expertise with a pedagogy unit in the information curriculum
network.

Lesgold (1988) proposed a framework for knowledge representation in an
instructional system. The characteristic of this framework is that it treats metacognitive
skills, curriculum, and domain knowledge separately. The topmost layer of this
framework contains metacognitive issues such as reading ability, verbal facility, speed of
learning. Lesgold (1988) argues that, like good tutors, an instructional system should
tailor the curriculum knowledge to the aptitudes of the student. Meta issues are directly
related in this framework with the curriculum goals that constitute the second layer. He
called this layer the curriculum layer or goal lattice layer. The contents of this layer
comprised of hierarchy of goals. This structure is similar to the Gagne & Briggs (1979)
notion of learning hierarchy. In an important way this layer differs from learning
hierarchiesin that it considers the notion of multiple views of the curriculum. According
to Lesgold (1988), in some domains, it is possible to view the curriculum through
different perspectives. For example, a basic resistor network course can be viewed
through four different perspectives: circuit types, electric laws, electric concepts, and
problem types. Based upon the student’s aptitude one can select an appropriate
viewpoint for instruction. Notice the similarity of concept of the curriculum viewpoint
with the notion of multiple mental models. The third layer is the knowledge layer. This
layer contains the domain knowledge that the system intended to teach. “One way to
think about that knowledge isthat it is a model of expert capability in the domain. Such

knowledge includes both procedures and concepts (i.e., both procedural and declarative



57

knowledge)” (Lesgold, 1988, p. 121). Goals and subgoals in the curriculum layer point
to the issues or chunks of knowledge in the knowledge layer.

This framework has contributed in many ways towards formalizing a conceptual
model for an instructional system. First, it made explicit the usually hidden type of
knowledge in ITS research - the knowledge of the curriculum (or goals). Second,
curriculum and domain knowledge are elegantly organized into separate layers. Each
type of knowledge involves different issues but these now are local to their respective
layers. Thisframework emphasizes modularization - an important issue in I TS research.
Third, it emphasizes the utility of a mostly forgotten aspect of human tutors - their
metacognitive skills. Fourth, since this framework separates curriculum from domain
knowledge, it naturally supports the integration of the curriculum-based and model-based
themesof ITS.

Despite all of these advantages this framework has the following shortcomings.
First, despite its effort to combine the two themes of ITS, it still emphasizes the
curriculum-based aspect of ITS design. Second, the organization of the goal lattice in the
curriculum layer supports systems that act as a primary source of instruction for their
users. Third, the goal lattice supports declarative orientation of the subject matter. Asa
result the system using this framework supports learning of domain concepts and
principles more than complex models of the domain. Fourth, Lesgold suggested only the
overlay approach to student modeling with this framework. Research (e.g., see VanLehn,
1988) has shown that thisis only one approach to student modeling.

Admittedly, Lesgold’s framework has advanced the field of ITS considerably, but
the true dream of weaving curriculum-based and model-based themes is not yet fully
achieved.

2.5.9 Sdlection and Sequencing Decisions: General Principles. In the

previous sections | have concentrated on the issues of knowledge/curriculum

representation. These issues alone do not solve the problem of pedagogy (Goldstein,



58

1982). Prescriptions for the selection and sequencing of the material for tutoring are
usually based upon some theory of tutoring (Collins & Stevens, 1991; Galdes, 1990).
Each theory’s prescriptions are based on its underlying philosophical standpoint. For
example Collins & Stevens's (1991) theory is based on the discovery principle of
learning. The two theories do not necessarily agree on the same philosophical
standpoints, but there are some general principles that are usually accepted by the
majority of the camps in the field of education. Halff (1988) described four such
principles that help selection and sequencing decisions for active machine tutors. (1)
Relatedness. concepts (or topics) that are closely related to current knowledge of the
student are given priority. (2) Manageability: “every exercise should be solvable and
every example should be comprehensible to students who have completed the previous
part of the curriculum” (p. 85). (3) Structural transparency: the sequence of exercise and
examples should be organized in such a way that they make explicit the structure of the
knowledge being taught. This hopefully will help the student to induce the target
knowledge. (4) Individualization: “exercises and examples should be chosen to fit the
pattern of skill and weaknesses that characterizes the student at the time the exercise or
exampleis chosen” (p. 87).

A number of (topic) sequencing principles have been used in different ITS
(Wenger, 1987). For example WUSOR-II (Goldstein, 1982) and Anderson’s tutors
(Anderson et al., 1990) use the simple to complex principle, i.e., simple concepts (or
topics) are given priority over the complex ones. BIP (Barr et a., 1976) and WUSOR-II|
(Goldstein, 1982) use the prerequisite first principle, i.e., the topic selection mechanism
in these systems, using prerequisite and other genetic relations, give priority to the topics
that are prerequisites for the current lesson. SCHOLAR (Carbonell, 1970b) uses the
important first principle, i.e., here important topics are given the priority. WHY (Collins

et a., 1975) usesthelogical structure of the domain to drive its sequencing mechanism.
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2.5.10 Pedagogy as Problem Solving: An ITS Needs a Planning M echanism.

Empirical studies of human tutors revealed several facts. For example, tutors are guided
by an overall goal structure (Collins & Stevens, 1982) that has multiple levels (Woolf &
McDonald, 1985). Some of these goals are related to global issues such as topic selection
methods (Collins et al., 1975). Others address local issues such as responding to the
student’s last action (Collins et al., 1975; Woolf & McDonald, 1985). Each goa can be
achieved by one or more tutoring strategies (Woolf & McDonald, 1985). Expert tutors
possess a method of selecting among the possible strategies to accomplish a given goal
(Leinhardt & Greeno, 1986). Each strategy determines a set of tactics that constitute the
tutor’ s actions in a tutoring situation (Ohlsson, 1987).

The above facts form the basis of a view of tutoring. Ohlsson (1987) called this
the problem solving view of tutoring. The major ingredients of thisview, asis clear from
the discussion above, are goals, strategies and tactics. Ohlsson (1987) claims that “the
availability of a variety of local tactics, and of global strategies that organize the use of
these tactics, is the ultimate determinant of a tutoring system’s adaptability” (Wenger,
1987, p. 402). Notice that the type of problem solving Ohlsson is talking about is
planning, also called instructional planning (Macmillan et al., 1988). He aso conjectures
that “a tutor needs to be able to generate a teaching plan on the basis of its representation
of the student, its knowledge of the subject matter, and its current tutorial goal;
furthermore, it should be able to revise its plan if it discovers that the plan does not fit the
student” (Ohlsson, 1987, p. 232). He called this conjecture “The principle of teaching
plan.” According to this principle, the plan generation process uses strategies to generate
plans for the goals of the tutoring system. The terminal ingredient of these plans are
tactics that represent the tutor’s actions (e.g., ask question, give summary). Strategies, in
this view of tutoring, determine the methods for the classical problems of pedagogy (i.e.,
selection, sequencing, and presentation of the subject matter). One of the biggest

advantage of the problem solving (more specifically planning) view of tutoring is that it
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provides a “design hypothesis’ (Ohlsson, 1987) for ITSs. The following sections
describe a number of 1TSs that based their design on this hypothesis.
2.5.11 Pedagogical Styles. Plan-Based. Opportunistic or Embedded

Contexts? Before | discuss various planning mechanisms used by ITS researchers, it is
important to clarify the frequently talked about issue of pedagogy styles (Peachey &
McCalla, 1986; Wenger, 1987; Derry et a., 1988; Murray, 1988b).

Teaching is goal oriented. Its attainment of these goals is based upon the
pedagogical style used. Thereisa continuum of pedagogical styles available in the field
of instruction. At one end of this continuum lies the plan-based approach that achieves
these goals via an instructional planning activity. At the other end of this continuum lies
the opportunistic method, which relies on the recognition of opportunities during tutorial
interaction. At the center of this continuum lies a method that combines plan-based and
opportunistic views. Based on empirical research, it is now recognized that this
intermediate style is best in attaining teaching goals (Wenger, 1987; Derry et a., 1988;
Woo et al., 1991).

In a plan-based context, “the tutor manipulates the sequences of experiences
through which the student is expected to acquire the target expertise” (Wenger, 1987, p.
399). Here pedagogical goals predominate, whereas the student’s behavior is of less
importance. Most of the instructional systems, designed using the ISD methodology, fall
into this category of pedagogical style.

On the contrary, in the opportunistic context, the tutor “takes advantage of
teaching opportunities that arise in the context of some activity or dialogue in which the
student is engaged” (Wenger, 1987, p. 398). Most of the ITS build to date use this
pedagogy style (Wenger, 1987; Peachey & McCalla, 1986; Derry et al., 1988). In these
systems teaching opportunities are detected via diagnostic information and planning is
locally focused on these opportunities. As Wenger (1987) noted, this pedagogy style is

well suited to systems that emphasize problem-based guidance or coaching methods,
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“especidly if the tutored activities complement other kinds of teaching such as formal
instruction” (p. 399).

There are two possible ways of combining these two extreme pedagogy styles.
The first one, which is not very popular, combines a global opportunistic strategy with
local plan-based control. The second possibility, which is also more popular, combines a
global plan-based style with local opportunistic control. One reason for the recent
popularity of these mixed styles in ITS research is that this mix has been observed in
empirical studies of human tutors (Collins & Stevens, 1982; Woolf & McDonald, 1985;
Wenger, 1987; Galdes, 1990).

2.5.12 Levels of Tutorial Planning Decisions. It is common for instructional

designers to divide the curriculum (composed of goals or objectives of the course under
development) into a hierarchy. As mentioned in Section 2.5.2, common levels of this
hierarchy are the course, unit, lesson, and exercise. A human tutor using these levels
needs to perform decision making at all of these levels.

Murray (1988b) distinguishes three levels of instructional planning for machine
tutors. (1) Curriculum planning: machine tutors at this level perform decision making for
an extended sequence of lessons. (2) Lesson planning: at this level a tutor performs
decision making for a single lesson. This decision making includes determining the
subject matter to present and its order of presentation. (3) Discourse planning: it deals
with “planning communicative actions between the tutor and the student within a lesson”
(Murray, 1988b, p. 3).

Notice that this curriculum level planning is analogous to course and unit level
decision making by instructional designers. Lesson level planning is more or less like
lesson level decision making. Finally discourse level planning is more like the exercise
level decision making. At the curriculum and lesson planning levels the machine tutor
needs to decide about the selection and sequencing problems of instruction (see section

2.5.1), whereas at the discourse level, the machine tutor deals with the presentation of
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instructional material. Murray (1988b) noted that “these levels cannot in practice be so
cleanly separated and frequently discourse planning and lesson planning are intertwined,
as are lesson planning and curriculum planning” (p. 3).

2.5.13 Discourse Management Network: A Generic Architecture for

Discour se Planning. MENO-TUTOR was developed by Woolf & McDonald (1985) as

a coherent framework for representing and organizing elements of a discourse strategy. It
attempts to capture the discourse strategies observed in human tutors who strive to be
sensitive to their listeners (Halff, 1988). MENO-TUTOR is based on a “discourse
management network” (DMN) - a kind of augmented transition network. The nodes or
states of this network correspond to tutorial actions. These states of the DMN are
hierarchically organized into three layers - pedagogic, strategic, and tactical (Woolf,
1984; Woolf & McDonald, 1985; Woolf, 1988b). In all, the DMN has 40 tutoring states.
There are two types of arcs used in the DMN. The first type defines the sequences of
states normally traversed by the tutor. From a pedagogical viewpoint, these transition
corresponds to default tutorial decisions. The second type of arcsin the DMN represent
meta rules that can move the focus to any state in the network when their conditions are
satisfied. The DMN allows MENO-TUTOR to support both plan-based and
opportunistic tutoring. Plan-based tutoring, in a more or less compiled form, is achieved
by default transition between the nodes of the DMN, whereas opportunistic tutoring
corresponds to the transition between tutoring states based on meta rulesfiring.
According to Murray (1988b), the DMN is well-suited for supporting
opportunistic tutoring strategies, but it must be coupled with other control mechanisms to
support lesson and curriculum planning. Although it is true that the plan-based
capabilities of DMN are limited, it offers a generic control mechanism, which along with
a layered curriculum representation can provide a powerful instructional planning

mechanism at all levels (curriculum, lesson, and discourse).
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2.5.14 Blackboard Architecture: A Flexible Control Mechanism for ITS.

The blackboard architecture provides the second generic planning mechanism for ITS.
There are three main features of the blackboard architecture: (1) Hierarchically structured
global database or blackboard: this is the place where solutions of the problem being
solved are stored. (2) Independent knowledge sources. these are rules that get activated
when changes are posted on the black board. These rules “contribute to an evolving
solution by adding or modifying solution elements on the blackboard. Knowledge
sources communicates only by adding or changing the contents of the blackboard”
(Murray, 1988b, p. 10). (3) Agenda control: thisis alist of possible actions that can be
performed on the elements of black board. “A scheduler selects the next action to
execute from the agenda” (Murray, 1988b, p. 10).

Briefly, the blackboard control mechanism works as follows: knowledge sources
are activated by the changes in the contents of the blackboard. This causes new actionsto
be added to the agenda. The scheduler selects the next action to be performed. This next
action may cause change in the elements of black board and then this cycle repeats.

BB-IP (Murray, 1988a) and IDE-INTERPRETER (Russell, 1988) use a
blackboard architecture to implement their instructional planners (Murray, 1988b).
Murray (1988b) argues that, unlike the DMN, the blackboard architecture supports all
three levels of instructional planning (curriculum, lesson, and discourse). Furthermore,
the blackboard architecture more easily supports multiple tutorial strategies and the
development of customized, globally coherent curriculum and lesson plans. An
additional advantage of this architecture is that it facilitates the separation of knowledge
about planning from both domain knowledge and tutorial strategies (Murray, 1988b).

2.6 KADS. A Generic Knowledge Based System Development M ethodology

Intelligent tutoring systems are knowledge-based systems (Clancey, 1987b);
hence they can be developed by a generic knowledge-based system (KBS) devel opment

methodology. KADS (Knowledge Analysis and Design Structure) is an important step
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forward in systematic KBS development methodology (Breuker, 1990; Wielinga &
Breuker, 1990; Wielinga et al., 1987). This methodology takes the view that KBS
development is essentially a modeling activity that yields a series of models at different
levels of abstraction. This modeling process starts at the linguistic level, where the raw
data of KBS development (e.g., knowledge from text books, interviews, think aloud
protocols) is identified. As a model of this knowledge is abstracted, models at the
epistemological level of analysis are constructed. These models are sufficiently removed
from the real world to be free from any issue of implementation and act as an
intermediate representation between the linguistic and the implementation levels
(Breuker, 1990). Fundamental to the KADS methodology are the epistemological
structures of the model of expertise (Wielinga & Breuker, 1990). Within the KADS
methodology, expertise is described in levels of different types of knowledge (Wielinga
et al., 1987). According to this methodology the knowledge of an expert is modeled
using four levels. The first level contains the static knowledge of the domain. The
knowledge at this level does not constrain the potential inferences that can be made. The
second level isthe inference level and describes what inferences can be made on the basis
of the knowledge at the static level. The third level isthe task level. It determines how
and when certain inferences will be made. The final level is the strategic level and
enables the system to acquire the behavioral flexibility shown by a human expert.

| have used some aspects of this methodology in the design and development of

the domain and pedagogy experts of CIRCSIM-Tutor (v.3).
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CHAPTER I

BACKGROUND OF THE CIRCSIM-Tutor PROJECT:
A HISTORICAL TRACE

3.1 Computer-Based Medical Systemsfor Teaching the Bar oreceptor Reflex

CIRCSIM-Tutor isan ITS that assists first year medical students in mastering the
behavior of the baroreceptor (BR) reflex, the part of the cardiovascular (CV) system that
is responsible for maintaining a more or less constant blood pressure. In this chapter we
will trace the history of our system. Briefly this system has roots in two Computer-Aided
Instruction (CAl) systems, namely HEARTSIM (Rovick & Brenner, 1983) and
CIRCSIM (Rovick & Michael, 1986), developed at Rush Medical College. A prototype
and two versions of CIRCSIM-Tutor have already been developed and work is
continuing to develop the third version. The research reported in this thesis is a part of
this effort. In this chapter we will trace the influence of these early systems/versions on
the most recent version of CIRCSIM-Tutor. Figure 3.1 shows a chronology of events for
the research reported in this chapter. In the following sections we will first describe these
versions briefly. Common concepts and characteristics shared by these versions are
explained later in this chapter.

3.2 HEARTSIM: A Quantitative Model of CV System with Didactic Feedback

HEARTSIM was the first of a series of computer-based medical systems for
teaching the baroreceptor reflex developed at Rush Medical College. During the
development of HEARTSIM a number of novel concepts was pioneered that are till in
use in the most recent computer-based tutoring systems developed at Rush/IIT.

In HEARTSIM an instructional component was superimposed on a well known
guantitative model of cardiovascular system - MacMan (Dickenson et al., 1973).
MacMan here was translated and reformatted to run on PLATO (Rovick & Brenner,
1983). HEARTSIM isa CAl system. Itsinstructional component is designed to tailor its

feedback according to the student’s responses but still its responses are stereotypical
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compared to what a human tutor can provide in a specific case. MacMan, in this system,
simply calculates the responses for CV problems. It is not involved in deciding on the
feedback for the student. The student modeling capability of this system is based on the
designer’s knowledge of the subject domain and extensive teaching experience (Rovick
& Brenner, 1983; Rovick & Michael, 1992). HEARTSIM was designed to be user
friendly. It provides feedback in textual, numerical, and graphical form. This system was
also designed to be as a “free-standing unit” (Rovick & Brenner, 1983, p. 236) so that
students could use it independently or in a group format. HEARTSIM was used quite
successfully as a part of a physiology course at Rush Medical College for several years.
A detailed discussion of this system can be found in (Rovick & Brenner, 1983). An
expanded discussion of various concepts pioneered by this system is provided in the
following sections.

3.3 CIRCSIM: A HEARTSIM on PC With an Expanded Didactic Capability

CIRCSIM is the most extensively used and tested system for teaching the
baroreceptor reflex ever developed at Rush Medical College. CIRCSIM inaway isaPC
version of HEARTSIM. One of the major reasons for its development was to widen the
audience that can access it (Rovick & Michael, 1986). Instructional and student
modeling capabilities in CIRCSIM have been relatively extended. Here the system
explicitly attempts to convey an algorithm to the student to solve CV problems. Also
instead of basing feedback on single errors, CIRCSIM groups errors to model student.
CIRCSIM’ s teaching effectiveness has been explicitly evaluated and it has been found
more effective than traditional methods of instruction (e.g., reading text books). A
detailed discussion of this evaluation can be found in (Rovick & Michael, 1992).
CIRCSIM is dtill in use at Rush Medical College as part of a physiology course for first

year medical students.
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Figure 3.1 Chronology of Events of the Research in Computer-Based Medical
Teaching Systems Developed at Rush/II T

3.4 CIRCSIM-Tutor (v.0): Beginningof an ITSEra

CIRCSIM-Tutor (v.0) is the prototype system (Kim et al., 1989). ThisITS was

the first result of ajoint venture between 11T and Rush Medical College to develop ITS

systems. CIRCSIM-Tutor (v.0) used Prolog on a DOS machine. This system inherited

many concepts from CIRCSIM but unlike CIRCSIM it makes explicit the domain model,

instructional and student modeling issues that were implicit in the CIRCSIM design.

CIRCSIM-Tutor (v.0) did not have any natural language capability, also it did not use

MacMan, instead a very simple qualitative and causal model of CV system was used.
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This system developed an architecture that was very limited in its capability but it
provided a basis for further research and development.

3.5 CIRCSIM-Tutor (v.1): Towardsan Effective M achine Tutor

The work on this version of CIRCSIM-Tutor started after the development of the
prototype version. This version did not came up as an integrated system instead only a
few modules of it were developed using the Inter Lisp on Xerox lisp machine. These
modules were mostly concerned with processing the natural language aspects of
CIRCSIM-Tutor. In fact it is this version that initiated research on natural language
interface for CIRCSIM-Tutor. References (Lee et al., 1990; Lee et al., 1991; Lee &
Evens, 1992; Zhang et a., 1990) describe the research conducted during the development
of thisversion of CIRCSIM-Tutor.

3.6 CIRCSIM-Tutor (v.2): First Fruit of this Research M ovement

CIRCSIM-Tutor (v.2) continued the march started by the CIRCSIM-Tutor (v.0)
towards an effective tutor. ThisisaMacintosh based Lisp system. It inherited most of
its concepts from CIRCSIM-Tutor (v.0). The natural language capability here was
relatively extended compared to what was available in CIRCSIM-Tutor (v.1). Like
CIRCSIM-Tutor (v.0) it also uses a qualitative and causal domain model. It expanded the
conceptual model of CIRCSIM-Tutor (v.0) in many respects. A detailed account of these
issuesis provided in the following sections. Unlike earlier versions, this system has been
experimentally used by a limited number of first year medical students. So far no
systematic evaluation of CIRCSIM-Tutor (v.2) has been performed but the students who
used this system responded favorably to it.

3.7 Characteristics, Capabilities and Resear ch | ssues of Computer-Based

Medical Systemsfor Teaching the BR Reflex Developed Befor e and
Duringthe CIRCSIM-Tutor Era

In this section we will describe in detail the characteristics, capabilities and
research issues of this sequence of CAI/ITS systems. We will discuss each issue

independently and compare the way it has been handled in CAI/ITS systems described
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above. See Figure 3.2 for some interesting facts about these systems. To increase
readability of this chapter we will use the following convention. By CAl systems we will
mean all the pre-CIRCSIM-Tutor systems (i.e.,, HEARTSIM and CIRCSIM). By ITS
systems we will mean CIRCSIM-Tutor (v.0), CIRCSIM-Tutor (v.1), and CIRCSIM -

Tutor (v.2) and by all systemswe will mean all CAl and ITS systems built at Rush/IIT.
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7 3 Each only on acintosh]
CIRCSIM-Tutor ITs | Qualita- (S(\:/C’HngP' (DR, 4 No 16 Overlay (P:_?liusmn of Experim- Eicgmon
v-2) tive |coTPr | RR, FilledBy fental
MAP) S9) the Student |52

Figure 3.2 Teaching Systems For BR Reflex: Facts

3.7.1 Domain: Its Nature and the Way it has been Modeled. The knowledge

domain used in all systems is cardiovascular physiology, specifically the baroreceptor
reflex, that part of the cardiovascular system responsible for maintaining a more or less
constant blood pressure (Berne & Levy, 1993). This is a complex domain. The
cardiovascular system consists of the heart, a network of blood vessels distributed
throughout the body, and a fluid, the blood, that is circulated through the system. The

role of the cardiovascular system is to provide every cell in the body with a“source” of
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those nutrients required for its function (O2, glucose, etc.) and to provide a “sink” for
those products of metabolism which must be eliminated (CO2, H*, heat, etc.). The
baroreceptor reflex is a negative feedback system. The mechanism by which this reflex
regulates blood pressureis as follows. The value of the parameter being regulated, blood
pressure (Mean Arterial Pressure - MAP), is sensed, and information about its value is
sent to the Central Nervous System (CNS), specifically to cardiovascular centers in the
medulla. There it is compared against the set-point (or desired) pressure which is
represented in the CNS in some as yet unknown manner. The direction of the “error” -
whether the pressure present is higher or lower than the set-point pressure determines the
output of the cardiovascular controller, which, working through sympathetic and
parasympathetic centers, control the function of the cardiovascular effectors (the heart
and the blood vessels). Cardiac output and resistance are thus altered so as to restore
MAP toward the set-point level.

The reflex involves a multitude of anatomical components all over the body, but
functionally one can think about the reflex in terms of the causal interaction between a
limited number of parameters (e.g., cardiac output, mean arterial pressure). Nevertheless,
the number of parameters involved, and the complexity of causal interactions that occur,
make it difficult for students to master this system.

MacMan (Dickinson et al., 1973) is a mathematical model of the baroreceptor
reflex. HEARTSIM uses MacMan only to display the descriptions of the CV responses
in graphical and tabular form. In translating HEARTSIM into CIRCSIM AAR & JAM
realized that they were making no essential use of the mathematical model that was a part
of HEARTSIM. That isto say, the most effective teaching was being generated from the
stored correct predictions for each procedure, not from the quantitative outputs generated
by the model. Thus, in CIRCSIM not only the correct predictions but also the limited

data needed to display the results of each procedure, were stored. There is no
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mathematical model in CIRCSIM, although all the results displayed by CIRCSIM come
from MacMan.

Designers of CIRCSIM-Tutor (v.0) adopted a different approach to model domain
knowledge. This approach was based on the Al-tradition of knowledge representation.
This time a qualitative causal model of the CV system was developed and used as a
domain knowledge base for the system. An amost similar version of this model was also
adopted for CIRCSIM-Tutor (v.2). One obvious advantage of this model was that the
system’s articulation capability was greatly improved. Now it is possible to develop
gualitative and causal reasoning behind a change in any part of the model as a result of
changes in other part. In a way the system now uses the same reasoning style while
“thinking” and “talking.” Here we briefly describe the qualitative and causal model used
in CIRCSIM-Tutor (v.0) and CIRCSIM-Tutor (v.2).

Figure 3.3 Concept Map Used in CIRCSIM-Tutor (v.0)
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A graphical representation of the domain model of CIRCSIM-Tutor (v.0) is
shown in Figure 3.3. We call this graphical representation the concept map. In our
context, it represents the key physiological concepts (e.g., physiological parameters,
anatomical components involved in a physiological process) and relationships between
the concepts (e.g., Heart Rate is directly related to Cardiac Output). The notion of
concept map used here is similar to the notion defined by Novak & Gowin (1984). The
links used in Novick & Gowin style concept maps are almost always hierarchical or
taxonomic. They are rarely causal. Our concept maps only use causal links. The
physiological relationships between the concepts in the concept map of Figure 3.3 are
represented by directional arrows. These arrows emphasize the unidirectional influence
of one concept on the other. “+” and “-” signs on the arrow represent the directly or
inversely proportional nature of the causal relationship. The concept map only represents
the static nature of the knowledge in the domain model. In order to use this model to
simulate the behavior of the baroreceptor reflex one needs rules that control the dynamic
behavior of the CV system. These rules are physiology principlesthat are involved in the
functioning of the CV system. In order to fully appreciate the power of this simple
gualitative and causal model of CV system to predict the qualitative changes for the key
physiology concepts, let us describe very broadly the functioning of this model. Thiswill
also show a usage of rulesthat alow to mimic the dynamic behavior of CV system.

Suppose a patient loses one liter of blood. This model under the given conditions
will respond in three different phases. The immediate response of the system to the
perturbation is called the Direct Response (DR) and it always resultsin a change in MAP
(a physiology variable in the concept map of Figure 3.3). Due to the given condition
Blood Volume (BV) decreases (see Figure 3.3). BV isdirectly related to Central Blood
Volume (CBV) hence CBV will aso decrease. CBV is directly related to RAP hence
RAP will decrease. If we continue to follow the arrows of Figure 3.3 in asimilar manner

then following predictions will result: SV -, CO -, MAP -. When we reach MAP, one of
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the domain rules will disable the propagation of causal influence in this phase of CV
system. Here CC, HR, and TPR are neural variables and are unchanged. The remaining
concepts of Figure 3.3 are also unchanged because they do not fall in the causal influence
propagation path that started from BV and ended at MAP. The change in MAP in DR
givesrise to a Reflex Response (RR) that is organized to restore MAP to its normal level.
Thismean RA +, TPR +, HR +, CC +, CO +, MAP +, CBV -, RAP-, SV -, BV 0, RV 0,
PIT 0. Eventually, anew Steady State (SS) is achieved which isthe “sum” of the DR and
RR responses. This means that the final value of the parameters in the concept map
(compared to their valuesin DR) is: BV -, CBV -, RAP-, SV -, CO -, MAP-, RA +, TPR
+,CC+,PITOand RV 0.

Figure 3.4 Concept Map Used in CIRCSIM-Tutor (v.2)

During the development of CIRCSIM-Tutor (v.0) it was assumed that this model

of the CV system will be enough for the tutoring task. But soon it became clear that this
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model should be expanded to do sophisticated reasoning in the domain. One simple
method of introducing sophistication in the model is to introduce more concepts and
physiological relationships between them. This was the approach taken by the designers
of CIRCSIM-Tutor (v.2). Here the concept map used is shown in Figure 3.4. Notice that
only some of the relationships of Figure 3.3 have been expanded with additional paths to
generate alternative explanations.

The natural language capability of CIRCSIM-Tutor (v.2) is much improved than
CIRCSIM-Tutor (v.0). This also put heavy demands on the domain model in order to
generate sophisticated explanations (Zhang et al., 1990). Unfortunately the instructional
component of CIRCSIM-Tutor (v.2) did not use the full power of the domain model,
instead it stuck to the CIRCSIM-Tutor (v.0)’s concept map. The developers of
CIRCSIM-Tutor (v.2) soon learned following lessons regarding the domain model of the
system. (1) The current model of the domain needs to be expanded greatly. (2) This
expansion should be at different levels so that it can help the tutoring process. (3)
Besides the causal phenomena captured by the model, there is a need of modeling other
processes (e.g., hydraulic-transfer events that takes place between the organs (Zhang et
al., 1990)) in the CV system.

These lessons have been neatly taken care in the design of CIRCSIM-Tutor (v.3).
In fact aformal model has been created that takes care of the missing bridge between the
domain and tutoring model for CIRCSIM-Tutor. In the following chapters we will
describe in detail these devel opments.

3.7.2 Student Population Using the System and their L earning Context.

Physiology is a compulsory basic science course for the first year medical
students. HEARTSIM was originally designed to be an integral part of a physiology
course for first year medical students. Considering the goals of this system (see section
3.7.3) a specific time frame was created for its use by the students. It is offered only

when the students have gone through a sequence of lectures, one laboratory and a number
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of small group problem solving sessions (workshops). It isassumed that at this time the
students are prepared to carry out the kind of task HEARTSIM asks them to do.
CIRCSIM and all versions of CIRCSIM-Tutor are also designed for the same student
population and learning context as HEARTSIM.

3.7.3 Teaching Goals. Two main educational goals of all the above systems are

that: (1) the students, using the system, acquire a qualitative, causal model of the
cardiovascular system, and (2) they learn a problem-solving method that enables them to
solve any problem in the domain. It is assumed that the students using the system will
have acquired the necessary knowledge through attendance at lectures, reading the
textbook, and participating in other scheduled activities in the physiology course. While
the system will provide students with missing information that is required to successfully
solve problems, this system is not designed to be, and it is not used as, the source of
primary learning of the basic physiology knowledge. From experience it is observed that
students using the system possess the necessary knowledge to solve CV problem but this
knowledge is not in an integrated form. These systems are intended to assist students to
integrate their knowledge about the CV system into a mental model of the BR reflex with
which they can successfully predict and explain the responses of the CV system to
disturbances.

3.7.4 Teaching Environment: The Protocol. In this section we will describe

the teaching environment of all systems described above. Here we will also describe the
protocol that students use to interact with the system. We will start with HEARTSIM
because it is this system that introduced many novel concepts. Most of these concepts are
then inherited by other systems (i.e., CIRCSIM and CIRCSIM-Tutor ).

HEARTSIM forces the student to develop a qualitative reasoning method to solve
CV problems. It basically offers a problem-solving environment in which the student is
required to solve CV problems. These problems are designed in such a way that their

solutions require the student to use their mental model of the CV system. HEARTSIM



76

starts by presenting alist of available procedures. These are stimuli to the CV system for
which the program provides didactic feedback (Rovick & Brenner, 1983). Once a
procedure is selected the system instruct the student to predict the response of CV system
for aset of parameters by filling the entriesin atable called predictions table. A detailed
description of this table is provided in section 3.7.5. Entries in this table are made by
touching the monitor screen. One touch enters an up arrow, a second enters down arrow
and the third enters zero for increase, decrease and no change, respectively (Rovick &
Brenner, 1983). Once all entries in the table have been made by the student, the system
graphically illustrates the response and provides a data table. It then evaluates the
student’ s responses and provides didactic feedback. A detailed description of types of
error detected by the system is provided in section 3.7.7. The feedback provided by the
system isin textual, numerical and graphical form. At the end of a procedure the student
may select another (or the same) procedure from the available procedure list.
HEARTSIM provides a guided procedure to the student who is using the system the first
time. This procedure allows the student to step through the protocol of the system under
the guidance of the program.

CIRCSIM inherited the same teaching environment as HEARTSIM with the
exception that it is a PC based system. In CIRCSIM the process of filling in the
prediction table is done by the student using the keyboard. Here the error evaluation and
feedback processes are comparatively more advanced than those in HEARTSIM. These
processes are described in more detail in section 3.7.7 and 3.7.8 respectively.

CIRCSIM-Tutor (v.0) brought a paradigmatic shift in the line of research done at
Rush. This system made explicit many of the decisions (knowledge types) that were
implicit in HEARTSIM and CIRCSIM. But it still retained the tutoring environment of
CIRCSIM to a great extent. Since CIRCSIM-Tutor (v.0) was a prototype many ideas
were tried in this version. One environment that could be definitely attributed to

CIRCSIM-Tutor (v.0) was not radically different from the CIRCSIM environment.
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During the prediction phase the system displayed a concept map of the CV system. As
soon as the student made an acceptable prediction for a variable, the system highlights
that variable in the concept map. Also the system frequently interrupts the prediction
phase of the student to provide hints for the incorrect prediction. CIRCSIM-Tutor (v.0) is
not a completely developed system as were HEARTSIM and CIRCSIM but the major
contribution of this system isthat it provided afeasibility study for an ITS in the domain
of baroreceptor reflex.

Developers of CIRCSIM-Tutor (v.0) soon realized that the successful experience
with CAl systems (i.e.,, HEARTSIM and CIRCSIM) is good but not enough to develop a
successful ITS system because unlike CAl system, I TSs are tutoring systems. In order to
fully appreciate the full blown complexity of a tutoring system one needs an empirical
study of tutoring that could provide a basis for the development of an ITS. This
observation is not uncommon in the ITS field (see Galdes, 1990). Immediately after the
development of CIRCSIM-Tutor (v.0) a series of empirical studies were performed by
Dr. Allen Rovick and Dr. Joel Michael at Rush Medical College (see Figure 3.1). A brief
detail of these studies is provided in section 3.7.6. CIRCSIM-Tutor (v.2) was the first
system whose design also used the analysis of these empirical studies (Woo et a., 1991).
These empirical studies were themselves very much influenced by the CIRCSIM
experience. The tutoring environment of CIRCSIM-Tutor (v.2) inherited many features
from CIRCSIM but one of the magjor change this time was that the student is tutored as
soon as a column of predictions table is completed by him/her. In other words the
tutoring process is initiated as soon as the student has predicted the behavior of CV
system for one of its phases (either DR, RR, or SS). Also, like CIRCSIM-Tutor (v.0),
this system interrupts the student’s prediction process by hints so as to keep the student
on the right track (see section 3.7.8). Here there is no guided procedure available for the

student.
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3.7.5 Prediction Tablee A Multi-Purpose Tool. Like many other novel

concepts, the idea of the prediction table was first invented during the development of
HEARTSIM. This concept was later found so useful that all the systems inherited it.
The usefulness and generality of this table is such that it has been used in some other
teaching systems (such as GASP, ABASE (Li et al., 1992) - see Rovick & Michael, 1992

for more details).

D

CV syst em st al
Par amet er DR RR SS

Cardiac Contractilit
(cO) 0
Right Atrial Pressurp
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Figure 3.5 The Prediction Table

The prediction table (see Figure 3.5) is atwo dimensional matrix whose left hand
column lists the physiology variables for which the predictions in a problem are sought
and whose top row lists the time frames (DR, RR, and SS). Each entry in acell in the
predictions table can have a value of: increase (marked as “+” or an up arrow or “i (1)),
decrease (marked as “-” or a down arrow or “d (D)) or no-change (marked as “0” or “u
(U)). Thistool has multiple purposes. It is used by the system to collect the student’s
predictions for the desired physiology variablesin a problem, assess these responses and
the underlying student knowledge (Rovick & Michael, 1992). It isused by the student as

arecord keeping tool and hence expands his’/her memory by visual means. The names of
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the physiology variables listed in the first column remind the student all the time of the
core domain concepts for which predictions are sought. See Figure 3.2 for a complete list
of physiology parameters used in different systems. Predicting the qualitative behavior of
the CV system astage at atime (i.e.,, DR, RR, or SS) is a strategic decision of the system
and the prediction table portrays this visually by representing these three stages as three
separate columns. A detailed description of the use of the prediction table in assessing
student’ s knowledge can be found in (Rovick & Michael, 1992).

3.7.6 Human Tutoring Experiment: Keyboard-To-Keyboard Sessions. Two

major reasons for performing empirical study of tutoring for CIRCSIM-Tutor were to
understand the nature of the tutoring language and the tutoring processes used in our
tutoring context. A series of such studies started immediately after the development of
CIRCSIM-Tutor (v.0) (see Figure 3.1). To date 48 keyboard-to-keyboard sessions have
been conducted over a period of 5 years. This section explains in some detail the nature
and method used to conduct these tutoring sessions.

The tutoring sessions that were conducted all involved the student making
predictions about the response of the baroreceptor reflex to a perturbation with the
tutorial dialogue that aimed at correcting student errors and assisting the student to
explain the responses he or she was describing. The goal of the tutor, then, was to assist
the students to make correct predictions and explain them.

Tutoring sessions always occurred just shortly before the students were scheduled
to use CIRCSIM in a computer laboratory setting. The students were thus nominally
prepared to carry out the kind of problem solving they were to asked to do.

The tutors in these sessions were Allen Rovick and Joel Michael, both of whom
are professors in the Department of Physiology and both of whom are teachers in the
physiology course being taken by the student subjects. Both tutors are middle-aged
males. The students were first year medical students at Rush Medical College, and they

were paid volunteers who understood that their participation in the experiment would
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have no bearing on their grade in the course, although they were told that they would
learn something of relevance to them (the advertisement used to recruit participants is
headed “EARN WHILE YOU LEARN!"). Students participating in the tutoring sessions
were selected only on the basis of their availability, and no information about their
performance in the physiology course was available when they were recruited to
participate. The student participants were male and female, with a range of ages from 21
to 37 years (mean of 25 years). See Figure 3.6 for some more facts about these tutoring
Sessions.

Two obvious methods for capturing a tutoring session are audio-taping and video-
taping with subsequent transcription of the dialogue. The fidelity of transcription, what

non-lexical elements get coded, will, of course, dependent on the nature of the analysisto

be pursued.
Ke{board APPROX.
-to- DURATION
Keyboard PROTOCOL
& TUTOR(S) | PERIOD | FOREACH
Sessions SESSION (VERSION #)
(HOURS)
11/10/89 -
K1-K8 AAR 11/17/89 1 1
4/23/90 -
K9-K24 AAR & JAM | 53190 1 2
4/23/91 -
K25-K28 AAR & JAM 4/25/91 15 2
11/10/92 -
K30-K38 AAR & JAM 11/13/92 2 3
4/27/93 -
K39-K48 AAR & JAM 5/1/93 15 3

Figure 3.6 Facts About the Keyboard-to-K eyboard Sessions
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Although the first study employed audio-taping, and subsequently some sessions
were video-taped, the approach that was adopted directly captures the tutorial dialogue.
This approach employs two linked computers with the student and the tutor
communicating by typing at the keyboard and reading the comments of the other on the
computer screen.

This approach was adopted for two quite different reasons. Pragmaticaly, it was
found that even simple, direct transcription of tapes (whether audio or video) was
extremely time consuming. Furthermore, any attempt at a higher fidelity of transcription
would require personnel training and would be even more time consuming.

Equally important, however, it was realized that the communications channel
available to, CIRCSIM-Tutor would be a very narrow one, compromised of only text
entered at the keyboard by the student and text generated by the tutor and displayed on
the computer screen. Thus, all of the non-verbal clues that are normally present in aface-
to-face tutoring session, such thing as tone of voice, pauses, facial expressions, etc.,

would be unavailable to CIRCSIM-Tutor.

Tutor Student

S\ N

Figure 3.7 Student and Tutor in a Keyboard-To-Keyboard Session
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Thus, for reasons of economy and in order to gather data about tutoring that
would most nearly simulate the situation to be encountered in CIRCSIM-Tutor, the
experimenters decided to develop a computer-based system with which the tutor and the
student could comfortably communicate with one another. The experimental setup for
the resulting keyboard-to-keyboard method of conducting human tutoring experiment is
described below.

In the keyboard-to-keyboard method the tutor and the student were seated in two
separate rooms (see Figure 3.7). A special software package, called the Computer
Dialogue System - CDS (Li et a., 1992), has been developed which allow the tutor and
the student to communicate with each other, over a telephone line or a direct cable
connection, by typing at the computer keyboards. During the course of communication,
the two users take turns typing. Each character typed by one user is displayed on both
screens almost simultaneously. CDS also provides the users with the ability to mimic
some verbal characteristics of natural dialogues, such asinterruption of one participant by
the other, without losing the message (Li et al., 1992). Finaly, the dialogue information
on the date and participants and the timing information are well formatted and saved on
the hard disk of one of the computers. A more detailed description of this system can be
foundin (Li et al., 1992).

Before the transcript of a keyboard-to-keyboard session is analyzed the dialogue
captured by the CDS is processed through a numbering program which using a
numbering scheme tags each sentence or fragment with an identification number. The
current numbering scheme has the following format (Li et al., 1992):

session # - who - turn # - sentence #
For example, the number k47-st-057-01 indicates that the sentence comes from keyboard
session 47, that the student is typing, that thisisturn 57, and that it is the first sentence in
that turn. A sample segment from a keyboard-to-keyboard session is shown in Figure

3.8. Details of the tutoring environments used in these sessionsis given in section 5.5.2.
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K30-tu-34-2: Let'stalk about your predictions.

K30-tu-34-3: Firs, what does DR mean?

K30-st-35-1: It'sthe immediate response to gravity

K30-tu-36-1: Yes.

K30-tu-36-2: It'swhat happens before any reflex changes can occur.

K30-tu-36-3: Do you want t o change any of your predictions?

K30-st-37-1: Half the answersthat | gave were direct responses
and the other were reflexes.

K30-st-37-2: Do you want meto list the parameters .

K30-tu-38-1: Yes.

K30-tu-38-2: Which of the parameters would not be affected in the
DR period?

K30-st-39-1: Cardiac contractility

K30-tu-40-1: Good.

Figure 3.8 A Sample Segment From a Keyboard-To-Keyboard Session

3.7.7 Coanitive Diagnosis: A Way the System Uses Multiple Student | nputs

to Model the Student’s Knowledge State. In this section we will briefly describe the

student modeling process used in all CAl and ITS teaching/tutoring systems devel oped
for BR reflex. Here once again we will start with HEARTSIM because it pioneered many
ideas including for student modeling. Here we will not dwell on the issue of the
differences between CAIl and ITS methodology for student modeling but briefly CAI
systems carry out no dynamic student modeling. On the other hand, ITS systems have
the potential to build a model of each student being tutored from the student’ s responses
(VanLehn, 1988).

As mentioned before as soon as a procedure is selected, HEARTSIM asks the
student to predict the behavior of the CV system, i.e., to predict 24 values for the eight
variables in the prediction table (see Figure 3.1). These multiple student inputs provides
particularly rich information about the student’s cognitive state, and can thus more

readily provide information with which to build student model or determine the pattern of
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response selection. HEARTSIM does not have an explicit student model but it exists
implicitly in its decision making process. Basically there are three different ways in
which HEARTSIM classifies student input. First, HEARTSIM checks for the logical
errors that mismatch transient and steady state changes. Next it checks for the errors that
mis-state the relationship between two or more variables in a physiological relationship
and finally it detects errors which mispredict the effects of the experimental procedure
(Rovick & Brenner, 1983). The first two classes do not specifically relate to any
particular CV procedure. Hence they are reviewed immediately after the prediction table
has been completed. The third class relates to the specific procedure that is about to be
carried out. These errors are reviewed after the computer has simulated the effects of the
procedure (Rovick & Brenner, 1983). In other words each error of the student in the
prediction table triggers some pattern of error in the system that in turn triggers the
appearance of the text intended to remediate the assumed source of the particular error.
HEARTSIM does not engage the student in a dialogue hence it does not have a means of
confirming the source of an error in the student’s prediction. Here the responses
generated by the system are based on the extensive experience of expert tutors in the
domain.

CIRCSIM inherited the same student modeling capability from HEARTSIM
(Michadl et al., 1992). The only difference, here, is that the ordering of error patterns has
been guided by the solution algorithm that is portrayed explicitly by CIRCSIM. Also it
tries to group error patterns for feedback as much as possible.

CIRCSIM-Tutor (v.0) is aprototype for the intended smart tutor for the BR reflex.
It conceptually created concepts for overlay and bug library models for student modeling
(Kim, 1989) but these were not implemented as a fully working system.

CIRCSIM-Tutor (v.2) incorporated an overlay model. The overlay modeling
approach assumes that the student’s knowledge is a subset of the expert knowledge

(VanLehn, 1988). The overlay model describes whether or not a student has knowledge
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of a particular subject material. It does not say what kind of incorrect knowledge or what
misconceptions have caused the student’ s current incorrect responses (Clancey, 1987hb).

Unlike HEARTSIM and CIRCSIM, CIRCSIM-Tutor (v.2) requires the student to
predict only a single column of the prediction table at atime. Once the students complete
their predictions the system tutors for the incorrect responses before asking them to
continue predicting for the remaining columns (Woo, 1991). Each error in the prediction
table points to an error pattern that usually is a physiology relationship. Due to the
overlay modeling approach, the system assumes that the sensitized relationship is missing
from the student’s knowledge base. As a result a lesson is planned to provide this
missing piece of knowledge.

3.7.8 Conceptual Model of Teaching/tutoring: What, When, and How to

Convey Knowledge. A conceptual model of teaching or tutoring in its broader sense

contains both the pre-session and the in-session behaviors observed in a human tutoring
environment (see Chapter V for more details). The in-session behavior deals with
deciding about what, when, and how to teach the subject material. In this section we only
discuss the in-session behavior for all systems described above.

The conceptual model of teaching for HEARTSIM and CIRCSIM are relatively
simple compared to CIRCSIM-Tutor because in these CAl systems no interactive
dialogue is initiated by the system. As a result these systems adhere to their initial
diagnosis of the student which they make immediately after predictions have been made
by the student. Topics discussed by the system here are wholly based on the set of errors
present in the prediction table. These systems have a set of well defined error/topic
ordering rules. According to these rules the system first discusses logical inconsistencies,
such as SS predictions that do not agree with the combined DR and RR predictions for a
specific variable. Next the system discuses predictions that violates essential
physiological relationships (e.g., MAP = CO x TPR). Although the system prompts for

these error patterns and provide a chance for the student to correct the actual predictions
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triggering these error patterns, no remedial feedback is provided if the student is unable to
correct these errors. The third type of errors are procedure specific and are discussed
after the smulation is run.

HEARTSIM and CIRCSIM differ conceptually while making ordering decisions
for this third type of errors. In HEARTSIM no explicit attempt is made to expositorily
convey an agorithm to solve a CV problem. CIRCSIM does this by ordering this third
category of error patterns (“bugs’) according to a solution algorithm with the hope that
the student will “get it” and use it to solve other CV problems. Each presentation block
that conveys the feedback for each error pattern is well crafted with the assumption that
it, most likely, will remediate the source of this error pattern. The feedback, in general,
may:

(1) describe or discuss the underlying physiology,

(2) summarize the changes observed in the smulation, or

(3) ... review lesson on the baroreceptor reflex ...

(Rovick & Brenner, 1983).

In addition to this, in CIRCSIM, a grand summary is provided at the end of each
procedure that describes the behavior of the physiological mechanisms that are involved
with the regulation of blood pressure under the given condition.

CIRCSIM-Tutor (v.0) using ITS tradition distinguishes explicitly between domain
knowledge and tutoring knowledge (Kim, 1989). It, like CIRCSIM, triesto make explicit
the problem solving algorithm that is a part of its domain knowledge. This is
accomplished in CIRCSIM-Tutor (v.0) in two steps. During the prediction phase, in
which the student predicts the qualitative value of physiology variables, system interrupts
if the student’s prediction violates the rules of the general algorithm. Here the system
provides generic heuristics that are aimed at bringing the student at aright track. In the
second step the system tutors the wrong predictions in a sequence that conforms to the
genera algorithm. Here topic selection is based on the patterns of error present in the
predictions table and the dialogue that goes on between the system and the student.

Instead of pre-stored presentation blocks for feedback, here system plans an instructional
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interaction. The default tutoring method used here uses the discovery method but the
hinting process of this system is very primitive.

CIRCSIM-Tutor (v.2) inherited many ideas from CIRCSIM-Tutor (v.0). But
unlike CIRCSIM-Tutor (v.0) it bases its planning decisions only on the overlay model.
Here topics are ordered according to their importance rather than on the sequence of the
general CV problem solving algorithm. Here the system emphasizes discovery method
rather than conveying the goals of the system in an expository style. Unlike the
conceptual model of CIRCSIM-Tutor (v.0), CIRCSIM-Tutor (v.2) uses the ideas

extracted from the empirical studies performed at Rush (see section 3.7.6) (Woo, 1991).
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CHAPTER IV

AN ITSDEVELOPMENT FRAMEWORK:
KNOWLEDGE ACQUISITION METHODOLOGIES

The field of Intelligent Tutoring System (ITS) needs a systematic and
comprehensive development methodology. This conclusion nowadays appears quite
frequently in the ITS literature (Halff, 1988; Clancey, 1992; Breuker, 1990; Khuwaja et
al., 1994a). Although thisfield has existed for more than two decades, most of the early
research effort concentrated on basic research issues involved in the process of tutoring
rather than on the development of tutoring systems that could exist as instructional units
inareal educational environment.

None of the early versions of CIRCSIM-Tutor used any explicit ITS development
framework. Being the designer and developer of several of CIRCSIM-Tutor (v.3)’s
major components, | am strongly affected by this deficiency in the ITS field. This
chapter describes an ITS development framework that | have developed to guide my
research. Although much further research is needed to make this framework complete
and comprehensive and although this framework is not the major theme of my research, it
has indeed been helpful. | view knowledge acquisition as a modeling process. This
chapter explains this underlying philosophy and describes different knowledge
acquisition methodologies used to develop a model of tutoring - a central theme of this
thess.

4.1 A Systematic I TS Development Framework: |nfluences and Structure

An ITSis aKnowledge-Based System (KBS). Recently a number of systematic
KBS development methodol ogies have become popular. KADS (see Section 2.6) is one
of the forerunners among these methodologies. This methodology is very general and
therefore applicable for a wide variety of knowledge-based systems. It takes the view
that KBS development is essentially a modeling activity that yields a series of models at

different levels of abstraction. Since this methodology does not consider the educational
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aspects of machine tutors, using this alone would not satisfy all requirements for

developingan ITS.
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Figure 4.1 StagesinthelTS Development Framework

The field of Instructional System Design (I1SD) has a long history as a discipline
that is concerned with understanding and improving one aspect of education: the process
of instruction (Reigeluth, 1983b). Section 2.5.4 has listed a set of avenuesin which ISD
can help the field of ITS. One of the major failures of the field of ITSis that it does not
have a systematic design process that is tailored to develop instructional systems that can
be a part of the real educational environment. ISD can help ITSs to achieve this goal
(Halff, 1988).

This section will describe an ITS development methodology that combines the
attractive features of a systematic KBS development methodology with some design
prescriptions from the field of 1ISD. The KBS development methodology used here is
KADS (Wielinga & Breuker, 1990). This framework is not complete and further
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research is needed so that it can be used to develop a complete, coherent and widely
applicable methodology for ITS development. But in its current form it is sufficiently
structured so that | have used it as aresearch guide.

In the first chapter | viewed an ITS from three perspectives (or viewpoints).
These views are: the conceptual view, the system view, and the physical view. In this
framework these three views form the major stages (or phases) of ITS development.
These stages are arranged in this framework as shown in Figure 4.1. Like KADS this
framework views the ITS development as a modeling activity that yields a series of
models at different stages of its development.

ITS development here starts at the linguistic phase. Here raw data for ITS
development (e.g., knowledge from text books, interviews, think-aloud protocols) is
identified.

In the second phase, the raw data from the first phase is analyzed to develop
conceptual model(s) of ITS. These models are sufficiently abstracted to be free from any
issue of implementation. Here the KADS's model of expertise (Wielinga & Breuker,
1990) can be used to organize knowledge of the system. This model views expertise as
consisting of knowledge at four different levels - domain, inference, task, and strategic.
See Section 2.6 for a brief description of each level. A detailed description of this model
of expertise can be found in (Wielinga & Breuker, 1990). In this second phase the major
emphasisis on the conceptual issues underlying the tutoring behavior. If the method used
here is to observe the behavior of expert human tutors (see Section 2.2.3) then in this
phase the conceptual models of different behaviors (or roles) of the human tutor are
developed. This phase is at the highest level of abstraction. Here no consideration is
given to realizing these models in a machine form.

It is the next phase that causes my framework to deviate from KADS and at the
same time makes it more specific to ITS development. This phase is aso at the same

abstraction level as the conceptual phase. In this phase, an ITS is viewed as an
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instructional system. In other words, in this phase, the focusis on “system” issues rather
than on the “expertise” driving the system. Here a design process used in the field of 1SD
could be used to shape the development of an ITS. Most of the ITSs developed have
avoided this phase. One consequence of thisis: most I TSs cannot take their place in real
educational settings. The system phase has two subphases. The first subphase
emphasizes the instructional system point-of-view, whereas the second subphase
emphasizes the software system point-of-view. From the instructional system point-of -
view the designer views the ITS as an instructional system. The outcome of the first
subphase is a set of system model(s) of the ITS. These models are more “complete” than
conceptual models. The conceptual phase, in other words, provides a theory of tutoring
that isfirst realized in these system model(s) of the ITS. The second subphase brings the
ITS development one step closer to its physical realization as a computer program. Here
the developer views the ITS as a software system. In this subphase software engineering
principles shape the system model(s) into a coherent architecture. The key issue here is
to keep this architecture independent of the implementation formalism.

The next step is to code the architecture of the ITS, using some implementation
formalism (e.g., a generic programming language, an expert system shell), as a software
program.

The sequence of these phases defines the normal system realization mode. Some
of these phases influence decisions made earlier. For example, the system model might
force the developer to change or perform further investigations at the conceptual level.
Thisin turn might require further empirical studies at the linguistic level. Asaresult, itis
not uncommon that iterative development takes place between these phases. It will be
advantageous to avoid, as much as possible, the iterations between the physical phase and
the system phase. A careful use of software engineering principles for the design of the

architecture of the system can hopefully reduce the risk of this expensive iterative loop.



92

Figure 4.1 shows that the conceptual model influences the data gathered at the
linguistic phase and the only thing that influences the system model at first is the
conceptual model in the conceptual phase. Thisis atypical data-driven design scenario.
In a practical system design this might not be the case. Sometimes many constraints for
the ITS have aready been decided on, for example, the tutoring style of the system (e.g.,
Socratic dialogue), the type of tutoring environment (e.g., based on problem solving), the
type of the student population (e.g., college students), etc. All these constraints sketch a
very broad picture for the conceptual model, which in turn provides constraints for the
empirical study required at the linguistic level. Data collected from this study further
helps to devel op a conceptual model and, if needed, further constrains the activities at the
linguistic level. This iterative approach to system development causes alternation
between the system and conceptual phases. A theory of the development of the system
model already has been worked out even before the conceptual model is developed. This
system model can constrain the activities at the conceptual phase. In other wordsthisITS
development framework can support data driven development, theory driven
development, or amix of these two styles of system development.

4.2 Roleof the Multiple Expert Metaphor in the | TS Development Framewor k

ITSs are complex systems. It is aways helpful to use tools that break complex
behavior into partsin order to manage complexity. The multiple expert metaphor is one
such tool that at a very high level of abstraction, breaks complex tutoring behavior into
four, commonly accepted, parts - domain expert, student expert (or student modeler),
pedagogy expert, and communication expert (Breuker, 1990; Self, 1988; Wenger, 1987).
According to this metaphor, in an ITS these experts communicate with each other and
coordinate their activities to create effective tutoring behavior. This metaphor is so
popular that it has served as a design model for many ITS projects during all phases of

their development. Unfortunately, the separation between these experts is preserved even
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in the physical phase. Breuker (1990) has criticized overuse of this metaphor for ITS

development.
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Figure 4.2 Increasing Complexity of the Conceptual Model of ITS.

In the conceptual phase one of the major activities performed is to break the
functionality of the target tutoring behavior into appropriate components (Khuwaja et al.,
1994a). A detailed analysis of tutoring suggests that there are different levels at which
this functionality of the tutoring behavior can be broken down. Figure 4.2 shows some
possible levels. For example, the second level states that the tutoring behavior of an ITS
can be described as a function of both domain and tutoring expertise. The successive
levels of Figure 4.2 define an increasingly close approximation to the behavior of a
machine tutor. The actual level used by the developer depends upon the issues under

consideration. The third level defines the multiple expert metaphor. It is clear from



94

Figure 4.2 that the multiple expert metaphor is only one possible level in the conceptual
gpace of ITS. It is up to the designer of the ITS to decide how much functional
decomposition is desirable at a high level of the conceptual model. Many 1TSs devel oped
to date have used the multiple expert metaphor as their last level of conceptual
decomposition. Although this ITS development framework does not restrict the use of
the multiple expert metaphor at the conceptual level, it certainly does not encourage the
developer to carry this metaphor over to the physical phase.

It is not uncommon for complex tutoring projects to be developed by a team of
developers. Thisis the case with CIRCSIM-Tutor. In such situations it is common to
divide the responsibility of developing different conceptual components of an ITS among
the team members. The ITS development framework, described above, is still applicable
in such situations. Here a developer focuses only on a part of the complex tutoring
behavior. In such situations he/she has to still go through all the phases of this
framework. Individual component models developed by each developer need to be
integrated at some point to build a complex and coherent design. It is advisable to
integrate all types of models (conceptual, system, architecture). Doing this might trigger
some aspects of the ITS that are previously ignored/overlooked. It is often true in such
situations that the whole is more than sum of its parts!

While developing the architecture of an ITS this framework encourages the
developer(s) to use software engineering principles to transform the system model into
appropriate modules (architectural components). These modules are relatively low level
components and define part of the functionality of an expert in the multiple expert
metaphor.

4.3 A Usage of ITS Development Framework For CIRCSIM-Tutor (v.3)

No explicit system development methodology was used for the development of
earlier versions of CIRCSIM-Tutor and no clear cut separation was made between the

conceptual and physical design of the system. But seen from the viewpoint of this
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development framework several decisions about different phases (models) had already
been crystallized by the systems developed before and after the CIRCSIM-Tutor era (see
Section 3.1). During the linguistic phase, for example, a considerable number of
empirical studies have been performed (see Section 3.7.6 for a description of the
methodology). Research on CIRCSIM-Tutor (v.2), to some extent, has crystallized its
conceptual model based on the analysis of these empirical studies. At the system level,
for example, many decisions regarding tutoring environment, tutoring protocol, student
population, and learning context have been made by the pre and post CIRCSIM-Tutor era
systems. See Chapter |11 for a detailed discussion of these early systems/versions.
CIRCSIM-Tutor (v.3) has inherited many characteristics from earlier systems/versions.
For this recent version decisions have already been made about the high level functional
analysis of its conceptual model. Level Four of Figure 4.2 portrays this decision. As
mentioned earlier, | have used this developmental framework to guide my research and
development on the domain and the pedagogy experts for CIRCSIM-Tutor (v.3).

At the linguistic level | have used various knowledge acquisition technigques to
collect the raw form of expertise (i.e., empirical data) that, in the next phase, has been
analyzed to develop a model of tutoring - a central theme of this research. This model
only accounts for behavior associated with the domain and pedagogy expert of the expert
human tutor. The development of this conceptual model is not achieved by one pass
from the linguistic to the conceptual phase, instead several iterations have been
performed between these two phases. Section 4.4 gives a detailed account of the various
knowledge acquisition techniques used to collect the raw form of expertise, the empirical
data. ChaptersV and VI describe this conceptual model in detail.

The development of the system model is primarily inspired by the theoretical
work done by Lesgold (1988). This model has forced me to rethink/evaluate the
assumptions made at the conceptual phase. Chapter VIl describes the system model for

CIRCSIM-Tutor (v.3). Although it is difficult to ignore the influence of the conceptual
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and the system model on the architecture of an ITS, | have made an effort to lay down a
foundation for an architecture such that only minimum effect is required to make a major
change in the conceptual and system model of the system. Chapter VIII describes this
architecture. Before | began the decision had already been made to use Common Lisp as
the implementation language for CIRCSIM-Tutor. For the purposes of my research |
chose to use CLOS, the Common Lisp Object System, as the implementation formalism.

4.4 Knowledge Acquisition: A Modeling Activity

Throughout the period of research reported in this thesis, | played the role of
knowledge engineer. | used several techniques to collect data to develop a model of
tutoring. The following sections describe these techniques in some detail. But first, |
describe a recent point of view that is becoming popular in the knowledge engineering
community. This view is based on the belief that knowledge acquisition is a modeling
activity. Although | have not done knowledge acquisition explicitly using this
perspective, methodologically our approach agrees with this theoretical standpoint.

Usually the knowledge engineering methods used in the first generation of
knowledge based systems are based on epistemological presuppositions that are
fundamentally at odds with much current research in cognitive science (Ford et a., 1993).
For example, one very popular analogy in the knowledge acquisition literature is the
“mining analogy.”

This analogy suggests that our eliciting knowledge from experts involves “mining
those jewels of knowledge out of their heads one by one” (Feigenbaum &
McCorduck, 1983). The underlying assumptions are that there exists some “gold
standard” of knowledge and that the expert has captured a discrete (presumably
large) part of the “reality” governing observed events in the domain (Ford et al.,
1993, p. 10).

An associated concept with this analogy is that of “knowledge acquisition
bottleneck.” According to this concept the problem of developing a knowledge base isto

squeeze a large amount of already formed concepts and relations through a narrow

communication channel (Clancey, 1993).
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These ideas have been challenged by a new wave in the knowledge acquisition
field for the second generation of KBSs. This movement brings ideas from constructivist
epistemology and social cognition to create new methodologies for knowledge
acquisition. Ford & Bradshaw (1993b) is a good reference for this new view of
knowledge acquisition. According to this view knowledge acquisition is a modeling
process, not merely an exercise in “expertise transfer” or “knowledge extraction.” In
other words

Knowledge acquisition is ... a cooperative enterprise, in which the knowledge
engineer and expert collaborate in constructing an explicit model of problem
solving in a specific domain. This external model is largely based on the expert’s

internal mental “model” of the domain. Thus the product emerging from the
knowledge-acquisition process is a model of a model (Ford & Bradshaw, 1993b,

p. 2).

Clancey (1993) describes this new perspective: “knowledge acquisition is a
process of developing qualitative models of systems in the world - physical, social,
technological - often for the first time, not extracting facts and rules that are already
written down and filed away in an expert’s mind” (p. 33). In Ford & Bradshaw’s (1993b)
words, Clancey (1993) reminds us that from this new knowledge acquisition
methodol ogy

... the resulting computer models may prove useful for some set of tasks at hand,
we must never forget that they are not once-and-for-all versions of the world.
Rather, they are specific static artifacts bounded by their context, confounded by

our individual interpretations, and severely limited (in comparison with humans)
in their flexibility and creative potential (p. 2).

45 Knowledge Acguisition in the CIRCSIM-Tutor Context: A Collabor ative
Process Between Knowledge Engineer and Expert

Ever since the first version of CIRCSIM-Tutor, the knowledge engineering
expertise has been provided by the researchers at Illinois Institute of Technology under
the supervision of Professor Martha Evens. In this project Dr. Allen Rovick and Dr. Joel

Michael act as domain experts. The roles our experts play in this project are different
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from the roles domain experts play in other projects. It isimperative for the purposes of

this chapter and this thesis as a whole to specify these roles more explicitly.
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Figure 4.3 Influences on Expertise

These two domain experts are Professors of Physiology at Rush Medical College.
Besides this they are also researchers on automated tutoring systems. They have
developed several CAl systems in different medical domains (e.g., cardiovascular
(Rovick & Michael, 1986), respiratory (Rovick & Michael, 1991), and acid/base
regulation (Li et a., 1991)). They also have extensive tutoring experience. CIRCSIM -
Tutor is the first intelligent tutoring system project with which they have been involved.
They not only provide the domain expertise but also the tutoring expertise for this project

(see Chapter V for a detailed account of these roles). Their extensive research experience
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has provided a unique form of expertise for the CIRCSIM-Tutor project. Here we briefly
describe the influence for their unique expertise in the context of the CIRCSIM-Tutor
project. One major reason for this analysisis to show that under our research framework
the knowledge acquisition process cannot simply be a matter of “expertise transfer” or
“knowledge extraction” but isinstead an active process of model construction.

Figure 4.3 shows various activities that influence the expertise of our experts.
Here arcs are labeled only for explanation purposes. This influence diagram is explained
as follows. Here “ideas’ represent the ideas of our experts regarding the functioning of
CIRCSIM-Tutor. These ideas were originally influenced (see arc “h”) by their
experience with HEARTSIM and CIRCSIM. Their experience with other CAl systems
(e.g., GASP, ABASE) aso has provide a unique source of ideas for CIRCSIM-Tutor.
These ideas through the process of knowledge engineering (see arc “a’) helped to
develop conceptual model for CIRCSIM-Tutor. These ideas also provide abasis for their
empirical study of tutoring (see arc “b”). Empirical experiments (see Section 3.7.6) have
provided a rich source of information for CIRCSIM-Tutor. This empirical data is
analyzed (see arc “c”) for various purposes (for example, to understand the process of
tutoring (Woo, 1991; Khuwaja et al., 1994b; Khuwaja et al., in preparation (a)), domain
knowledge (Khuwga et al., 1992; Khuwaja et al., in preparation (b)), student modeling
(Shim et al., 1991; Hume et al., 1993), and language generation and understanding
(Evenset al., 1993; Sanders et al., 1992; Seu et al., 1991)). Thisanalysisin turn helped
to develop the conceptual model for CIRCSIM-Tutor (see arc “d”). An analysis of these
empirical studies has also provided a basis to perform further tutoring experiments (see
arc“e’). Thisanalysisof the behavior of our expertsin empirical studies also provides a
self reflecting experience (see arc “f”) for our experts/tutors that also shapes their
behavior in future experiments and their ideas about the functioning of CIRCSIM-Tutor.
The performance and evaluation studies of various versions of CIRCSIM-Tutor also

provide a rich source of ideas (see arc “g") for the current and the future versions of
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CIRCSIM-Tutor. This whole experience with the CIRCSIM-Tutor project provides new
insights to our experts (see arc “i”) that help them develop new CAIl systems in various
other domains of medical sciences.

It is clear from Figure 4.4 that the role our experts (AAR and JAM) play in the
CIRCSIM-Tutor project is more dynamic than traditional expertsin ITS or KBS projects.
Here these experts collaborate with knowledge engineer(s) to perform various activities
and help to construct a model of CIRCSIM-Tutor. | have also coordinated with these
experts to develop amodel of tutoring for CIRCSIM-Tutor (v.3).

4.6 Methods Used to Get Data about Domain and Pedagogical Expertise

This section describes my methods of getting expert information to develop a
model of tutoring. Our experts are colleagues; they have worked together to develop
automated tutors for more than ten years; they have a remarkable ability to resolve
conflicts in their ideas and knowledge by discussion. The methods described below to
collect raw form of expertise have been used at different phases of the ITS development
framework described earlier.

4.6.1 Interview. Most information that is used to develop different models has
been obtained by interviewing our experts. Interviewing isaskill that requires more than
asking the right questions in the right way. It also implies adequate preparation,
recording, and documentation.

Generally there are two types of interviews - focused and structured (Wielinga et
al., 1987). | have used both types. The focused interview isa“normal” interview. Itis
the most widely employed technique for data collection (Wielinga et al., 1987). Herethe
interviewer asks questions on topics of conversation he has prepared in advance, and the
interviewee provides the answer. The high level structure of this type of interview
consists of three parts: an introduction explaining the purpose and structure of the
interview, a series of questions focusing on a sequence of topics, and a closing summary

possibly reviewing some of the topics discussed earlier in the interview. In this type of
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interview most valid answers are obtained by specific questions rather than general ones,
preferably following a chronologica sequence.

The second type of interview is the structured interview. In this type detailed
insight is sought about some aspects of the domain. While a focused interview is
comparable to normal conversation, a structured interview is much more like an
interrogation. The major difference between these two types of interviews is that in the
structured interview, the dialogue consists mainly of alarge variety of questions put by
the knowledge engineer to probe a few topics in depth, rather than a number of topics.

4.6.2 Keyboard-To-Keyboard Tutoring: A Form of Live Human Tutoring.

This method captures the actual interaction used by the tutor while tutoring the student in
the domain. Interviewing techniques by definition cannot be used to capture this type of
data. Actually here the expert mimics as much as possible the function of the prospective
system (Wielinga et al., 1987). | have not participated in collecting this type of data.
Rather | was supplied with transcribed versions of tutoring sessions. See Section 3.7.6

for more details on this type of data collection.

T2A-28: | first look at the changein MAP in DR and | say , that change is going
to inversely affect the neural variables that have the capacity of changing.
T2A-29: | am assuming we administered sufficient beta blockers so that we can
not through the sympathetics affect either CC or HR.
T2A-30: So MAPisdown.
T2A-31: TPRisnot affected by the drug.
T2A-32: So TPR will be up.
T2A-33: Now | am just moving up from TPR to next neural variable, HR.
T2A-34: HR can not increase because of increase sympathetic activity but it can increase
because of decrease parasympathetic activity.
T2A-35. SoHRisup.
T2A-36: OK.
T2A-37: CCisthe next neura variable.
T2A-38: CC can not increase because of increase sympathetic activity and that the
dominating influence on CC.
T2A-39: So| need to put azero there for CC.

Figure 4.4 A Sample Segment from a Think-Aloud Session
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4.6.3 Concurrent Verbalization: A Method of Capturing Expert’s Problem-

Solving Behavior . In concurrent verbalization, the expert thinks aloud, while solving a

problem. This method is particularly suited to elicit information about the control aspects
(the task structure and the strategy) of the reasoning process. | have conducted a set of
think-aloud sessions using this method to capture the problem-solving behavior of our
domain experts. This section describes this experiment. The subject of this experiment is
Dr. Allen Rovick - one of the experts participating in the CIRCSIM-Tutor project. Herel
have acted as the experimenter and tape-recorded the verbalization of the subject. It was
the experimenter who selected the domain problems from a large set of possible ones.
Each problem presented the subject with a defined perturbation to the CV system
(something that will cause a change in blood pressure) and required the subject to make
gualitative predictions (increase/decrease/no change) about the responses of seven CV
parameters to that perturbation. In all, six problems were solved by the subject. Besides
verbalization, during problem-solving, the subject also used the predictions table (see
Section 3.7.5) as a tool for recording his solutions for a problem. The tape recorded
concurrent verbalization (Ericsson & Simon, 1993) from this experiment was then
transcribed by hand. In this transcription process a numbering scheme was used to tag
each sentence with an identification number. This numbering scheme has the following
format.
session # (problem letter) - sentence #

For example, the number T2B-64 indicates that the sentence comes from think-aloud
session 2, that it is the second problem of this session, and that it is the 64th sentence in
this problem. Figure 4.4 shows a sample segment from a think-aloud session.

4.6.4 Retrospective Verbalization. In this method a subject verbalizes after the

task is completed. | have used a form of this method in which our experts (AAR and
JAM) thought aloud while reading a transcript that was captured in a recently conducted

keyboard-to-keyboard session. | have tape recorded these sessions. This type of datais
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useful in capturing the reasoning behind various actions performed by the tutor in a
tutoring session. A much better way to capture this type of data is to allow the tutor to
think-aloud during a keyboard-to-keyboard session but since this has not been done (at
least not very successfully) in our case, the retrospective verbalization is an aternative to
it.

4.6.5 Group Sessions. | have participated in frequently held group sessions in

which general and high level issues in the development of CIRCSIM-Tutor (v.3) were
discussed. In these sessions severa researchers at |1T under the supervision of Professor
Martha Evens meet our domain and tutoring experts (AAR and JAM). Generally these
sessions start with a very high level agenda but it is up to the participants to direct the
flow of thoughts. Each researcher at 11T has been assigned a part of the research work
needed to develop CIRCSIM-Tutor. These group sessions create an opportunity for all
the members to get-together and familiarize themselves with the issues of other
components of CIRCSIM-Tutor and view their work as part of this complete tutoring
system.

Besides participating in these large group sessions, | have also arranged small
group meetings. These were much more focused in their agenda. Four or fewer people
participated in these meetings. Two of the participants, here, were our experts (AAR and
JAM). These meetings are very effective in discussing common issues between two
components of CIRCSIM-Tutor developed by separate researchers. In al of these large
or small group sessions AAR and JAM not only play the role of domain experts but also
act as researchers in automated tutors.

4.6.6 Review. Reviews are particularly relevant for repairing gapsin data. They
are a way of assessing collected data. This method can also be used for assessing
interpretations of data. Here it may take the form of discussing, for instance, the
conceptual model with the expert. In an extreme form, the evaluation of a prototype by

the expert can be viewed as areview technique as well.
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| have used this method all through the knowledge acquisition phase of my
research. During the development of the conceptual model of the domain expert (see
Section 6.8) | have found the graphical representation of the concept map to be a very
effective method of representing and discussing issues with our domain experts. In a
sense it acted as a mediating representation in the development of the conceptual model
of the domain expert (see Ford et a., 1993). Unlike some representations that are directly
executable in the completed system (e.g., production rules embodied in an
implementation-specific syntax), a mediating representation can not be directly executed,
but is useful because it serves as a medium of communication between expert and
knowledge engineer. In general, | have found graphical representations of knowledge as
more effective than textual forms for the review process.

4.6.7 Study of Previous Research Work Performed in the Pre and Post

CIRCSIM-Tutor Era. | have also studied the literature on other tutoring projects at
Rush (e.g., HEARTSIM, CIRCSIM, earlier versions of CIRCSIM-Tutor). This study has
also provided me with awealth of knowledge and inspiration for the work on CIRCSIM-
Tutor (v.3). Many design decisions from these early systems, after careful consideration,
have been ported to CIRCSIM-Tutor (v.3). | have also played with most of these systems
(with the exception of HEARTSIM) to get insight into their functional behavior. This has
provided me with a source of many new ideas for CIRCSIM-Tutor (v.3).

4.7 Task Structure: A Way of Representing Problem-Solving K nowledge

In thisthesis | will use a representation that captures a fixed strategy to perform a
function in the domain. This representation is expressed using structured English. The
ingredients for task structures are goal statements and control statements (Breuker, 1990).
Goal statements are specified as action terms with or without objects, e.g., “get
(prediction).” Goal statements may consist of structures of (sub)goal statements.
Indentation is used to make the sub-goal structure explicit. Control statements are Pascal

type statements, e.g., “Begin.” It is possible to avoid many control statements by proper
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indentation. An example of a portion of atask structureis shown in Figure 4.5. Thistask

structure can be used to solve the DR phase of a CV problem.

Solve (DR)
Identify & Predict (Primary Variable)
Identify & Predict (Procedural Variable)
Propagate (Procedura Variable, Primary Variable)
Identify & Predict (Regulated Variable)
Propagate (Primary Variable, Regulated Variable)
Predict (Rest of the prediction table variables)
Propagate (Variable X, Variable Y)

Figure 4.5 A Task Structure to Solve the DR Phase of a CV Problem
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CHAPTER V
TUTORING QUALITATIVE REASONING FOR THE FUNCTIONING

OF THE BARORECEPTOR REFLEX:
A COGNITIVE MODEL

5.1 Introduction

The purpose of this chapter istwo-fold: to paint avery broad sketch of amodel of
tutoring - a major theme of this research - and to set the stage for the remaining chapters
of thisthesis. Thismodel of tutoring is intended for CIRCSIM-Tutor (v.3). The multiple
expert metaphor (see Section 2.2.1) provides one way of classifying the functional
complexity of a model of tutoring. For the purposes of the research described in this
thesis | have limited my model of tutoring to consider only the functionality of the
domain and the didactic expert of this metaphor (see level three of Figure 4.2). The
functional aspect of the didactic expert with which | am concerned deals only with the
pedagogy decision making (see level four of Figure 4.2). From now on when | refer to
my model of tutoring | will mean amodel with only the above mentioned functionality.

Unlike the approaches taken by the earlier versions of CIRCSIM-Tutor, | have
used an ITS development framework (see Chapter IV) to develop this model.
Considering the methodology underlying this framework, the development of this model
of tutoring has gone through four major phases - the linguistic, conceptual, system, and
physical phases (see Section 4.1). Three mgjor models (conceptual, system, and
architecture) result out of this activity. These models are described in detail in Chapters
VI, VII, and VIII, respectively. See Chapter |V for a description of the activities| carried
out at the linguistic level. The sketch of my model, described in this chapter, is
independent of the phases of the ITS development framework used in my research.

The major theme of this model of tutoring is that, in a problem-solving
environment, it facilitates the student to integrate his/her knowledge into a coherent

gualitative causal model of the domain and solve problems in the domain. The key
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feature of this model is that it uses multiple models of the domain in the process of
facilitating knowledge integration.

5.2 Orientation and Limitations of the Model of Tutoring Used in the Earlier
Versionsof CIRCSIM-Tutor

HEARTSIM and CIRCSIM (see Chapter 111) have greatly influenced the behavior
of our tutors (AAR and JAM) in empirical studies of tutoring (see Section 4.5).
CIRCSIM-Tutor (v.0) was developed before these experiments were conducted (see
Figure 3.1). As aresult the model of tutoring used in this system was wholly based on
the previous experience of our tutors with their CAl systems and their vision about the
functioning of CIRCSIM-Tutor. The developers of CIRCSIM-Tutor (v.0) did not pay
much attention to the theoretical orientation of the model of tutoring used in this system.
Also, in accordance with the tradition of the first generation of knowledge based systems
(Ford & Bradshaw, 1993a), the development of CIRCSIM-Tutor (v.0) emphasized the
product rather than its process. But as Ford & Bradshaw (1993a, p. 1) noted, “the most
important product of a specific knowledge-acquisition project is not the knowledge-based
system, but rather the insight gained in the process of articulating, structuring, and
critically evaluating amodel of some domain.”

The capability of the domain model used in an ITS determines, in turn, the
pedagogical capability of the system (Anderson, 1988). The domain model used in
CIRCSIM-Tutor (v.2) is quite simple, but sufficient to solve a CV problem. During the
development of this system it was assumed that this model is sufficient to enable the
system to perform sophisticated tutoring. Soon it became obvious that this is not the
case.

Instead of putting emphasis on the misconceptions of the student, as done in
HEARTSIM and CIRCSIM, CIRCSIM-Tutor (v.2) puts more emphasis on the overlay
modeling approach. This approach considers the student as possessing a subset of the
knowledge of the tutor. The major goal of the tutor hereisto find out the missing chunks

of knowledge that are responsible for the student’s sub-optimal behavior and develop
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lessons so that the student “fills-in” the gaps in his’her knowledge. The model of
CIRCSIM-Tutor (v.2) used this theoretical orientation asits basis for tutoring. Not much
emphasis was paid to the interaction between various experts in the multiple expert
metaphor. For example, what are the implications of the domain expert for the behavior
of the pedagogy expert. Also the pedagogy expertise here does not consider behaviors
that are related to developing the tutoring environment and the tutoring protocol for the
system (see Chapter 111). CIRCSIM-Tutor (v.2), as mentioned earlier in Chapter 111,
inherited many characteristics from its earlier systems/versions. During the devel opment
of this system, a considerable amount of empirical data was also available (see Figure
3.1). But unfortunately its model is not heavily influenced by the analysis of these
sessions. This system’s domain model is not radically different from CIRCSIM-Tutor
(v.0). The pedagogical model in CIRCSIM-Tutor (v.2) is comparatively enhanced but
again no theoretical foundation was established to view the functionality of the domain
and the pedagogy expert in the light of each other. This version of CIRCSIM-Tutor
rigidly followed the overlay philosophy to view the knowledge state of the student. As
mentioned in Section 5.5.11, thisis not the way our tutors perform in a human tutoring
experiment. Again the tutoring protocol and the tutoring environment of this version of
CIRCSIM-Tutor were not considered as part of the model of tutoring. See Chapter 111 for
some more detail on these two versions of CIRCSIM-Tutor.

As awhole, one can conclude that the earlier versions of CIRCSIM-Tutor failed
to consider some important aspects of the extensive data available from the human
tutoring experiments conducted at Rush Medical College. Also, nho comprehensive
analysis of the complex tutoring behavior of our tutors was performed to synthesize it
into a coherent model in light of its underlying theoretical orientation.

5.3 Scope of the Model of Tutoring For CIRCSIM-Tutor (v.3)

The model of tutoring developed for CIRCSIM-Tutor (v.3) is an attempt to

overcome some of the shortcomings of the earlier versions of CIRCSIM-Tutor. Here
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more emphasis is placed on analyzing the behavior of our tutors in the keyboard-to-
keyboard sessions. Also a systematic classification of behavior is performed in order to
understand the nature of the underlying theoretical orientation of this model. Despite all
this emphasis on observing the behavior of our tutors in the keyboard-to-keyboard
sessions, no attempt has been made to develop a psychologically faithful model (or true
simulation) of our tutors.

This research is based on the assumption that the tutoring performed by effective
human tutors provides the best scenario on which the development of an effective model
of tutoring for a machine tutor can be based (see Section 2.2.3). See Section 4.5 for a
detailed account of the influences that have shaped this model. This section describes
some of the major factors involved in this model. These factors define the scope of usage
(or generality) of this model in a way. No explicit theoretical position has been
considered by our experts while performing empirical experiments. The behavior of our
tutors in these experiments is wholly based on their extensive experience as
tutorg/teachers, domain experts, course designers, and researchers on automated tutoring.

One of the fundamental assumptions behind this model of tutoring is that an
effective tutor requires expertise in both the domain and in the process of tutoring. A
successive breakdown of the roles of the tutor is shown in Figure 4.2. | have used these
levels at different stages of this research to analyze the behavior of the tutor in our
situation. As mentioned earlier, this model only considers the behaviors of the domain
expert and the pedagogy expert (see Section 5.1). Traditionally these behaviors have
been analyzed in isolation of each other. Here | have made an attempt to analyze these
two roles both in isolation and in light of each other’s underlying theoretical orientation.
| hope that this approach will bridge the gap between the various experts of the multiple
expert metaphor (see Section 2.2.2). The domain expert provides the domain intelligence
to the system so that an expert performance in the domain can be achieved. But it isthe

pedagogy expert that uses this intelligence to achieve the goals of the tutor. In our
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context human tutors perform a considerable amount of activity before a tutoring session
starts. This activity mainly concentrates on creating the tutoring environment (and hence
the tutoring protocol) in which the tutor and the student communicate. | classify this as
pre-session activity of the tutor. The in-session activity is the activity performed by the
tutor while a tutoring session is underway. This, in our case, is recorded in a keyboard-
to-keyboard transcript (see Section 3.6.6). The model of tutoring | am describing
considers both pre-session and in-session activities of the tutor. These activities are part
of the behavior carried out by the pedagogy expert. During tutoring, the pedagogy expert
performs three major decisions: What to teach, When to teach, and How to teach. These
activities are performed in order to achieve the goals of the system.

Next | will describe various variables that influence my model of tutoring. These
variables limit the generality of this model and are inherited from the earlier versions of
CIRCSIM-Tutor (see Section 3.6). Here | review these in the context of CIRCSIM-Tutor
(v.3)

5.3.1 Style and Method of Tutoring. Like CIRCSIM-Tutor (v.2), CIRCSIM-

Tutor (v.3) uses a Socratic style (Wenger, 1987) to communicate with the student. Inthis
style the tutor frequently asks questions and responds to the student’s queries. In this
system the default method used to tutor is based on discovery, i.e., here the tutor tries to
help the student learn by discovering knowledge of the subject domain by him/herself. If
this is not successful then the tutor switches mode and teaches the material in an
expository fashion. The discovery method naturally suits the Socratic style because in
the Socratic style the tutor lead the student by constantly asking questions so that he/she
comes closer to discovering the targeted knowledge of the domain. Involving the student
in this active inquiry process will make his/her knowledge extensible, we hope (Wenger,
1987). In CIRCSIM-Tutor (v.3) it is the pedagogy expert that determines both the style

and method of tutoring.
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5.3.2 Tutoring Domain. Just as in earlier versions of CIRCSIM-Tutor, the

knowledge domain of CIRCSIM-Tutor (v.3) is cardiovascular physiology, specifically
the baroreceptor reflex, which maintains a more or less constant blood pressure using a
negative feedback mechanism. While tutoring in this domain the system forces the
student to concentrate only on the causal nature of the working of the baroreceptor reflex.
See Section 3.6.1 for details about the nature of thisdomain. In my model of tutoring the
domain expertise is provided by the domain expert.

5.3.3 Learning Context. CIRCSIM-Tutor (v.3), like earlier versions, is intended

to be used by first year medical students. This system will be an integral part of a
physiology course at Rush Medical College. It is assumed that the student using the
system will have acquired the necessary knowledge through attendance at lectures,
reading the textbook, and participating in other scheduled activities in the physiology
course. See Section 3.6.2 for more detail about this learning context.

5.3.4 Teaching Goals. The teaching goals of CIRCSIM-Tutor (v.3) emphasize

gualitative reasoning to perform problem-solving in the domain. Very broadly the goals
of this system are described as follows. The students, using the system, acquire a
gualitative causal model of the cardiovascular system, and they learn a problem-solving
method that enables them to solve any problem in the domain. Again it is the pedagogy
expert that is responsible for trying to achieve the goals of the system as much as possible
while interacting with the student.

5.3.5 Nature of the Tutoring Task. The learning exercise in CIRCSIM-Tutor

(v.3) is based on problem-solving, i.e., the system provides an opportunity to the student
to develop problem-solving skill in the domain using qualitative reasoning. The nature of
the task that the student is required to perform in the domain can be classified as
“prediction” (Clancey, 1985; Rovick & Michael, 1992). In this task the student predicts
the qualitative responses for CV parameters involved in the baroreceptor reflex. Within

the system it is the domain expert that performs this task to solve each problem correctly.
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This solution (and the associated domain knowledge) is then communicated to the student
by the pedagogy expert. Clancey (1985) has classified the task that the pedagogy expert
performs as “instruction.” The way the pedagogy expert communicates with the student
depends upon many factors, for example, the style of tutoring, the method of tutoring, the
kind of tutoring. In the keyboard-to-keyboard session our tutors concentrate on
remediating underlying misconceptions of the student who has made errors while
predicting the responses for parameters of the CV system (see Section 5.5.11 for more
details). Thistype of tutoring has also been selected for CIRCSIM-Tutor (v.3). Although
earlier versions of CIRCSIM-Tutor also have this goal, a different approach has been
adopted for CIRCSIM-Tutor (v.3).

5.3.6 Learning Environment. CIRCSIM-Tutor (v.3) promotes learning by

doing. Thisis our basic philosophy of education. This system offers to the student an
structured environment in which he/she can use his’her knowledge of physiology to solve
problems. The protocol adopted by this system to interact with the student is based on an
extensive empirical study done by our tutors at Rush Medical College. An analysis of the
tutoring environment and protocol used in this empirical study has been described in
detail in Section 5.5.2. CIRCSIM-Tutor (v.3) promotes the learning by doing philosophy
more than the earlier versions. This is achieved by adopting a protocol that neatly
integrates the uninterrupted activity required for learning by doing with the Socratic style
that has been designed to remediate misconceptions using the discovery method of
learning.

5.4 Evaluation of Keyboard-To-K eyboard Experiments:
How Effective Our Tutors Are?

The true effectiveness of my model can only be tested once CIRCSIM-Tutor (v.3)
is ready to be used by the medical students. But before we reach that stage, one of my
prime concerns was to find out how effective our human tutors are in keyboard-to-
keyboard experiments. No such evaluation study had been performed before athough
Rovick & Michael (1992) had performed an evaluation study of CIRCSIM. There are
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three main reasons for my concern. (1) As mentioned before, my model mimics as much
as possible the behavior of our tutors in these experiments, (2) the tutoring environment
created by the keyboard-to-keyboard experiments is designed by our tutors to closely
simulate the situation to be encountered in CIRCSIM-Tutor, and (3) a positive result of
an evaluation study would give me confidence in the data on which my model is based.
This would also act as a major motivational factor for me to continue my effort in
building this model.

In the spring of 1993, convinced by my arguments, AAR and JAM planned an
experiment that included pre tests and post tests to evaluate their teaching effectiveness.
In this section | briefly state the results of this experiment. Appendix A contains the
protocol used for the experimental and the control groups as well as the results of this
experiment compiled by Dr. Allen Rovick.

In this evaluation study two groups of first year medical students at Rush Medical
College were formed. The first group, called the control group, was given reading
material from a physiology book. Once the subjects in this group finished reading this
material for an specified period of time, a CV problem (P) was given to solve. The other
group, called the experimental group, was tutored by AAR and JAM using the keyboard-
to-keyboard setting. Pre and post tests were administered for both of the groups. These
tests were designed to measure the student’s knowledge of a set of important CV
relationships and their ability to solve a CV problem. Two measures were used to judge
the student’s ability to solve problems. the number of incorrect predictions and the
number of relationship errors in the solution of the problem. Appendix A contain tables
showing the results of this experiment for both groups. These results indicate that the
experimental group learned a substantial amount of problem-solving.

From this evaluation it can be concluded that the data used to build my model of

tutoring is obtained from quite effective human tutoring behavior. This does not
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automatically make my model effective but at least it gives me the confidence to continue
my effort to base this model on the effective tutoring behavior of our tutors.

5.5 Natureof Expertisein Keyboard-To-Keyboard Sessions: A Cognitive M odel

This section describes the model of tutoring that | have developed for CIRCSIM-
Tutor (v.3). Herel will sketch avery broad picture of this model by classifying its major
components. A detailed description of this cognitive model in the form of conceptual
model, system model, and architecture is given in Chapter VI, VII, VIII, respectively.

Figure 5.1 schematically shows the two major experts whose behavior is
considered for this model of tutoring. Here my hypothesisis that it is the domain expert
that provides domain intelligence to the pedagogy expert, which in turn provides the
tutoring expertise and communicates with the student. Because of the nature of the
activity of our tutors in the keyboard-to-keyboard sessions, from the transcripts of these
sessions one can only observe the composite behaviors of these two experts. It would be
extremely advantageous if we could capture the behavior of one of these experts in
isolation and then take it as a reference to analyze the behavior of the second expert from
the keyboard-to-keyboard session. Fortunately in our research framework our tutors play
multiple roles (see section 4.5). The two roles that | am concerned with require them to
act as expert in the domain and in the process of tutoring aswell. So hereit is possible to
capture the behavior of the domain expert (see Figure 5.1) by letting our tutors verbalize
while solving the kind of problems they give to the student in a keyboard-to-keyboard
session. Thisis exactly what | have done to capture the problem-solving method of our
tutors. As mentioned in Section 4.6.3, this method of knowledge acquisition is
particularly suited to eliciting information about the control aspects of the reasoning
process. Section 5.5.1 describes in detail our tutor’s method of solving a CV problem.
Chapter VI describes in detail other types of domain knowledge (e.g., structural, causal)
used by our tutors. These types, in fact, form different models of the domain that they

use while tutoring the student.
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Figure 5.1 Schematic View of a Cognitive Model of Tutoring Used in
Keyboard-To-Keyboard Sessions

Once a model for the domain expert was completed | turned to modeling the
behavior of the pedagogy expert. Here two issues are worth noting. (1) | have not only
modeled the behavior of these two experts in isolation but also tried to analyze the
interaction and influences of these experts on each other, and (2) | have broadly
classified the behavior of the pedagogy expert as pre-session and in-session. Pre-session
behaviors are frequently ignored by the developers of ITS. But in my view these are
essential in developing the tutoring environment in which the tutor and the student
interact. | think before a tutoring session starts a human tutor makes many decisions that
are in many ways similar to the decisions made by the instructional system designers.
Hence in order to make a serious effort to bring an ITSin area educationa environment,

it isimperative that we also pay attention to the activities of the tutor that he/she performs
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before entering into atutoring session. In the following section | will extensively analyze
the pre-session behaviors of our tutors. In order to capture a high level behavior of our
tutors during a keyboard-to-keyboard session, | will analyze, in the following section, a
keyboard-to-keyboard transcript.

5.5.1 Problem-Solving Behavior of the Domain Expert. Section 4.6.3

describes the method used to capture and transcribe a set of think-aloud sessions. The
major purpose of these sessions was to capture the problem-solving behavior of the
domain expert role of our tutors. Such behavior was aready captured by the developers
of earlier versions of CIRCSIM-Tutor (Kim, 1989; Zhang et al., 1990). The dominant
method used by these developers was interviewing our tutors. Concurrent verbalization,
compared to interviewing techniques, is regarded as a much better method to capture this
type of domain knowledge. | have also used the transcripts obtained by these sessions to
analyze other components of my model of tutoring (see Chapter VI). A task structure
representing the problem-solving method extracted from these think-aloud sessions is
shown in Figure 5.2. The subject (AAR) in these sessions applied this method to various
knowledge structures to solve CV problems. Chapter VI gives a detailed account of an
approximation of these knowledge structures used by our tutors.

The task structure of Figure 5.2 partitions the problem-solving behavior of the
subject into three stages - DR, RR, and SS (see Section 3.6.1). In each stage the three
most common operations performed by the subject are: identify, predict, and propagate.
The first operation identifies a physiology variable according to the criterion specified as
itsargument. For example, the operation “identify(primary variable)” means identify the
physiology variable that is first affected by the current perturbation and is listed in the
prediction table. Other possible arguments of this operation and their definitions are as
follows. Procedural variable - thisisthe variable in the concept map that isfirst affected

by the perturbation. Regulated variable - this is the variable that the baroreceptor reflex
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system monitors and holds constant (i.e., MAP). Control variables - these are the

variables that are under neural control.

Solve (cv problem)

Solve (DR)
Identify & Predict (Primary Variable)
Identify & Predict (Procedural Variable)
Propagate (Procedura Variable, Primary Variable)
Identify & Predict (Regulated Variable)
Propagate (Primary Variable, Regulated Variable)
Predict (Rest of the prediction table variables)
Propagate (Variable X, Variable Y)

Solve (RR)
Identify & Predict (Controlled Variables)
Propagate (Regulated Variable (DR), Controlled Variables)
Identify & Predict (Regulated Variable)
Propagate (Controlled Variables, Regulated Variable)
Predict (Rest of the prediction table variables)
Propagate (Variable X, Variable Y)

Solve (SS)
Solve Causally |
Identify & Predict (Regulated & Controlled Variables)

{Identify & Predict (Regulated Variable)
Identify & Predict (Controlled Variables)} |
{Identify & Predict (Controlled Variables)
Identify & Predict (Regulated Variable)}
Predict (Rest of the prediction table variables)
Propagate (Variable X, Variable Y)

Solve Algebraically
Algebraic Addition (Variable X (DR), Variable X (RR))

Figure 5.2 The Task Structure Used by the Domain Expert

The second most common operation used in the task structure of Figure 5.2 is
“predict.” In this operation the subject predicts a qualitative value (increase, decrease, or
no change) for a physiology variable specified as its argument. The third most common
operation used is “propagate.” Thisis avery complex operation compared to the other
two operations used in this task structure. While using this operation the subject mentally

propagates the causal influence from one physiology variable to another. In other words,
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this operation allows the subject to predict the value of the next causally relevant
physiology variablein astage of a CV problem.

In one of the problems that the subject solved, the arterial resistance (RA) was
reduced to 50% of the normal. In this case the subject first started to solve DR (see
Figure 5.2). Here the first goal created by the subject was to identify and predict the
gualitative value of the primary variable. In order to do that, the subject first identified
and predicted the procedural variable that in the current case was explicitly given as part
of the problem description (i.e., RA decrease or RA -). Next the subject propagated this
influence in the CV system and predicted TPR, which isthe primary variable in the given
case (refer Figure 3.2). Next the subject created a goal of predicting the qualitative value
of the regulated variable. In order to do that the subject propagated the causal influence
from TPR to MAP. This operation yields MAP -. The next operation in Figure 5.2 says
to predict the rest of the prediction table variables in a causal sequence. Starting from
MAP the subject next predicted the following variables: SV +, CO +, RAP -. Since the
non-primary neurally controlled variables do not change in the DR phase, the propagate
operation assigns 0 to these remaining variables of the predictions table. Next the subject
solved the RR phase in asimilar manner.

The SS phase of Figure 5.2 is more interesting. Here the subject had a choice of
using either the causal or the algebraic method to predict CV variables (in Figure 5.2 “|”
represents an OR). In the causal method the subject had a choice of starting from the
controlled variables (CC, HR, and TPR) or the regulated variable (MAP) and moving
backwards to predict the rest of the prediction table variables. On the contrary in the
algebraic method the subject used a truth table to predict SS values for the prediction
table variables. This truth table is shown in Figure 5.3. This table shows how the DR
and the RR values for a CV parameter determine the SS value for that parameter. Asis
clear from this table, most of the time, the SS value is the same as the DR value except

when the DR valueis zero. In that case the SSvalueisthe same as the RR value.
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Figure 5.3 Truth Tableto Solve the SS Phase of a CV Problem

5.5.2 Tutoring Protocol: Pre-Session Behavior of the Tutor. Tutoring a

problem-solving task effectively in virtually any structured domain requires the tutor to
create a problem-solving environment so that he/she can communicate effectively in the
domain. The creation of a problem-solving environment requires the development of a
set of rules that govern the interaction of the tutor and the student in the environment.
This set of rules does not constrain the behavior of the tutor or the student in each step in
the problem-solving process but rather emphasizes higher level constraints of the
problem-solving task in the domain and a generic way of proceeding in it. We call this
set of rules the tutoring protocol. In other words, the tutoring protocol is developed by
the tutor to allow him/her to exercise control over the tutoring environment. The tutoring

protocol is a very high level plan of the tutor, which is developed before the actual
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interactive communication with the student starts. But it is flexible and carefully thought
out to ensure that optimal knowledge communication takes place during the tutoring
session.

In the following sections we will use keyboard-to-keyboard transcripts to analyze
tutoring protocols used by our tutors. Three different tutoring protocols have been used
in 47 tutoring sessions (see Figure 3.6). Here we will classify different behaviors of our
tutors in developing these protocols. A comparison of the characteristics of these
protocols has yielded many insights that have also clarified the theoretical orientation of
the approach of our tutors.

5.5.3 Problem-Solving Environment of Our Keyboard-To-Keyboard

Sessions. When tutoring is carried out, whether face-to-face or employing a keyboard-to-
keyboard communications channel, there are rules that define and constrain the
interaction between the tutor and the student. These rules are usually implicitly
understood by both parties to the interaction; some rules are generic to any tutoring
interaction, while other rules are specific to the particular tutoring that is occurring. For
example, the rules that govern the conduct of both parties in a session where a student in
academic difficulty hires a tutor are not entirely the same as the rules that govern a
session that is conducted as part of an experimental study. In the same way, differences
in the knowledge domain being tutored or in the kind of problems being solved will result
in different tutoring rules.

The rules being considered here govern such aspects of the tutoring as how the
communications medium is to be used (making entries at the keyboard, turn taking, how
to interrupt, etc.), how the problem is defined for the student, what kind of problem
solving behavior is expected of the student, what constitutes success in problem solving,
how much time is available for the tutoring session, etc. We will describe these

constraints here very broadly, in the order in which they have been used by the tutor. In
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the next section we will classify these constraints/rules in a way that makes explicit
various activities our tutor performed in a keyboard-to-keyboard session.

In our situation it is clear that the tutoring session is controlled by the
tutor/experimenter. The student is given a notebook containing seven pages of
information/instructions, and the use of the keyboard system is explained. The
interaction then begins with the tutor obtaining the student’s name and social security
number. The student is then asked to read the pages in the notebook in sequence and ask
guestions, if any, about the material on each page. Page 1 describes the general
procedure for the tutoring session that will be conducted. The second page provides the
student with a brief description of the physiological system to be thought about. The
problem, the perturbation that causes an alteration in blood pressure, is then defined on
page 3. The fourth page defines the first of the periods (DR) about which predictions
must be made, and the fifth page explains how the student is indicate those predictions
using the keyboard. At this point, the tutoring session actually begins with the student
making predictions about the DR phase. When the tutoring about the DR phase is
completed the student is asked to read page 6, which defines the second (RR) phase of the
response and then makes predictions and is tutored about this aspect of the response.
Finally, the seventh and last page defines the last phase of the response, SS. The
preceding description of the tutoring session appliesto al 47 that have been conducted.

5.5.4 A Classification of Rules of a Tutoring Protocol. In this section we will

classify rules used in the keyboard-to-keyboard session. Here the terms rules and
instruction are used interchangeably.

5.5.4.1 Rulesfor the Student. These rules are meant for the students to

follow and are broadly classified into the following categories.

I) Rules for the Use of the Communication Medium. Communication in a

keyboard-to-keyboard session is achieved viatwo PC’s connected via telephone lines and

controlled by CDS (Li et al., 1992). The student should be told the operations of CDS for
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effective communication with the tutor. A set of rules accomplishing this goal has been
developed by our tutors. Some of these rules are displayed on the screen of the student’s
side PC all the time (i.e., integrated in the design of the CDS screen, for example, in the
“INSTRUCTION” window on the screens of CDS) and others are compiled as an
instruction document for the student to read before the actual tutoring experiment begins
(examples of these instructions are: “When you have finished reading this material, type

OK and <RETURN> if you understand it. Or, if you have a question about the material,

type your question. Then press<RETURN>.” “If you think that the value will go up
enter |, if down enter D, if unchanged enter 0”). Since the tutor is monitoring the proper
use of these instructions by the student, sometimes the tutor reminds the student about
these rules during the tutoring experiment (e.g., at K1-tu-25-1 the tutor instructs the
student: “Remember to finish each entry with an xxx. Are you finished?’).

1) Rules for Acting in a Tutoring Experiment. This set of rules determines

the nature and constraints of the tutoring exercise and his/her responsibilities to learn as
much as possible from it. These sets of rulesin a keyboard-to-keyboard session are given
to the student in aform of aformal document to read. If necessary, the tutor also reminds
the student of these rules during the experiment. A possible classification of these rules
follows.

A) Rules Which Convey General Description of the Exercise. These

instructions inform the student about the nature of the exercise (e.g., “You are going to be
given a problem to solve.”; “The problem consists of a description of a patient ....”) and
tasks he/she ought to perform (e.g., “You will be asked to predict the effect of the
patient’ s problem on seven of his cardiovascular variables’; “Please ook over the list of
variables.”).

B) Problem Description. This part of the tutoring protocol describes the

current problem at hand to the student (e.g., “Ms BV entered the hospital for elective
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surgery. The night before the surgery was to take place, she was accidentally rapidly
transfused with 1 liter of compatible blood.”).
C) Rules Which Determine the Way the Problem Solution Should Be

Approached. One of the functions of these rules is to describe the tools that the student
should use to approach the solution, e.g., “you have been given a worksheet (the
prediction table). The worksheet has a list of the cardiovascular variables you will be
making predictions about.” Another function of these rules is to outline a general
approach for the solution of the exercise at hand, e.g., “I will be asking you first to
indicate which variable you want to predict.” “l would like you to first predict the
DIRECT RESPONSE (DR) of the seven variables to the transfusion.” “Now that you
have completed your predictions of the DIRECT RESPONSE to the transfusion, please
predict the REFLEX RESPONSE that will occur.” “Finally, predict how the value of
each variable will have changed when the patient’ s cardiovascular system comes to a new
STEADY STATE, i.e., show the change from the period before the transfusion to the
STEADY STATE.” “Make your predictionsin an order that is consistent with the causal
relationship between the variables.” “The STEADY STATE change for each variable is
the SUM of its DIRECT and REFLEX changes.” “You can keep track of your
predictions by entering them in the prediction table.”). These rules aso make explicit the
assumptions/constraints of the current exercise (e.g., “In arriving at your predictions,
assume that the right ventricle, the pulmonary circulation and the left atrium act as a
single passive structure and automatically pass the effect of a change in the right atrial
pressure (RAP) over to the left ventricle (LV). A change in RAP would thus directly
affect LV function.” “By DR | mean what happens to the seven variables in the short
period after the transfusion but before reflex changes can occur.” “... then only the direct
physical consequences of the transfusion would be seen.” “The RR should show how the
baroceptor reflex changes the value of the variables from the values produced by the

DIRECT RESPONSE.”
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5.5.4.2 Rulesfor the Tutor. This set of rules allows the tutor to achieve

control over the tutoring experiment and presents a general way of handling the tutoring
process. Some of the rules are only meant for the tutor and others for how, what and
when to give instructions to the student. We have broadly classified these rules into the
following categories.

) Rules that Collect Demographic Information. The tutor uses these

instructions to obtain the student’s personal information (e.g., “Please type your name
and socia security number.” “Have you used the teaching program CIRCSIM or
HEARTSIM (Plato)?’).

1) Time Constraints. Time constraints force the tutor to finish a tutoring

experiment in a certain time period. Because of time constraints the tutor needs to
continuously monitor the progress and pace of the experiment and adjust accordingly
(e.g., “Arrangefor 1.5 hour session ...”).

I11) Rulesfor Using the Communication Channel at Hand. The tutor needs to

know how to communicate with the student. For example, in the keyboard-to-keyboard
sessions the tutor must be aware how to use CDS. Along with this knowledge the tutor
also needs to know what instructions, regarding the use of communication channel, the
student should be reminded of and when (e.g., “If you make a mistake or want to change
an entry, you can erase it by backspacing.” “When you have finished please press
<RETURN>."). Instructionsin this category achieve these goals.

V) Rulesthat Determine When and in What Order the Student Should Be

Exposed to “ Student’s Set of Instructions’. In our tutoring experiment the tutor isin
control of the experiment. One of the responsibilities of our tutors, while participating in
the experiment, is to control the flow of instructions to the student. This includes the
student’s set of instructions, which are compiled in a document form and are in the
student’s possession, and on-line instruction from the tutor. These rules provide

guidelines for the tutor to accomplish these goals (e.g., “Have student read pages 1
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through 4, one at atime.” “Wait for OK or question after each page.” “Tutoring session
begins after student OKs page 4.”).

V) General Instructions for How to Approach Tutoring. These instructions

form the heart of atutoring protocol. But these are kept very general in order not to force
the tutor to give up his natural style and approach for tutoring. These instructions also
sketch a very high level plan for the session. The actual interaction during tutoring is
very student dependent and opportunistic (from the tutor’ s point of view). Because of the
general nature of these instructions, tutors in some of our 47 tutoring sessions have
violated some aspects of these instructions. But, to the best of our knowledge, these
violations have not created serious flaws in our experiments. Examples of these
instructions are: “Primary variable must be correctly identified.” *“... student then reads
SS definition and after any question tutoring (in SS) begins.” “After the correct
prediction for primary variable allow student to predict for remaining variables and then
start tutoring.”

5.5.5 Protocols of the Keyboard-To-Keyboard Sessions. Our tutors have

conducted 47 keyboard-to-keyboard sessions during the last four years (see Figure 3.1).
Over this span of time three different tutoring protocols, which we call Protocol 1,
Protocol 2, and Protocol 3, have been used. These protocols are alike in many ways, but
their differences have noticeably different effects on the tutoring process.

In Section 5.5.4 we have described a classification of the rules that guide the tutor
and the student behavior in atutoring session. All three protocols are essentially identical
to each other. Only some rules for the use of the CDS have been changed in the most
recent protocol (i.e., in Protocol 3), because a new version of CDS was used in this
tutoring experiment. The section that varies most from one session to another was the
“general instruction for how to approach tutoring” (see Section 5.5.4). From now on we

will discuss the three protocols from the point of view of these general instructions.
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In this section we will use an analysis of the keyboard-to-keyboard sessions to
describe the details of three protocols and their effect on the process of tutoring. One of
the tutoring actions that we will closely observe is the frequency of tutorial intervention
in each protocol. Here | have also used other knowledge acquisition techniques (e.g.,
interviewing tutors) to add details to this analysis.

A detailed investigation of these three protocols requires a framework on which
the analysis can be based. Here we assume that the problem-solving behavior of the tutor
functioning as a domain expert will affect the development of the tutoring protocol. In
order to investigate this hypothesis | have conducted a series of think-aloud sessions to
develop a description of the problem-solving behavior of a domain expert. Section 5.5.1
describes this behavior in detail. The resulting description of the problem-solving
behavior of the domain expert is used, in the following sections, as a central component
of the framework for the analysis of tutoring protocol.

Another aspect of our analytical framework arises out of the fact that the tutoring
interaction that we are studying always arises from a prediction made by the student
about one of the cardiovascular variables listed in the prediction table. The tutoring
session is always divided into two phases: the prediction(s) collection phases (PCP) and
the tutoring phases (TP) (see Figure 5.1). Variations in the ordering and arrangement of
these two phases are the major differences between the three tutoring protocols; an
important consequence of these differencesis the timing of the availability of information
about the student’ s cognitive state when the tutoring interaction begins.

5.5.6 Three Tutoring Protocols: Common Characteristics. In this section we

will describe the common characteristics of the three tutoring protocols that are used in
our keyboard-to-keyboard tutoring sessions. In the following sections we will describe
each protocol, independently, in detail.

All three of our tutoring protocols (Protocol 1, Protocol 2, and Protocol 3) break

the tutoring process into three stages (i.e., DR, RR, and SS) just as in the task structure of
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Figure 5.2. In each stage, two magjor (high level) operations are performed by the tutor.
The first of these operations is “ collect-student’ s-prediction.” Here the tutor collects the
student’s prediction for a physiology variable(s) in the predictions table. The second
operation is “tutor.” These operations make up a part of the prediction collection and
tutoring phases. The chief difference between the protocols lies in the relationship
between these two phases.

All tutoring protocols for DR require that the primary variable be predicted first
and correctly, and the students are tutored until they have this correct. In DR the two
groups of variables, neural and “physical” are tutored differently. Tutoring in RR is
driven by the two stereotypical response patterns that are possible, compensating for
increased or decreased MAP-DR. All three protocols explicitly hint about an algebraic
method of predicting in SS and most of the time, when the student used this algebraic
method the tutor reinforced it. Only in afew sessions, was tutoring about the SS phase
approached by the student and the tutor in a causal way.

5.5.7 Tutoring Protocaol 1. This protocol was used in the first set (K1-K8; see

Figure 3.6) of transcripts and no formal specification was developed for it, at the time it
was used. An analysis presented in this section is solely based upon analysis of
keyboard-to-keyboard sessions and interviewing and debriefing tutors.

The task structure for this protocol is shown in Figure 5.4. The prediction
collection and tutoring phases overlap greatly in this protocol. As a consequence the
tutor provides immediate feedback for each student’ s prediction/response. If the student’s
prediction is correct then the tutor gives a positive acknowledgment and if needed
provides additional (relevant) knowledge at that point. If the student’s prediction is
wrong the tutor tries to remedy the problem that caused the wrong prediction at that time
before letting the student predict the remaining variables. The most obvious global plan
in each stage (DR, RR, and SS) is to follow operations in the respective stages of the task

structure of Figure 5.2. But the tutor seems not to be forcing this plan, hence, the
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sequence in which variables are predicted and discussed is determined by the student
solving the problem. Since the tutor only gradually obtains the student’s predictions,
there are at |least two ways atutor could behave in such an environment. He either forces
his problem-solving method by ignoring all of the student’s out-of-sequence predictions
or explores the student’s response at each point in problem-solving. Our tutors seem to
use this latter strategy and push their problem-solving sequence only when the student is

unable to progress in the process of problem-solving.

Tutor (cv problem)

Tutor (DR)
Collect & Tutor (Primary Variable)
Collect-student’ s-prediction (Primary Variable)
Tutor (Primary Variable)
Collect & Tutor (Rest of the prediction table variables)
Collect-student’ s-prediction (Variable X)
Tutor (Variable X)

Tutor (RR)
Collect & Tutor (Prediction table variables)
Collect-student’ s-prediction (Variable X)
Tutor (Variable X)

Tutor (SS)
Collect & Tutor (Prediction table variables)
Collect-student’ s-prediction (Variable X)
Tutor (Variable X)

Figure 5.4 The Task Structure of Tutoring Protocol 1

5.5.8 Tutoring Protocol 2. This is the second tutoring protocol used in our

tutoring experiments (K9-K28; see Figure 3.6). This time a formal specification was
developed for this protocol. The task structure for this protocol is shown in Figure 5.5.
In comparison with the first protocol, the PCP and the TP phases overlap less.

The prediction collection phase is quite complex compared to the first protocol.

Besides collecting predictions for the prediction table variables the tutor monitors and
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provides help (viaahinting process) for sequence errors. A sequence error occurs when a
prediction is made at the wrong point compared to the order that the domain expert (using
his problem-solving method) uses, i.e., when the student predicted out of alogical causal
sequence. But this protocol does not allow the tutor to remedy the actual cause of an
error, just to provide generic hints so that the student predicts variables in the same
sequence as in the task structure of Figure 5.2. The hinting process does not depend upon
the problem or the type of student. It reminds the student that a sequence violation has
taken place and provides a general heuristic for dealing with this situation, “In order to

predict a parameter you have to have predicted its determinants.”

Solve (cv problem)

Solve (DR)
Collect & Tutor (Primary Variable)
Collect-student’ s-prediction (Primary Variable)
Tutor (Primary Variable)
Collect (Rest of the prediction table variables)
Collect-student’ s-prediction (Variable X)
If “sequence” violation
Then give ahint (but do not tutor)
Tutor (Rest of the prediction table variables)

Solve (RR)
Collect (Prediction table variables)
Collect-student’ s-prediction (Variable X)
If “sequence” violation
Then give ageneric hint (but do not tutor)
Tutor (Prediction table variables)

Solve (SS)
Collect-student’ s-prediction (Prediction table variables)
Tutor (Prediction table variables)

Figure5.5 The Task Structure of the Tutoring Protocol 2

When tutoring begins, a complete column of predictions (either in DR, RR, or SS)
is available to the tutor. Thus the tutor is much better informed about the student’s

knowledge of the domain, and isin a position to remedy the fundamental problems of the
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student using patterns of errors (instead of individual errors). In the RR stage this
protocol follows exactly the same pattern asin DR. The SS stage of this protocol is the
same as the RR stage except no sequence checking is done because the tutors have found
no definitive order for handling the SS column, as shown in Figure 5.2.

5.5.9 Tutoring Protocal 3. Thisisthe third protocol used in our human tutoring

experiments (K20-K48; see Figure 3.6). This protocol was carefully thought out and
formalized by our tutors before using it in a tutoring situation. The high level task
structure for this protocol is shown in Figure 5.6. The amount of overlap between the
PCP and the TP phases is even smaller than in Protocol 2. The issue that is responsible
for thissmall overlap is primary variable tutoring.

The prediction collection phase, in all stages, is relatively simple compared to
Protocol 2. In Protocol 3 the tutor does not provide any help in this phase and allows the
student to predict variables in any order. During the DR stage as soon as the primary
variable issue is raised the tutor is just asilent viewer. Until the DR column is complete,
hisjob isto provide neutral commands like: "What variable do you want to predict next?"
to obtain the next prediction table variable and "OK, how will it change?' to get the
prediction.

Before tutoring, the tutor has the complete student's solution for a stage, much
more information than in the first protocol. Also the tutor never interrupts the student
during the PCP (unlike the second protocol), hence the record of the sequence of
predictions and their values represents a true record of the student's performance. This
(natural) information helps the tutor to form an initial model of the student. The tutoring
phase is again, as in the second protocol, error pattern driven and lets the tutor, right
away, start to develop a hypothesis for the underlying cause of the student's problem.
The sequence of remedying the student's prediction error is not based upon the sequence

of predictions from the task structure of Figure 5.2 but rather the tutor attacks
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fundamental student problems. The importance of the problems determines the sequence

in which errors are ordered and tutored.

Solve (cv problem)

Solve (DR)
Collect & Tutor (Primary Variable)
Collect-student’ s-prediction (Primary Variable)
Tutor (Primary Variable)
Collect-student’ s-prediction (Rest of the prediction table variables)
Tutor (Rest of the prediction table variables)

Solve (RR)
Collect-student’ s-prediction (Prediction table variables)
Tutor (Prediction table variables)

Solve (SS)
Collect-student’ s-prediction (Prediction table variables)
Tutor (Prediction table variables)

Figure 5.6 The Task Structure of Tutoring Protocol 3

5.5.10 A Comparison of Three Tutoring Protocols: Conclusions. The

evolution of the tutoring protocols was driven by the tutors desire to obtain as much
information as possible about the cognitive state of the student before the tutoring phase
begins. This form the basis for developing a better student model; and we assume that
the better the student model the better the tutoring and the more the student benefits. In
other words the changes in the protocol are the result of our tutor’s intuitive sense that
“more (information) is better” before tutoring starts.

Various tutoring domains are classified as factual, causal, problem-solving
(requiring procedural knowledge), etc. Our domain is both a causal and a problem-
solving one. The students participating in our tutoring experiments needed to use their
causal understanding of the functioning of baroceptor reflex to solve problems put by the
tutor. The Socratic method is the default tutoring method used by our tutors. Many

researchers (e.g., Galdes, 1990) argue that the Socratic method is not well-suited to
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problem-solving domains. In a problem-solving domain the student needs a chance to
exercise his knowledge. The constant questioning style of the Socratic method does not
provide the student with the chance to solve a problem. Our tutors also agree with these

arguments.

TOT
T+

K1 - K8
( Prot ocol

PSE

K9 - K24

&
K25- K28
( Pr ot ocol

PSE

K30- K38

&
K39- K46
( Pr ot ocol

PSE

LEGEND
PCP = Prediction Collection Phase
TP = Tutoring Phase

PSE = Problem Solving Environment

Figure 5.7 Interaction Between the Prediction Collection and
Tutoring Phases

During the first set of experiments, in which the first tutoring protocol was used,
there was a great overlap between PCP and TP (see Figure 5.7). Here the tutor behaved
like a Socratic tutor, responding to every student prediction/response. The tutor provided
immediate feedback without giving the student a chance to use his’lher mental model to
solve a complete phase of the problem. In this protocol the tutor has to use a guess-ahead
method to visualize the problems of the student and tailor feedback accordingly. By
guess-ahead we mean the process of guessing about the student’s knowledge state with
insufficient information. In this processit is not always possible to identify the student’s

deficiencies because the complete solution of the problem is not yet available to the tutor.
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Although the alternative to this approach, in which the tutor has the student’s complete
solution does not always lead to the correct diagnosis of the student’s problem, at least
the tutor has much more information about the student’s performance. Our tutors feel
better able to make an informed diagnosis when they have collected several predictions
from the student.

In the second set of experiments, in which the second protocol was used, the tutor
reduced the amount of feedback during problem-solving. The behavior of the tutor here
is more like a coach (see Section 2.1). He watches the student’ s sequence of predictions
and interrupts only if aviolation takes place. But still our tutors find it extremely difficult
to interrupt and provide the student with a vague (and general) heuristic without giving
specific physiology knowledge to put the student on the right track. The tutoring process
starts only when a column (for DR, RR, and SS) is completely filled with predictions by
the student and the tutor continued Socratic dialogue to remedy the misconceptions.
With a full column of predictions the tutor can make a very fine grained diagnosis
(Michael et a., 1992) of the student’s problem and tailor the tutoring accordingly. This
diagnosisis of course enriched by probing the student’s knowledge in the tutoring phase.
Due to the nature of this protocol the tutor is more informed about the knowledge state of
the student than in the first protocol. This organization was much better than it wasin the
first protocol but still our tutors felt that the students should be given full chance to use
their mental model of the CV system to solve a problem.

As a result, the third version of the tutoring protocol was devised to meet this
requirement. There is one mgor way in which this protocol differs from the second
protocol: No help is provided in the PCP (Figure 5.7). We believe that this is more
advantageous to the student because here the student is forced to rely on his thinking
(more exactly his mental model of the CV system) to solve the problem without
interruption and the tutor gets a chance to understand the student’ s thought processes and

tailor the tutoring process accordingly. This last version, to our understanding, is the best
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compromise to enable a successful use of the Socratic method in a problem-solving
domain. This protocol provides the student with full freedom to use his’her knowledge to
practice problem-solving under the watchful eyes of the tutor who in the second phase
(i.e., inthe TP) of this protocol tries to remedy misconceptions.

We have already decided to use this protocol for CIRCSIM-Tutor (v.3). This
comprehensive analysis of the pre-session behavior of our tutors has increased our
understanding of the tutoring protocol and strengthened our confidence that Protocol 3
can help achieve the goals of our system.

The tutoring protocol determines the pre-session behavior of the pedagogy expert
(see Figure 5.1). Comparing the task structure of Figures 5.2, 5.4, 5.5, and 5.6, it is clear
that the tutoring protocol also reflects the tutor’s domain expertise (notice the division of
all these task structures into three phases - DR, RR, and SS). One consequence of this
influence is that the pedagogy expert can adjust the learning environment so that it makes
explicit the underlying structure of the domain knowledge to the student.

The advantage of this analysis of the pre-session behavior of our tutoring is two-
fold. First, it directly points to the prescriptions that are essential in the development of a
machine tutor. Second, it makes explicit the pedagogical ingredients that are essential for
the student’s learning. We believe that an ITS should have an explicit “notion” of the
tutoring protocol it uses. The tutoring protocol isahigh level plan of the tutor. Hence, in
our view, an ITS should have an explicit planning mechanism to handle the reasoning
required for the tutoring protocol. Handling the tutoring protocol explicitly inan ITS not
only enhances the flexibility of the system but also provides an experimentation tool so
that a better tutoring environment (and hence tutoring protocol) could be devised for a
tutoring domain. Chapter VII discusses a planning mechanism, used in CIRCSIM-Tutor
(v.3), that handles Protocol 3 explicitly.

5.5.11 In-Session Behavior of the Pedagogy Expert. In this section we will

concentrate on the behavior of our tutors observed during a tutoring session. From now
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on we will only consider the in-session behaviors resulting as they use Protocol 3 because
it isthis protocol that has been selected for CIRCSIM-Tutor (v.3). A detailed description
of the model of pedagogy expert isincluded in Chapter VI. Here we will only describe a

few important aspects. This we will achieve by analyzing a keyboard-to-keyboard

transcript.

K37-tu-42-1:
K37-tu-42-2:
K37-st-43-1;

K37-tu-44-1:
K37-tu-44-2:

K37-st-45-1:

K37-tu-46-1:
K37-st-47-1;

K37-st-47-2:

K37-1i-48-1:
K37-1i-48-2:

K37-1i-48-3:
K37-st-49-1:

K 37-tu-50-1:
K37-tu-50-2:

K37-st-51-1:

K37-tu-52-1:
K37-tu-52-2:

K 37-tu-52-3:
K37-st-53-1:

K37-st-53-2:
K37-tu-54-1:
K37-st-55-1:

Ok, let's see what you have predicted.

First, though, can you tell me what DR means.

The changes that occurs in the students body immediately
following centrifugation before and responses can

be made by the body.

Good definition.

Can you tell me how the output or values of cc, hr,

and t pr are determined?

Do you mean how they are calculated?

No, what physiological inputs determine their outputs?
TPR is determined by the size of the lumen of the vessels
(vasoconstriction or vasodilatation).

Hr is determine{ INTERRUPTED STUDENT INPUT}
Letstalk about TPR before dealing with the others.
You areright, resistance is determined by vessel

Sze.

But, what inputs to the vessels determine their size?
Sympathetic stimulation

Your right.

Now, what causes sympathetic activity to the blood
vesselsto change?

Baroreceptors

Right, reflexes, in this case the baroreceptor reflex.
But, let'sgo back to your definition of DR, and
remember that you predicted that TPR would in crease.
Do you want to rethink this?

Thereason | initialy said it would increase was because
there is more blood in the peripheral vessels which
increases the force the walls need t 0 exert to

keep from blowing up.

| was not thinking of TPR in relationto the size

of the vessels.

Then what change to TPR do you think will occur in
DR as aresult of the centrifuge?

| seetwo sides: first, DR is before the baroreceptors
do anything so it would not change.

Figure 5.8 A Section of a Keyboard-To-Keyboard Transcript



K37-st-55-2:

K 37-tu-56-1:
K 37-tu-56-2:

K 37-tu-56-3:

K 37-tu-56-4:
K 37-tu-56-5:

K37-t-57-1:

K 37-tu-58-1:
K37-st-59-1;

K37-t-59-2:

K 37-tu-60-1:
K 37-tu-60-2:
K37-st-61-1;

K37-tu-62-1:
K37-tu-62-2:
K37-tu-62-3:

K37-tu-62-4:

K37-st-63-1:

K37-st-63-2:

K37-tu-64-1:
K 37-tu-64-2:
K37-tu-64-3:

K 37-tu-64-4:

K37-st-65-1:

K 37-tu-66-1:
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Second, if you consider that some vessels have elastic
properties, the vessels would increase in size to
accommodate the additional blood.

Let me briefly deal with your second thought.

Most of the blood that is displaced to the periphery
isinthe veins.

Whileit istrue that they will get bigger, the

veins contribute so little to TPR that we can ignore
this effect.

So, your first line of thinking is correct -TPR in

DR is unchanged.

Do you want to now think about hr and cc?

Sure.

So, what change will occur to cc and hr in DR?

Heart rate should stay the same before any baroreceptor
response.

Do you w ant me to go through what causes hr like we
did with TPR?

No.

Tell me how cc will changein dr.

I've never fully understood CC. but before baroreceptor
intervention, it would not change, i think.

Good.

So, TPR, cc and hr are unchanged.

Let'slook at your prediction for map -you said it
would increase.

Do you want to stick with this prediction?

No.

Remembering that the peripheral blood would go to the
veins, the MAP should decrease because there will

be lessblood in the arteries

Y our prediction is now correct -MAP will decrease.
But let'sthink about why this occurs.

Y ou predicted that rap, SV and CO would all decrease
(and you areright).

So, with CO down and TPR unchanged what must map do?
Map must decrease

Exactly.

Figure 5.8 A Section of a Keyboard-To-Keyboard Transcript (continued)

Figure 5.8 shows a section of a keyboard-to-keyboard transcript in which the tutor

is attempting to teach the DR phase of a CV problem. This section of the transcript is

unedited except to correct typographical and spelling errors. The description of the CV

problem used here is as follows: “An astronaut was placed in a human centrifuge. The
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centrifuge was rotated to provide a force of 3 gees (3 times the force of gravity) acting

from his head towards his feet.”

, l utor's
Cv Student's (or correct)
Variable Prediction Prediction
RAP } i
sv ; ;
CcO ; ;

Figure5.9 A List of Student’s and Tutor’s Predictions

Figure 5.8 shows a dialogue between the tutor and the student in the tutoring

phase (see Figure 5.1). Figure 5.9 shows the student’ s predictions collected by the tutor

in the prediction collection phase. This figure lists variables in the sequence in which

these were predicted by the student. Here the third column lists the actual (correct)

prediction for the given problem. Notice from Figure 5.9 that the student has made four

errors (i.e., the predictions for TPR, MAP, CC, and HR are wrong). The section of the

dialogue shown in Figure 5.8 can be divided into two major parts. Thefirst part starts at

K37-tu-42-1 and ends at K37-tu-62-2. The second one is from K37-tu-62-3 to K37-tu-

66-1. Thefirst part deals with tutoring that is triggered by the errors in the variables that

our tutors call neural variables (TPR, HR, and CC). The second part deals with tutoring
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to correct errorsin predicting MAP (the regulated variable of the BR reflex). Within the
first part the tutor talks about neural variablesin a particular sequence, which in the given
caseisTPR, HR, and then CC.

Many observations can be made from the given example of tutoring, some of
these are given as follows. (1) Mostly tutoring is error driven. It is an error in the
student’s prediction that causes the tutor to organize a tutoring interaction with the
student. (2) Before tutoring on a phase (DR, RR, or SS) of the CV system, the tutor
combines errorsinto groups. We call these groups “error patterns.” In the given example
HR, TPR, and CC are all neural variables and hence are combined by the tutor and treated
as a unit (see Section from K37-tu-42-1 to K37-tu-62-2 in Figure 5.8). (3) Errorgerror
patterns are arranged in order by the tutor before tutoring. Notice that in Figure 5.8
neural variables are tutored before MAP. (4) The major focus of the tutor in this session
is to remediate underlying causes that have led the student to predict incorrectly. One
major approach used by our tutors to accomplished this goal is to use a set of causes for
each error pattern that he has developed through experience. We call these causes
“student difficulties” (in ITS literature they have also been called misconceptions or
bugs). Here the tutor additionally needs to select and order these causes in order to
interact with the student. At K37-tu-42-2 (see Figure 5.8), the missing or misunderstood
definition of DR is the tutor’s hypothesis about what might has caused the incorrect
student’s prediction for the neural variables. The student’s response at K37-st-43-1 has
eliminated this possibility and as a result the tutor at K37-tu-44-2 has created the second
hypothesis that deals with the misunderstood mechanism controlling these variables.
During the dialogue the tutor also sometimes discovers misconceptions of the student that
are not in the tutor’ s list (or bug library). Sometimes the tutor does not give high priority
to some misconceptions but during the dialogue these turn out to be the major cause of
the student’s confusion. For example, at K37-st-55-2 the student has pointed to a

misconception to which the tutor normally does not give much weight. But after
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detecting it as one of the major misconceptions of the student, he remediated it at K37-tu-
56 before proceeding in the session. (5) During the remediation process for each student
difficulty the tutor uses different models of the domain. This process is described in
detail in Chapter VI.

From this partial list of observations one can conclude that the tutoring processis
error driven and geared to remediate misconceptions of the student. Also the tutor makes
three major decisions during a tutoring session: What to teach (this includes selection of
errors, error patterns, and student difficulties); When to teach (this includes ordering and
grouping of errors, error patterns, and student difficulties); and How to teach (this
includes remediation techniques). The student modeling technique closely approximates
the behavior of our tutors in a bug-library. Unlike the earlier versions of CIRCSIM -
Tutor, CIRCSIM-Tutor (v.3) puts more emphasis on this technique to model the
knowledge state of the student.

The cognitive model of tutoring described in this chapter is based on the behavior
of our tutorsin the keyboard-to-keyboard sessions. Asaresult, unlike the modelsused in
earlier versions of CIRCSIM-Tutor, this model presents a much closer approximation of
the behavior of our tutors. The tutoring effectiveness of the method of our tutors has now
been formally evaluated. This evaluation gives us confidence in the effectiveness of this
model of tutoring and confidence that it will perform well. In the next chapter we will
also take a detailed look at the underlying theoretical orientation of our model of tutoring
for CIRCSIM-Tutor (v.3).
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CHAPTER VI
PEDAGOGY AND DOMAIN EXPERTS: A CONCEPTUAL VIEW

6.1 Introduction

In this chapter | will describe, in detail, conceptual views of the pedagogy expert
and the domain expert of the model of tutoring (see Figure 5.1) for CIRCSIM-Tutor (v.3).
A conceptual view of amodel describes components and their interdependencies in terms
of functions, rather than in terms of machine executable formalisms (Breuker, 1990).
Here | will first describe a conceptual model of the pedagogy expert. This expert
performs two functions that are responsible for the pre-session and in-session behavior of
the tutor (see Section 5.5). Protocol 3 has been selected for CIRCSIM-Tutor (v.3).
Chapter V describes, in detail, the characteristics and functionality of this protocol. In
this chapter, we will concentrate only on the in-session behavior of the pedagogy expert.
Next | will describe the domain expert that provides domain intelligence for the system.
Here we will view the domain models constructed in the light of the pedagogical
standpoint of my model of tutoring. Next | will describe the nature of integration
between these two experts. And finally, in the last section of this chapter | will take a
look at the underlying theoretical orientation of this model of tutoring.

For the domain expert | am concerned with representation and inferencing of the
domain knowledge. For the pedagogy expert | am concerned with the representation and
decision making process of tutoring knowledge. The representation of the tutoring
knowledge in the form of curriculum is described, in detail, in the next chapter.

6.2 A Conceptual Model of the Pedagogy Expert

The in-session behavior of the pedagogy expert deals with the activities in the
tutoring phase (see Section 5.5). According to Protocol 3, this phase starts once a column

of the student’s prediction is available to the tutor, i.e., when the student has completed
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problem-solving for a phase of the CV system. In the tutoring phase the pedagogy expert
makes three major decisions: What to teach, When to teach, and How to teach. It isthis
last decision that causes the pedagogy expert to interact heavily with the domain expert.
In CIRCSIM once the student has completed predicting for a CV problem the
system starts evaluating his/her responses. Conceptualy, at first, this system finds out
the incorrect predictions of the student by comparing it with the correct set of predictions
for the given CV problem. There could be severa reasons for the student’s incorrect
predictions. But in general terms, the student may be missing some pieces of
information, or may have some misconceptions about the physiological mechanism(s)
underlying the functioning of the CV system. Since CIRCSIM has no natural language
capability, there is no way for this system to figure out the exact cause of a prediction
error for the student. CIRCSIM resolves this problem by mapping prediction errors to
error patterns (or bugs). An error pattern is not the underlying cause of the student’s
prediction error rather it is a concept that when a particular piece of knowledge is missing
or in an incorrect form could yield an incorrect prediction. For example, in one of the
CIRCSIM problems if the student makes an error in RAP in RR then the system maps
this to the CO -> RAP relationship. This relationship is a piece of domain knowledge
(see Figure 6.14 (a)). Here the assumption isthat no matter what caused an error in RAP,
the CO -> RAP relationship is not known by the student or is incorrectly used. Under
this condition the CO -> RAP relationship is treated as an error pattern. In other words,
in order to correctly predict the value for RAP, in the given problem, the student must use
this causal relationship correctly. One way of doing this mapping is to check the domain
knowledge needed to correctly predict avalue for a CV variable. This meansin order to
predict correctly the value of MAP in DR in a problem, the student must use TPR ->
MAP and CO -> MAP relationships correctly (see Figure 6.14 (a)). Error to error pattern

mapping did not solve all problems of cognitive diagnosis but it at least provided a way
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of managing the complex pedagogy task in CIRCSIM, which has limited communication
capabilities.

As has been mentioned before, the remediation process in CIRCSIM is not
interactive. The system, after considering an error pattern for an incorrect prediction,
provides feedback in a didactic fashion (in one shot) to the student. For example, for an
incorrect prediction in RAP in RR the system provides the following feedback.
“Remember that RAP is inversely related to CO so that if CO goes up then RAP must
decrease and vice versa.” The description of the problem used in this case is
“Hemorrhage: Remove 0.5 L (Blood Volume=4.5L).” In short, most of the feedback of
CIRCSIM is organized around the problem-solving behavior of the system. | call this
“providing-missing-steps-of -problem-solving” based teaching.

CIRCSIM has many influences on the behavior of our tutors in the keyboard-to-
keyboard sessions (see Chapter I11). It would not be incorrect to say that our tutors
started these experiments with “providing-missing-steps-of-problem-solving” as a
dominant model of teaching in their minds. In comparison with CIRCSIM, the keyboard-
to-keyboard environment provides an opportunity to the tutor to consider at length the
knowledge state of the student. At one extreme it is possible that the tutor explores the
fundamental cause of each student error and then chooses the remedial feedback
accordingly. At the other end, the tutor can adhere to the CIRCSIM model where only
minimal information about the student is needed.

Like the student, the tutor also learns. Of course the nature and the content of
learning for both parties are different. In this chapter we will not specifically talk about
the tutor’s learning but it is worth mentioning that our research setup provides an
excellent opportunity to investigate the tutor’s learning over time. The evolving model of
tutoring for CIRCSIM-Tutor provides an excellent example of learning for our tutors.

The next section describes the details of the conceptual model of the pedagogy expert.
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6.3 Tutoring Cycle: A Process of M aking the Student Active While L earning

The cognitive diagnosis of the knowledge state of the student in CIRCSIM-Tutor
(v.3) is performed by the student modeler (see Figure 4.2). It isthe pedagogy expert that
uses information about the student generated by the student modeler. As soon as the
prediction collection phase of Protocol 3 finishes, the student modeler generates an initial
evaluation of the knowledge state of the student. Based on this information the pedagogy

expert develops a plan for atutoring interaction with the student.

— Diagnogtic Phase T —»t  Diagnogtic Phase  [— —» Diagnostic Phase  [—
Pedagogic Phase
Confirmatory/
Exploratory Phase
— ™ | | Confirmatoryl/ || | | Remediation ||
Remediation Exploratory Phase Phase
Phase
@ b ©

Figure 6.1 Tutoring Cycle of CIRCSIM-Tutor (v.3)

During tutoring CIRCSIM-Tutor (v.3) aternates between two major phases. the
diagnostic phase and the pedagogic phase (see Figure 6.1(a)). In the diagnostic phase the
student modeler builds a model of the student. Based on this model, the pedagogy expert
in the pedagogic phase engages either in confirmatory/exploratory activity or remediation
activity. Interestingly these two phases also alternate in the pedagogic phase (see Figure
6.1 (a)). In the confirmatory/exploratory phase either the tutor confirms a hypothesis
about the knowledge state of the student or it explores the underlying cause of a student’s

error in prediction. If the tutor is successful in achieving either of these goals then the
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remediation phase isinvoked. Here the tutor tries to remediate the current misconception
of the student. On the other hand if the tutor fails in its diagnostic endeavor, a default
remediation strategy is selected to tutor the student for his’her current problem(s). Itis
interesting to note that in any case the tutor is always either in the
diagnostic/confirmatory/exploratory cycle (see Figure 6.1 (b)) or in the
diagnostic/remediation cycle (see Figure 6.1(c)). These phases and cycles are described
further in Section 6.5. Comparing this model with the teaching model of CIRCSIM (see
Section 6.2), it is obvious that our tutors in the keyboard-to-keyboard sessions are
substantially active in diagnosing and remediating the student’s problems. This activity
is due to the extended opportunity available in these sessions to actively explore the
underlying cause of the student’s suboptimal behavior in solving a CV problem. Before |
describe this model further, it isimperative to specify aview of the student as seen by the
tutor and its diagnostic process during tutoring.

6.4 A Tutor’sView of the Student

This section briefly describes a view of the student as seen by the tutor and the
process through which this view is created. In CIRCSIM-Tutor (v.3) it is the student
modeler that handlesthisjob. Initially these ideas were developed by Greg Hume and me
working together, but now they have been greatly extended by Greg into a full-fledged
student modeler (see Hume, in preparation).

For CIRCSIM-Tutor (v.3) we assume that the student who comes for tutoring may
possess a number of misconceptions that are the main source of his/her incorrect
predictions for a CV problem. In order to discover the actual misconceptions confusing
this student, the tutor adopts a layered approach to diagnosis. Because of the constraints
of Protocol 3 the only form of information available to the tutor, at first, is a set of errors
(more specifically, wrong predictions of the student). These errors, based upon their
individual characteristics, determine a number of error patterns see Figure 6.2 (b) for an

example). These are not the actual misconceptions of the student but rather bring the
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tutor one step closer to finding the actual cause of the student’s error. In the next step of
diagnosis the tutor uses these error patterns to hypothesize a number of causes (we call
them student difficulties) that could be the actual source of suboptimal behavior of the
student. See Figure 6.2 (a) for a schematic view of three layers of the tutor’s view of the

student.

Error Level

Neural Varigblein DR

N\
esistance
3(4 AN
P Dfinition 1S/Pre-Load Miss}gStepsin
of DR :
Mechanism | Confuson  Problem-Solving

Actual Neura )
Vaiables 1S Confusion

Error Pattern Level

Student Difficulty Level

Student
Difficult

Figure 6.2 A Schematic Representation of the Tutor’s View of the Student

The certainty of errors, error patterns, and student difficulties varies in this
diagnostic process for the student. Errors are most certain because they are the wrong
predictions for a CV problem. One definition of an error pattern makes it amost certain,
once it is detected. The student difficulty isarelatively complex concept. Here the tutor
is not quite sure of the cause of astudent’s error. A student difficulty can be alegitimate
misconception of the student. For example, an error in predicting the value of a neural
variable in DR is caused by the student’ s incorrect understanding of the definition of DR.
Alternatively, it can be a minor flaw in the student’s performance (such as a slip). For

example, the student has momentarily forgotten that he/she is solving a CV problem for
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the DR phase and made an incorrect prediction for a neural variable. If no student
difficulty exists for an error pattern then the tutor turns to the view as represented by the
“providing-missing-steps-of -problem-solving” based teaching scenario (see Section 6.2).
The next section describes the way that the pedagogy expert uses this layered model of
the student.

Figure 6.3 A Space of Causes for the Student’s Wrong Predictions

It is the error pattern level that substantially reduces the space of potential
misconceptions of the student for the tutor’s diagnostic process. A large space of
potential causes exist for each error in the student’ s predictions (marked as “C” in Figure
6.3). The error pattern level forces the tutor to view the student only through alimited set
of possibilities that are related to the stepsin the problem solving process. Thus, only the
student difficulties (marked as “SD” in Figure 6.3) that are related to these steps are
considered as the potential causes for the student’ s suboptimal behavior. This reduces the
search space for the diagnostic process for the student modeler. It also makes it possible
to develop alibrary of student difficulties from experience. The next section sheds more

light on this issue. Figure 6.2 (b) shows an example hierarchy relating errors, error
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patterns, and student difficulties for CIRCSIM-Tutor (v.3). This figure shows that an
error in any neural variable will cause the sensitization of the “neural variable changed in
DR” error pattern. The sensitization process, used in the student modeler, allows the
detection of all error patterns caused by errors in the student’s prediction. Any of the
student difficulties attached to this error pattern can cause wrong predictions for that
neural variable.

6.5 Pedagogic Phase

In this section | will elaborate on the activities of the tutor in the pedagogy phase
in the tutoring cycle of CIRCSIM-Tutor (v.3) (see Section 6.3). Here | will assume that
the diagnostic phase (see Figure 6.1) uses the view of the student as described in Section
6.4.

K40-tu-42-4. My question to you is, can you define cardiac contractility (CC)?
K40-st-43-1: | think it isthe related to the length tension relationship
of the cardiac fibers.
K40-st-43-2:  The more volume of blood within the chamber the farther
the heart stretches and the greater the contraction.
K40-st-43-3:  isn't that Frank-Sterling's law
K40-tu-44-1: Y ou have indeed described the Frank-Starling law of
the heart.
K40-tu-44-2: But that's not what's meant by contractility.
K40-tu-44-3. Contractility isthe inotropic state of the heart and
can be changed without altering the preload (EDV or EDP or R AP).

Figure 6.4 Tutor Confirming a Hypothesis

By default, as soon as the pedagogy expert selects an error pattern from a
sensitized set (see Section 6.6.1) the confirmatory/exploratory phase is invoked. Here
potential student difficulties associated with the selected error pattern are considered.
Each student difficulty, representing a possible misconception of the student, acts as a
potential hypothesis for the tutor. The tutor is not sure about its existence in the student’s
behavior. After invoking the confirmatory phase the tutor might establish that the

selected hypothesis (that the student has a particular student difficulty) is correct or
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incorrect. If it is correct then the remediation phase is activated. Figure 6.4 shows an
excerpt from a keyboard-to-keyboard session that reflects this behavior of the tutor. Here
at K40-tu-42-4 the tutor has a hypothesis that the student has a misconception about CC.
This misconception in CIRCSIM-Tutor (v.3) isreferred to as “1S/Preload confusion.” At
K40-tu-42-4 the tutor invoked the confirmatory phase. The student’s reply at K40-st-43
confirmed the tutor’s hypothesis. As aresult at K40-tu-44-3 he started the remediation
phase. If thetutor failsin establishing a hypothesis then the next one in the list is selected
and the cycleis repeated.

If the selected student difficulty isadslip (see Section 6.4), instead of a potential
misconception, then the tutor still needs to confirm it before proceeding in the session.
Figure 6.5 shows an instance of this case. Here at K26-st-21-1, the student has made an
error in predicting a value of the primary variable. Since the problem description in this
case explicitly states the direction of change in HR, the tutor here hypothesized that it isa
dip. Asaresult he, at K26-tu-22-1, provided a hint with an expectation that the student
will realize the mistake and recover from it. This aso provided the tutor a chance to
confirm the existence of thisdlip. At K26-st-23-1 the student’ s response confirmed that it

was a dlip and hence at K26-tu-24-1 the tutor proceeded with the session.

K26-tu-18-1: Ok, then let's start by telling what parameter you want to predict first
(but not how it will change).

K26-st-19-1: Hr

K26-tu-20-1: How will it change?

K26-st-21-1: |

K26-tu-22-1:. Will you re-read page 3 and confirm for me what this experiment is?

K26-st-23-1:  Sorry i got confused it is obviously d

K26-tu-24-1: What parameter do you want to predict next?

Figure 6.5 Tutor Handling a Student’s Slip
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Sometimes during the dialogue the tutor is unable to establish any potential
misconception for the student. In such a case the tutor then invokes exploratory phase by
asking open ended question(s) to the student to establish and then confirm a potential
hypothesis for the student. Figure 6.6 shows an instance of this case. At K12-st-32-1 the
student provided an incorrect prediction for TPR. Here the tutor was not sure about the
mechanism by which the student predicted the wrong value for TPR. Asaresult, at K12-
tu-33-1, he asked an open ended question to establish a cause for it. At K12-st-34-1 the
student revealed a mechanism that in the tutor’s view is incorrect. At K12-tu-35-4 the
tutor tried to confirm the mechanism that in his opinion is misunderstood by the student.
Thisis established at K12-st-36-1 and as a result the tutor initiated the remediation phase
at K12-tu-37-1. Although our tutors exhibit this behavior, we do not plan to implement it
in CIRCSIM-Tutor (v.3) because the natural language components cannot understand this

language well enough.

K12-tu-31-1: Now how about TPR?

K12-st-32-1:  I'm thinking that it will increase very briefly but
immediately decrease so asto adjust, back to normal the CC

K12-tu-33-1: By what mechanism will it increase?

K12-st-34-1: If you increase pressure will you momentarily increase
resistance

K12-tu-35-1: no. You may be thinking of autoregulation.

K12-tu-35-2: That's slow.

K12-tu-35-3: Remember that we're dealing with the short period
before you get areflex response.

K12-tu-35-4: Isthiswhat you had in mind?

K12-st-36-1:  Yesi guessi am not sure then what happensto TPR

K12-tu-37-1: What isthe primary mechanism of control of TPR?

K12-st-38-1: Radius of arterioles

K12-tu-39-1: Yes.

K12-tu-39-2: And what is the primary mechanism by which arteriolar
radiusis controlled?

Figure 6.6 Tutor in an Exploratory Mode

In certain cases while in the exploratory phase the tutor realizes that following the

student’ s reasoning any further will just complicate matters instead of helping the student.
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The tutor then selects a default strategy and takes charge of the current situation at hand.
Figure 6.7 shows this behavior of the tutor. At K38-st-187-1, the student has predicted
TPR incorrectly. In order to understand the cause of this wrong prediction, the tutor at
K38-tu-188-1 initiated the exploratory phase. At K38-tu-192-1, the tutor after
understanding the student’s problem realized that pursing the student’s reasoning still
further to remediate the misconception would probably not be beneficial. As aresult at
K38-tu-192 the tutor started to guide the student to visualize the domain knowledge

according to adefault strategy.

K38-tu-186-1: And TPR?

K38-st-187-1: will decrease

K38-tu-188-1: Why?

K38-st-189-1: to alow for theincr. SV and CO

K38-tu-190-1: | don't understand what you just said.

K38-st-191-1: by decrease TPR, it will be easier to push the blood out
of the let ventricle and it will be easier to
accommodate the incr. SV and hr

K38-tu-192-1: | understand what you are saying, but let's think about
the situation this way.

K38-tu-192-2: What isthe physiological input that determines TPR?

Figure 6.7 Tutor Directing the Student’s Thinking

In cases where the tutor runs out of the potential misconceptions, a default
strategy is invoked to remediate student’s problem. The underlying assumption for this
strategy is similar to that used in CIRCSIM, i.e., instead of worrying about the actual
misconception(s) causing the suboptimal behavior of the student, it makes sense to
provide missing steps of problem solving (see Section 6.2). The hope is that (1) it can
provide to the student, the steps needed to correctly solve a problem, and (2) these steps
will cause the disappearance of the actual misconception causing his/her suboptimal

behavior or at least overshadow it. Figure 6.8 shows an example of the use of this default

strategy.
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Full details of this default strategy are given in Section 6.17. But briefly it has
four components: figure out the determinants, decide which is the important determinant
in the current case, recall the relationship between the determinant and the parameter to
be predicted, and predict the value. At K14-tu-49-2 the tutor asked the student for the
determinants of SV. The student responded correctly at K14-st-50-1. Next the tutor
combined the second, third, and fourth components and asked the student to establish a
value for SV. The student at K14-st-52-1 predicted an incorrect value for SV. At K14-
tu-53-1 the tutor elaborated on his last question at K14-tu-51-3. This caused the student
to make a correct prediction at K14-st-54-1. It isinteresting to note that CIRCSIM-Tutor
(v.2)'s behavior is mostly based on this strategy. Unlike CIRCSIM, this default strategy
in CIRCSIM-Tutor (v.3) is more actively pursued by the tutor. In fact, steps taken in this
strategy are based on our tutor’s core reasoning mechanism to solve a CV problem. This
mechanism uses a very novel structure called the inference triangle. A detailed view of

this structure and its associated reasoning mechanisms are described in Section 6.17.

K14-tu-49-2: What | was asking is what determines how much blood
is glected from the heart each time it beats (the SV)?

K14-¢-50-1: RAPand CC

K14-tu-51-1: Good.

K14-tu-51-2: Well, you made predictions about how RAP and CC would
change as aresult of the pacemaker malfunction.

K14-tu-51-3: What do you think will happen to SV?

K14-¢-52-1: 0

K14-tu-53-1: Well, you predicted that RAP would in fact go down
(since CO went up) and you predicted that CC would
not change (and that's correct) 0.

K14-tu-53-2: So, what happensto SV?

K14-¢-54-1: D

K14-tu-55-1: Right, SV goes down.

Figure 6.8 Tutor Using a Default Strategy

Developing a set of student difficulties for each error pattern is a gradual process.

Our tutors learn about student difficulties via many sources. The research environment
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for CIRCSIM-Tutor (see Section 4.5) is one of the sources for this type of tutor learning.
| hypothesize that with time the library of student difficulties for CIRCSIM-Tutor will
grow and our tutors will put more and more emphasis on misconceptions of the student
rather than, as in CIRCSIM, relying on the default strategy to remediate the student’s
underlying problem.

Once all error patterns have been considered by the pedagogy expert, it brings up
some generic (but very essential) topics to discuss with the student. The pedagogy expert
does this only when sufficient time is available while tutoring a phase of the CV system.
Figure 6.9 shows an excerpt in which the tutor invokes a topic after considering all error
patterns detected for the student. In this example the student made correct predictions for
al variables in the prediction table for DR. Realizing this, the tutor planned at K46-tu-
50-3 to talk about atopic that he thinks it is important for the student to know. At K46-
tu-50-4 this topic isinvoked. Since the student at K46-st-51-1 demonstrated knowledge
of this topic, the tutor proceeded to the next phase of the session. The selection of atopic
is based on the curriculum available to the pedagogy expert. A more detailed discussion

on this behavior is provided in Chapter VII.

K46-tu-50-1: Ok, super job.

K46-tu-50-2: I'd like to think that you must have learned something
from CIRCSIM.

K46-tu-50-3: Let'stalk about afew things however.

K46-tu-50-4: What do CC, HR and TPR have in common?

K46-st-51-1: They're al sympathetically controlled, after a baroreceptor
signal initiate s the action.

K46-tu-52-1: Right.

Figure 6.9 Tutor Invoking a Generic Topic

6.6 Major Decisions Made By the Pedagogy Expert

This section describes three major decisions that the pedagogy expert makes in

CIRCSIM-Tutor (v.3). These are: What to tutor, When to tutor, and How to tutor. Figure
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6.10 shows a summary of these decisions supported at different levels of the view of the

student.

M aj or What to When to Tutor? How to
Question Tutor? Tutor?
Associated | Selection Grouping |Sequencing [Remediation
Decision(s)

Error YES YES YES NO

Error YES NO YES NO
Pattern
Student NO YES YES
Difficulty YES
Topic YES NO YES NO

Figure 6.10 Summary of Decisions Supported By the Pedagogy Expert

6.6.1 What to Tutor: Selection Decision. Considering the view of the student

described in Section 6.4, the pedagogy expert deals with the selection of errors, error

patterns, and student difficulties. Considering the nature and organization of CIRCSIM-

Tutor (v.3), it is the student whose behavior in the prediction collection phase determines

the number of errors. The student modeler in CIRCSIM-Tutor (v.3) is responsible for

detecting these errors as soon as the prediction collection phase finishes. Each error has

associated pointers to its underlying error patterns and each error pattern in turn has

pointers to its underlying student difficulties. As soon as the errors in the student’s

predictions are identified, the student modeler selects error patterns and student

difficulties for the student. These lists of errors, error patterns, and student difficulties are

then used by the pedagogy expert to perform decision making during the tutoring phase.
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Once selected, the pedagogy expert must consider each error, error pattern, and
student difficulty except in cases where certain rules prevent us from doing this. These
rules only apply to error patterns and student difficulties. It is a goal of the pedagogy
expert to develop plans such that all errors made by the student are discussed during a
tutoring session, except in cases where the student decides to discontinue a tutoring
session without completing it or where the tutor’ s evaluation of the student indicates that
the student has several gaps in prerequisite domain knowledge and hence it is not worth

pursuing the session any further with the student.

K5-tu-21-5:  I'd like you to think about some of the other variables
in the table.

K5-tu-21-6:  Especially variables that are immediately and directly
determined by HR.

K5-st-22-1: HRI1and COI.

K5-tu-23-1:  Great.

K5-tu-23-2:  That's where you should have started to begin with.

K5-tu-23-3:  Now what's affected next?

Figure 6.11 An Early Finish of the Tutor’s Default Strategy

Once all errors are discussed in a session, there are two major criteria that allow
the tutor to select remaining error patterns: time and (student) history. The pedagogy
expert has a maximum time limit for each phase of a CV problem. If al errors have been
covered well within the limit then the tutor selects one of the remaining error patterns for
discussion with the student. As soon as the time is up, the tutor discontinues selecting
error patterns and proceeds with the next CV phase or problem. On the other hand, if the
student model indicates that an error pattern has been selected in a previous CV phase or
problem and the student has demonstrated knowledge that is required to eliminate that
pattern then the pedagogy expert drops that pattern from consideration. For example
MAP = CO x TPR is an important equation that the tutor wants the student to learn.

There is a corresponding error pattern in CIRCSIM-Tutor (v.3), which is sensitized if an
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error appears in any of three variablesin this multiplicative relationship. If the student in
a previous phase or problem has demonstrated an understanding of this relationship then
from the pedagogic expert’s point of view there is no need to again arrange a tutoring
interaction about it with the student.

Rules to select a student difficulty are quite straightforward. Each sensitized error
pattern points to a set of student difficulties. Initially these are all considered for the
tutoring session. Asis mentioned in Section 6.3, a maor objective of the tutor isto find
the actual cause (a student difficulty) that is the source of the student’s error. As soon as
this source is established the pedagogy expert discontinues selecting student difficulties
any further for that error. Each student difficulty pointsto a set of topics that needs to be
considered by the pedagogy expert to confirm/explore and remediate that student
difficulty. For example when the default strategy is considered to remediate a student
difficulty involving arelationship between parameters, the following four topics needs to
be considered: (1) determinant, (2) determinant in the current case, (3) relationship, and
(4) value (see Section 6.17). Although this strategy provides a default sequence, the
actual selection of each topic depends upon the dialogue carried on by the tutor and the
student. Figure 6.11 shows an except from a keyboard-to-keyboard transcript. In this
excerpt the tutor started to use this strategy at K5-tu-21-6 by invoking its first topic -
“determinant.” The student, at K5-st-22-1, provided a response that completed the tutor’s
strategy. As aresult the tutor, at K5-tu-23-2, without invoking the remaining topics of
this strategy, proceeded on with the session.

6.6.2 When to Tutor: Grouping and Sequencing Decisions. First consider the

grouping decisions of the pedagogy expert while tutoring. Errors in our system are
wrong predictions of the student. It isthe individual characteristics of these errors that
bring them together to form patterns at the error pattern level (see Figure 6.2). Hence
error patterns group errors in a natural way. CIRCSIM-Tutor (v.3) is mostly inheriting

error patterns from earlier systems/versions that teach about the functioning of the BR
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reflex (see Chapter 111). CIRCSIM makes a distinction between procedure dependent and
independent error patterns. Also there are other ways of grouping error patterns, for
example, multiplicative relationships (MAP = CO x TPR, CO = HR x SV) could be
grouped together. Although these groups have been created at the code level of the
student modeler but no distinction has been made between error patterns at the conceptual
level. Onereason for thisis that the grouping of error patternsis a difficult task because
until the student is deeply diagnosed by the tutor it is not possible to pinpoint the
misconceptions that are the actual cause of a set of error patterns. Our tutors in the
keyboard-to-keyboard sessions seem not be engaged in such intense diagnostic activity.
It is also possible to group student difficulties according to their individual characteristics
but further research is needed to find out the consequences of this effort on the conceptual
moddl.

Sequencing (or ordering) decisions are more interesting in my model of tutoring.
These decisions are made at the error level and the error pattern level, and also at the
student difficulty level. Since these three levels are hierarchically connected, the question
hereis at what level (called the base level) this decision process should start. The answer
to this question depends on two criteria: the specificity, and the certainty of the
information in these layers. Specificity deals with the actual source of the student’s
suboptimal behavior. Certainty deals with the probability of existence of given concepts
under given conditions. Ideally, the student difficulty level needs to be considered as the
base level for this decision because at this level entities are most specific. But
unfortunately student difficulties are least certain. Also in certain cases no specific cause
has been identified for an error pattern. The error level is most certain but least specific.
The error pattern level is a better compromise compared to other two levels. Asaresult,
the ordering decisions of the pedagogy expert revolve around the error pattern level.
Interestingly in CIRCSIM ordering decisions are also organized around the error pattern

level (note that this system does not have a student difficulty level). In CIRCSIM error



157

patterns are ordered according to a problem-solving algorithm used by our tutors to solve
a CV problem. The developers of this system argue that this organization will make the
underlying structure of domain problem solving knowledge explicit to the student. In
CIRCSIM-Tutor (v.3), the pedagogy expert, on the contrary, bases ordering decisions for
error patterns on different strategies. Some of these strategies are domain dependent and
others are domain independent. For example in DR the tutor uses a domain independent
strategy called expediency. This strategy selects an error pattern whose cause is not
serious but the tutor wants to “get it out of the way” of the student’s more serious
problems. Littman et a. (1985) called this strategy “ prepare the way for the most serious
problem.” Besides these domain independent strategies this model also exploits the
domain relations (by using the problem-solving algorithm) to order the error patterns.
We call one such strategy “core causal chain relevancy.” This strategy orders the errors
according to the main causal path from the variable that is first affected in the CV system
to the regulated variable. The next chapter lists these strategies in detail.

As soon as error patterns are ordered and one of them is selected the pedagogy
expert checks for the errors that are associated with this selected error pattern. For
example, assume that the student has incorrectly predicted all three neural variables and
as a result the pedagogy expert has selected the “neural variables in DR” error pattern
(see Figure 6.2 (b)). Hereit isimperative to sequence the neural variables to be discussed
with the student. If HR is not the primary variable our tutors prefer to start with HR and
then generalize to the other two neural variables. Otherwise, they start with TPR. As
soon as an error is selected, the pedagogy expert orders the student difficulties. Chapter
VI lists a set of ordering decisions for student difficulties. Each student difficulty, as
mentioned before, points to a set of topics that the tutor wants to discuss with the student.
The order in which these topics are raised depends upon the dialogue carried on between

the tutor and the student.
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6.6.3 How to Tutor: Remediation Techniques. In the remediation phase the

tutor has to consider how to approach tutoring so as to remediate the misconceptions of
the student. In my model of tutoring the pedagogy expert performs this function by using
both tutoring knowledge and domain knowledge. This function is achieved in two
phases. In the first phase, this model, using various strategies (e.g., use the discovery
method) and tactics (e.g., give a pt-hint) develops a response for the student. CIRCSIM-
Tutor (v.3) uses a natural language interface to communicate with the student (Evens et
a., 1993). The output of the first phaseis not in aform to be directly displayed to the
student. The second phase is achieved by the communication expert (see Figure 4.2) that
converts the output of the first phase into a natural language response for the student. A
detailed description of the tutoring knowledge in the form of tutoring strategies and
tacticsis given in the next chapter.

The way domain knowledge is used by the pedagogy expert to remediate
misconceptions forms a novel characteristic of my model of tutoring. Here the pedagogy
expert uses different models of the domain to support the remediation process. In other
words my model of tutoring, using different models of the domain, assists the student
(because, who is, most of the time, actively participating in the learning process) to
integrate his’lher knowledge of the domain. The type and the nature of the domain
knowledge and possible inferences out of it belong to the domain expert (see Figure 5.1).
The next sections describe this knowledge in detail. The domain models used in
CIRCSIM-Tutor (v.3) are based on the behavior of our tutors.

6.7 Pedagogy Expert in Action

The previous sections describe various decisions the pedagogy expert makes
during atutoring session. This section combines all these decision making processesin a
flow chart to make the dynamic behavior of the pedagogy expert explicit. Thisflow chart
is shown in Figure 6.12. Here we assume that the student has completed predicting a

column of the prediction table. This dynamic behavior of the pedagogy expert is
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explained as follows. In order to facilitate the explanation of this behavior, various steps
in Figure 6.12 are tagged with numbersin small circles.

The decision making process in Figure 6.12 starts at “1” where the pedagogy
expert collects information about the student’s errors, error patterns, and student
difficulties from the student modeler. Next at “2” it selects an error pattern for
consideration. Let’'s call thisthe current error pattern. At “3” if the current error pattern
has multiple errors associated with it then the pedagogy expert selects one of them for
consideration. Let’scall thisthe current error. Next considering the current error pattern,
the pedagogy expert decides, at “4,” whether it can form a hypothesis about the cause of
the current student error. If it forms a hypothesis then a student difficulty is selected at
“6.” If it does not form a hypothesis then a default tutoring strategy is selected (at “5”) to
remediate (at “9”) the student’s current error. In the case when the pedagogy expert can
hypothesize about the student’s underlying problem, at “7,” it tries to confirm this
hypothesis. If this hypothesisis confirmed, at “8,” then a remediation phase (at “9”) is
invoked. If the tutor’s effort is not successful at “8” then it again decides, at “4,” whether
it can make another hypothesis about the student.

As soon as the remediation phase is completed at “9,” the pedagogy expert checks
(at “10”) whether al errors are tutored or not. If all are not yet covered then the tutor, at
“2,” repeats the above mentioned process. On the contrary if the tutor has completed
tutoring for all the student’s errors then, at “11,” considering the time elapsed during this
tutoring, it decides whether to continue tutoring about the current phase of CV system or
not. If time does not permit the system to do that then this decision making process halts
until anew set of predictions for the next column of the prediction table is available. On
the other hand if there is time available for the current phase of the CV system then at
“12” the tutor checks for the current list of error patterns. If some error patterns are till
left then, at “2,” it repeats the above mentioned cycle, else, at “13,” the system selects a

generic topic that it considers important for the student to learn. At “14” this topic is
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planned for tutoring with the student. At “15,” the pedagogy expert again looks at the

clock. If time permits then it selects another topic, else this process is halted for the

current phase of the CV system.
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Figure 6.12 Flow Chart Representing the Dynamic Behavior of the Pedagogy Expert
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6.8 A Conceptual Model of the Domain Expert

The purpose of this and the next few sections is two-fold: (1) describe a
conceptual model of the domain expert (see Figure 5.1), and (2) show how this model
influences the pedagogy expert in its decision making.

The domain expert of CIRCSIM-Tutor (v.3) has much broader functionality than
just to help the pedagogy expert in its decision making process. The domain expert
provides domain intelligence to the whole system (see Figure 4.2). The student modeler
uses this expert to build the student model. The communication expert uses it to
understand and generate a natural language response to the student. The conceptual
model described here serves this broader purpose but | will put more emphasis on its
utility as a source of the domain intelligence for the pedagogy expert. It will also be
obvious from these sections that the tutoring method of our tutors has also greatly shaped
the domain expert of CIRCSIM-Tutor (v.3).

GENERAL (DOMAIN) | INFERENCE | SITUATION-SPECIFIC
MODEL PROCEDURE " MODEL

Figure 6.13 Problem Solving: Applying a General Model to Form a
Situation-Specific Model (Adapted from (Clancey, 1986))

The type of task used by the domain expert is prediction. This expert uses a
problem-solving method to predict the qualitative changes for a set of physiology
variables in response to a perturbation acting on the CV system of the patient under

consideration.
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We will use Clancey’s (1986) definition for the general (domain) model, and the
situation-specific model. A general (domain) model “describes what is known about the
world, for example, knowledge about stereotypic patients and about diseases.” A
situation-specific model “is a description of some situation in the world, generally an
explanation of how a situation came about.” Figure 6.13 shows a view of problem-
solving. Inthisview “ageneral model is related to the current situation by applying an
inference procedure” (Clancey, 1986).

In these terms, then, the domain expert solving a prediction problem in our
domain needs to form a situation-specific model by applying the inference procedure on
the domain model of the CV system. Section 5.5.1 describes a problem-solving
procedure used by our tutors to solve a CV problem. A version of this procedure has
been used by the domain expert of CIRCSIM-Tutor (v.3) (see Chapter VIII). Here we
will concentrate more on the general models of the domain used by our tutors while
tutoring. One of these models, called the top level concept map, is shown in Figure 6.14
(a). Figure 6.14 (b) shows a possible situation-specific model obtained by performing
inferencing, using the problem-solving method of Section 5.5.1.

We will use Clancey’s (1986) definition of the general (domain) model, and the
situation-specific model. A general (domain) model “describes what is known about the
world, for example, knowledge about stereotypic patients and about diseases;” a
situation-specific model “is a description of some situation in the world, generally an
explanation of how a situation came about.” Figure 6.13 shows a view of problem-
solving. Inthisview “ageneral model is related to the current situation by applying an

inference procedure” (Clancey, 1986).
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Figure 6.14 (a) A General Model of the CV System, (b) A Situation-Specific Models of
CV System (in DR when Artificial Pacemaker is Malfunctioning -
Only Major Relationships are Shown)

As soon as a CV procedure is selected (by either the tutor or the student) the
domain expert using its inference procedure solves that problem. This activity is
performed prior to any interaction that takes place between the tutor and the student. At
that point the domain expert offers three types of knowledge to the rest of the system: (1)
support knowledge (captured by the general model(s) of the domain), (2) operational
knowledge (represented by the problem-solving procedure), and (3) situation-specific
knowledge (captured in the situation-specific model of the CV system for the current
procedure). These knowledge types help the pedagogy expert to develop plans to interact

with the student.
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6.9 Domain Knowledge Background for CIRCSIM-Tutor (v.3)

In Medical Physiology courses (and in recommended textbooks), cardiovascular
function is taught at a very wide range of organizational levels. These levels extend from
the interaction of the system's organ components on one extreme to the physical and
chemical events that occur in the individual cells that make up these organs on the other.
Understanding the function of the CV system at all of these organizational levels is
necessary because physicians use information from all of them to evaluate their patients
health status and because the therapeutic interventions that physicians use act at many
different levels. Understanding CV function at the uppermost (organ) level is most
important because much of theinitial information that a physician can obtain through the
examination of patients relates to activity at that level. The primary goal of CIRCSIM -
Tutor isto assist students to correctly predict the responses of the CV system at the top
level asthey relate to the regulation of mean arterial blood pressure (MAP), a process that
is essentia to the maintenance of adequate blood flow to the individual organs.

When students come to use CIRCSIM-Tutor, they do not know that this is a
system goal, except that the predictions that they are asked to make relate to parameters
that reflect CV function at the organ level only. Therefore, it was initially thought by the
designers and developers that the system would only have to contain CV knowledge at
that level. However, it quickly became obvious from the inspection of keyboard-to-
keyboard transcripts of tutoring sessions that this was not correct. Both tutors and
students use more detailed knowledge, knowledge at deeper organizational levels and
knowledge with a somewhat different perspective from that contained at the core organ
level. Tutors use this other knowledge to construct hints and explanations, and students
useit to explain their thinking and to respond to questions.

At the beginning of the research described in this chapter, | had two options to
develop a conceptual model of the domain expert for CIRCSIM-Tutor (v.3). (1) Start

with the conceptual model of CIRCSIM-Tutor (v.2) and extend it to a point where it
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could overcome its weaknesses (see Section 3.6.1), or (2) Restructure this model right
from scratch. After some research, | picked this second option. One of the major reasons
for doing this was that | found the behavior of our tutors as they perform domain
reasoning much more complex than | had anticipated. Asaresult patching the conceptual
model of CIRCSIM-Tutor (v.2) to capture this complex behavior would have created a
messy design. Thiswill become quite obvious in the following sections as | describe the
conceptual model of the domain expert of CIRCSIM-Tutor (v.3).

| have used interviewing techniques as the dominant method of developing
general models of domain. Later | also coded keyboard-to-keyboard transcripts to
analyze the behavior of the domain expert further. Section 5.5.1 describes the domain
problem-solving behavior of our tutors.

6.10 Nature and a Use of the Domain Knowledge By the Tutor and the Student in
Keyboard-to-K eyboard Sessions

One of the major purposes of this section is to describe the nature and the use of
the domain knowledge in our tutoring experiments. This we will achieve by using a
keyboard-to-keyboard transcript. Figure 6.15 shows selected excepts from a keyboard-to-
keyboard session. The problem description used for the CV problem in this session was
asfollows.

Mr. SAN is a patient whose cardiac pacemaker are dead. He wears an artificial
pacemaker which is the sole determinant of his heart rate. Normally the
pacemaker produces a heart rate of 70/min. However, a defect in the pacemaker
unit has caused the rate to suddenly change to 120/min.

These excepts are from the DR and RR phases of the CV system. These are
unedited except to correct typographical and spelling errors. An analysis of this transcript
points to many interesting aspects of the domain knowledge. Some of these aspects are
listed below. (Some of these aspects were known well before this research started. See

Section 3.6.1 for more details.)
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The nature of the domain knowledge used by the tutor was qualitative rather than
guantitative.
The focus of discussion during problem solving was seven core physiology
parameters (see Figure 3.4).
Occasionally the student and the tutor used domain knowledge with a greater degree of
detail that required more fundamental reasoning than simply reasoning about the core
physiology parameters (e.g., at instances. K1-tu-44-2, K1-st-45-1, K1-tu-57-3, K1-st-
58-1, K1-tu-61-1 in Figure 6.15).
This detailed knowledge on the part of the student, was some times invoked when she
had some difficulty in understanding (e.g., at instances. K1-st-45-1, K1-st-58-1).
There is a definite pattern in the use of domain knowledge; the tutors use more and
more detailed knowledge as students have more difficulty in solving problems. In
other words there is a direct relationship between the use of detailed levels of
knowledge and the degree of difficulty experienced by the student (e.g. at instances.
K1-tu-44-2, K1-tu-57-3).
Students sometimes seem to change per spective (viewpoint) in their reasoning as they
encounter difficulties (e.g., at instances. K1-st-23-1, K1-st-69-1). We define a
perspective of amodel to mean the nature of the models' reasoning. Each perspective
of a model provides a focus on alternative means for understanding a real world
phenomena which a model is representing/modeling. We will use viewpoint as a
synonym for perspective. This definition is consistent with the definitions used by
White & Frederiksen (1990) and Stevens & Collins (1980).
Reasoning that results from a change in the perspective deals with entities different
from the physiology parameters. These entities are mostly anatomical in nature (e.g.,
a instances: K1-st-23-1, K1-tu-27, K1-st-69-1).
Students seem to come back to the same perspective that was set (as goal perspective)

by tutors (e.g., at instances. K1-st-28-1, K1-st-58-1).
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» Tutors change the level of detail and perspective opportunistically or as aresult of the
student's change in level or perspective (e.g., a instances: K1-tu-27, K1-tu-29, K1-tu-
44-2, K1-tu-53-5, K1-tu-57-3, K1-tu-70-1).

» Tutors opportunistically guide students from different perspectives or levels of
knowledge back to the goal knowledge level consisting of core physiology parameters
(e.g., a instances: K1-tu-49-2, K1-tu-59, K1-tu-70-1).

The above observations point to the knowledge requirements for our system.

These also describe some of the key constraints in shaping the representation of the

domain knowledge in our system. We now further elaborate on these observations as

follows. Thisanalysis also makes explicit the behavior of our tutors while tutoring in the
domain, i.e., the way the pedagogy expert uses domain knowledge while interacting with

the student.

K1-tu-16-2: Now, what variable do you think will be affected first and in what direction?
Tutor started dialog using the parametric qualitative causal viewpoint (see
'ﬁ%tri-cm 6.11) at the top level (see Section 6.11). Thisisthe default level of the

K1-st-17-1: CO increase
Student responded using the same level and perspective..

K1-tu-18-1: Excellent!

K1-tu-18-2: What variableis affected next and how?

K1-st-19-1: MAP increase

Figure 6.15 Selected Excerpts from a Keyboard-to-K eyboard
Tutoring Session
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K1-tu-22-1: What causes MAP to rise?

Tutor and student up to this point constantly have used the parametric qualitative
viewpoint at the top level.

K1-st-23-1: Increased amount of blood coming into the right atrium.
At this instant student switched his per spective from the parametric to the
anatomical viewpoint (see Section 6.12). It isinteresting that at this instant

student
had a misconception regarding the value of MAP.

K1-tu-27-1: Wéll, if one of the earliest thi ngs to happen is that the CO goes up, the heart
will be removing increased quantities of blood from the central venous
compartment.

K1-tu-27-2: Why would there be an increased amount of blood coming into it?

Recognizing that the student has switched per spective, the tutor responded using
he anatomical viewpoint.

K1-st-28-1: | guess there would not be increased RAP, but would the TPR increase
because of the increased CO?

Sudent here switched back to the parametric viewpoint at the top level.
K1-tu-29-1: We are dealing now with the DR period.
K1-tu-29-2: That's before there are any neural, reflex changes.
K1-tu-29-3: The TPRisneurally controlled.
K1-tu-29-4: So what do you think would happen to it?

At thisinstant due to a change in the student's per spective, the tutor also
switched back to the parametric viewpoint at the top level.

During thisinterval both the student and the tutor continued to use the parametric
per spective at the top level.

Figure 6.15 Selected Excerpts from a Keyboard-to Keyboard
Tutoring Session (continued)
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K1-tu-44-2: And when pressure goes up, what structures are affected by the reflex and
how?

Here the tutor recognized that the student needs help. Asa result he guided the
student to think at the intermediate level (see Section 6.11).

K1-st-45-1: Thefiring of the baroreceptors increases.

The student here followed the tutor, and responded using intermediate level.

K1-tu-49-2: What changein MAP istriggering this reflex?
K1-st-50-1: MAP increase

The tutor and the student returned to the top level of parametric viewpoint.

During this period the student and the tutor remained at the top level of the
parametric viewpoint.

K1-tu-53-5: When MAP goes up what change occurs to the autonomic out flow to the
arterioles?

The tutor here recognized the student's difficulty and switched his viewpoint from
parametric to anatomical.

The student and the tutor, during this period, continued to use anatomical
per spective.

K1-tu-57-3: What happens to their (sympathetic vasoconstrictor nerves) firing
rate in this situation.
The tutor here switched to the deep level of the parametric viewpoint.

Figure 6.15 Selected Excerpts from a Keyboard-to Keyboard
Tutoring Session (continued)
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K1-st-58-1: Decreased firing.

The student, here, switched from the anatomical to the parametric viewpoint and
responded at the deep level (see Section 6.11).

K1-tu-59-1: Right!
K1-tu-59-2: That'swhy TPR goes down.

The tutor continued to use the parametric viewpoint and brought the student
again to the top level by summarizing results.

K1-tu-61-1: Think again sympathetic firing is being decreased.

The tutor, here, used a hint from the deep level (i.e. momentarily switched
fromtop to deep level).

K1-tu-68-2: But why?
K1-st-69-1: To decrease the amount of blood being pumped into the arteries.

The student, here, switched per spective from the parametric to the anatomical
viewpoint. Heisstill in the grasp of a misconception.

K1-tu-70-1: Right, the object isto decrease CO.
The tutor converted the student's response from the anatomical viewpoint to the

top level of the parametric perspective. (Snce the top level in the parametric
viewpoint is the default level for the tutor).

The tutor and the student continued to use the parametric viewpoint at the top
level until the end of this session.

Figure 6.15 Selected Excerpts from a Keyboard-to Keyboard
Tutoring Session (continued)
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The type of domain knowledge used predominantly by tutors and students is
gualitative and causal in nature. Thisis, of course, an immediate consequence of the
nature of the problem and the nature of the requested solution (see Chapter I11).
However, there are instances in which reasoning must be based on the absolute value of
some parameter. When some parameter must have a value greater than some threshold
value in order to cause a change in another parameter, we call this a conditional
relationship. This kind of relationship is different from the usual relationships, which
invariably cause a qualitative change in the variable(s) they affect.

Most of the physiology reasoning needed to solve CV problems centers around
the core parameters of the CV system. Tutorsin all 45 recorded sessions tried to use and
encourage students to acquire reasoning skills to solve CV problems, using the core
parameters. The core parameters form a model of the CV system that is sufficient to
solve many CV problems. We call this model the minimal concept map (see Figure 6.14
(@), because no simpler model than this can correctly simulate the behavior of the CV
system. Hence, one of the main objectives of CIRCSIM-Tutor is to help students to
acquire the minimal concept map as their mental model to solve CV problems. The
minimal concept map is even simpler than the concept maps used in CIRCSIM-Tutor
(v.0) and CIRCSIM-Tutor (v.2).

When students have misconceptions they seem to reason using more detailed
knowledge than in the minimal concept map. The tutors also seem to use more detailed
knowledge if they are trying to remedy a student misconception or if it is opportune from
their point-of-view. This "deeper” reasoning elaborates the causal relationships between
the core parameters and introduces new parameters, which serve as intermediate stepsin
the causal links between the core parameters.

Our empirical studies also have confirmed that there are definite, progressively
increasing levels of knowledge that students and tutors traverse while solving problems

(see Section 6.14). Each more detailed level elaborates the level immediately above it.
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Tutors use these detailed levels to integrate domain knowledge. This integration is
achieved by using deep reasoning to support understanding at the top level. In our case
this is the minimal concept map. Each successive level contains more physiology
parameters and causal relationships between them than the level immediately above it.
We have identified two elaborated levels and we call them the intermediate-level and the
deep-level concept maps. The conceptual structures for these levels are explained in the
next section.

The type of knowledge described above is comprised of a single type of domain
concept: a physiology parameter. These domain entities are related via causal
relationships between them. The three levels - minimal (top), intermediate, and deep
level concept maps - form a progression of qualitative and causal models of the CV
system. Each level is sufficiently rich in knowledge to simulate the behavior of the CV
system. These three levels also constitute a perspective of the CV system. We call this
perspective the parametric (qualitative and causal) viewpoint. This is the goal
perspective of CIRCSIM-Tutor.

It is also interesting to note from Figure 6.15 that students and tutors sometimes
invoke a quite different perspective of the CV system. This perspective isindeed used by
students to support their reasoning for the goal perspective. We call this perspective the
anatomical (qualitative and causal) viewpoint, because this perspective is composed of
domain concepts that are the anatomical components of the CV system. Examples of
these are: the heart, central nervous system, arterial system, and venous system. While
reasoning with this perspective, students tend to use the behavioral aspects of the
anatomical components of the CV system, e.g., "the heart will be removing increased
guantities of blood from the central venous compartment,” "the left ventricleisfilled with
blood." Most of the time, this perspective is invoked by students when they encounter
difficulty in reasoning. This perspective is also invoked by tutors when students switch

(to this) perspective or when tutors find it convenient to make a point.
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It is interesting to note that classroom instruction teaches both of these
perspectives to students but the parametric perspective is emphasized while problem
solving. The scope of these two perspectives, as invoked by students/tutors, covers the
full functionality of the CV system, i.e., each action of the CV system explainable viathe
parametric viewpoint has an equivalent explanation in the anatomical perspective. When
the tutor finds an opportunity to remedy a misconception he switches between the
perspectives or elaborates on the parametric viewpoint (see Section 6.14).

6.11 The Multi-Level Parametric Viewpoint

This section describes the building of conceptual structures for the parametric
(qualitative and causal) viewpoint of CV system. Here we also show how the two
modeling dimensions of sufficiency and elaboration shape these conceptual structures.
Sufficiency is related to the amount of detail and elaboration (also called granularity) to

the level of detail.

C
X - Y
LEGEND
|:| = APHYSIOLOGY PARAMETER
C
—b = A CAUSAL RELATIONSHIP BETWEEN TWO
PHYSIOLOGY PARAMETERS X AND Y,
WHERE X CAUSALLY AFFECTSY.

Figure6.16 A Schematic Representation of the Fundamental
Entitiesin the Parametric Viewpoint

The fundamental domain concepts and relationships used in this perspective of the

CV system are physiology parameters and causal relationships between these
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parameters, respectively. Schematically these two entities can be represented and related

as shownin Figure 6.16.

Figure 6.17 The Intermediate Level Concept Map
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Figure 6.18 The Deep Level Concept Map

The building of the conceptual structures for the parametric viewpoint is mostly

based on interviewing our tutors. The minimal concept map (see Figure 6.14 (a)) was
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obtained by modifying the concept map used in CIRCSIM-Tutor (v.2). Theintermediate
level (see Figure 6.17) and the deep level (see Figure 6.18) concept maps are new for this

view of our domain.
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Figure 6.19 A Fragment from the Multi-Level Parametric
Viewpoint of the CV System
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The minimal concept map isthe goal level of the system. It ishoped that students
will be able to successfully solve problems at this level after using CIRCSIM-Tutor. The
intermediate-level concept map elaborates the causal relationships that are represented at
the minimal level, whereas the deep-level concept map elaborates further the causal
relationships at the intermediate-level. These increasing levels of detail define the
elaboration dimension for the parametric viewpoint (see Figure 6.19).

This configuration also alows tutors to help students abstract their reasoning from
any of the elaborated levelsto the top (the goal) level of the concept map. In other words,
the existence of the core parameters at all levels helps tutors to switch their tutoring
flexibly along the elaboration/abstraction dimension (see Figure 6.19).

The notion of elaborated levels of knowledge can be generalized to a large
number of domains that can be modeled via qualitative and causal modeling processes
(de Kleer & Brown, 1983). We have limited our identification to three levels but there
can be additional levels in our domain or others. The actual number of levels that are
employed depends mainly on pragmatic considerations determined by the educational
context in which the ITS will be used and the expected knowledge state of the targeted
students. As the elaboration levels increase from the most abstract (top) level, the
reasoning tends toward reasoning from first principles in the domain.

We assume that our students possess information at all the levels. We
hypothesize that the intermediate level of the concept map acts to provide a source of
cognitive continuity in student reasoning. By cognitive continuity we mean gradual
movement in reasoning from the most abstract to the most elaborated level. Reasoning
only between the minimal and the deep level concept maps yields poor cognitive
continuity and forces the students to jump abruptly between the levels. Cognitive
continuity also provides the tutor with an opportunity to help the student systematically

integrate this knowledge by gradually using the elaborated levels of the concept map.
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The modeling dimension - sufficiency - also shaped the conceptual structures of
Figures 6.14 (a), 6.17, and 6.18. The notion of sufficiency helped us to determine the
knowledge details in each level of the concept map. Sufficiency also depends mainly on
pragmatic considerations. The minimal concept map contains the core parameters of the
CV system. The selection of these core parameters depends upon their importance in
solving problems. Most of these parameters can be measured experimentally or
calculated. We hoped that the limited number of these parameters at the top level allows
students to predict the behavior of the CV system with less cognitive strain. We believe
that there is a high probability that medical students will retain this simplified casual
model to solve real life medical problemsin their professional life.

The sufficiency of the deep level is determined mainly by the amount of
physiology knowledge that students are expected to learn from class room lectures. This
knowledge may be required to explain causal relationships or correct misconceptions
during tutoring. The contents of the intermediate level were determined by the need to
tutor student errors/misconceptions at a level below the surface; the deep level elaborates
this one level further to give us another chance at tutoring.

6.12 Anatomical Per spective of the CV System

This section describes the conceptual structures that make up the anatomical
perspective of the CV system. This perspective, as explained in Section 6.10, has been
used by our tutors in the keyboard-to-keyboard sessions and is used to support reasoning
from the parametric viewpoint of the CV system. The fundamental domain concept used
in this perspective is an anatomical entity, e.g., the heart, arteries, and veins. The
following three steps could be used to build this perspective of the CV system.

1) development of a conceptual hierarchy defining the structural relationships between
the anatomical concepts,

2) definition of the model of each anatomical concept used in the conceptual hierarchy.
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3) combination of steps 1 and 2 to form a functional model of the CV system from an

anatomical perspective. This processis described below.

LEGEND

I
xSt v 3 = xisav
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@_A>® = X isassociated-with Y

Figure 6.20 An Schematic Representation of the Generic Relationships between the
Anatomical Concepts Used in the Anatomical Viewpoint of the CV System

We have developed a conceptual hierarchy, which relates anatomical conceptsin
two dimensions - aggregation and generalization. The aggregation dimension defines
the part-whole relationships, while the generalization dimension defines the is-a
relationships between the anatomical concepts of CV system. A generic schematic
representation of an anatomical concept along these two dimensions is shown in Figure
6.20. The conceptua hierarchy was built by first identifying all anatomical concepts used
in teaching cardiovascular physiology by interviewing our tutors. The next step was to
identify the relationships between the resulting set of anatomical concepts as shown in

Figure 6.20. This process yielded the conceptual hierarchy shown in Figure 6.21. This



180

figure also shows the additional relationships between physiology parameters and

perturbation concepts within this hierarchy.
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Figure 6.21 A Domain Concept Hierarchy from the Anatomical Viewpoint
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These additional structures are explained more fully in the next section. The conceptual
hierarchy of Figure 6.21 defines a structural model that represents the physical
relationships between the anatomical components of the CV system. We assume that
students possess this structural knowledge from classroom lectures in physiology and in
anatomy.

The second step towards building the anatomical perspective is assigning
behavior to each anatomical component of Figure 6.21. When students and tutors invoke
this perspective they reason about the behavior of the anatomical components of the CV
system in qualitative terms, e.g., the heart is pumping more blood.

The third step towards creating the anatomical perspective of the CV system isto
integrate the structural model (see Figure 6.21) and the behavioral model of each
anatomical concept to form afunctional model.

All three steps define the knowledge structures that help to perform physiological
reasoning from the anatomical perspective of the CV system. The functional model
defines the higher level functions of the CV system, e.g., supplying blood to different
parts of the body via the arterial system, returning blood to the heart through the venous
system, the regulation of this process via the central nervous system.

These higher level functions are the behaviors of the major components of the CV
system, which, in turn, is the sum of the behaviors of its constituent parts. Hence the
domain concept hierarchy along with the behavioral model of anatomical components
defines the functional decomposition of the behaviors of the CV system down the concept
hierarchy.

Besides facilitating the functional decomposition of the normal behaviors of the
CV system, the functional model of the CV system from the anatomical viewpoint can
also be used to predict the behaviors of the CV system that result from perturbations
acting on the system. This full notion of the functionality of the CV system through the

anatomical perspective is explained in the next section, which deals with mapping
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between the identified perspectives. Further research is required to complete the last two
steps to develop afull anatomical perspective for CIRCSIM-Tutor.

6.13 Mapping between the Per spectives

The parametric and anatomical perspectives parallel each other. The scope of the
coverage of a domain phenomenon by these perspectives is the same. In other words
both perspectives are capable of explaining a domain phenomenon at equivalent levels of
detail. Thisdiversity, in turn, lets students and tutors switch between perspectives at any
time during learning and tutoring respectively. An example of the use of these
perspectives to explain a physiological action isgiven in Figure 6.15 (K1-st-69-1 and K 1-
tu-70-1). In this example the student explains his reasoning using the anatomical
perspective. The tutor in a response gives an equivalent explanation from the parametric
perspective (since thisis the tutor's goal perspective).

For a machine tutor to behave like our human tutors, it is necessary to have afull
functional mapping between these two perspectives. Incorporation of this capability not
only allows a machine tutor to switch flexibly and opportunistically between these
perspectives but also helps it to "understand” the student's responses regardless of which
perspectiveis used.

In CIRCSIM-Tutor a full functional mapping between perspectives can be
obtained by augmenting the domain concepts defined in the conceptual structure of
Figure 6.21. This section describes the way that we augmented this knowledge and some
additional hierarchical knowledge structures that can assist the mapping processes

between the two perspectives.
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Mapping between perspectives requires relating entities between perspectives at a

functional level. The first step in the process of mapping between perspectives is to

identify relationships between the entities of different perspectives. In physiology a

parameter is associated with an anatomical object. For example, arterial resistance (RA -

a CV parameter) is associated with the arterioles (an anatomy concept). Relationships

between parameters and anatomical concepts are shown in Figure 6.21 by links labeled

“A”. Perturbations cause physiology parameters to change value. We call the first

parameter that is affected by a perturbation the procedural parameter. Figure 6.21 aso

shows the relationship between perturbations and their procedural parameters by links

labeled “C."
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Besides these generic relationships we also need relationships that define
functional relevance between the concepts of different perspectives. Hence the second
step in mapping between the perspectives is to determine functional relevance between
the concepts of different perspectives. The concept map provides a notion of the
functioning of the CV system from the parametric viewpoint. Section 6.12 provides an
equivalent notion of the functioning of the CV system from an anatomical viewpoint.
Hence for mapping between perspectives, we need mechanisms that relate these two
equivalent notions of the functioning of the CV system.

Figure 6.22 shows a semantic structure that can provide a functional bridge
between the two. Each domain concept should be augmented with this structure. An
explanation for this semantic structure follows. Each domain concept (X) can be viewed
as having a number of roles, and each role can be accomplished by performing a number
of functions. If aconcept isa part of the aggregation hierarchy then some of its functions
might lead to other domain concepts in that hierarchy (because Y in Figure 6.22 is a part
of X and hence Function2 is the same as the totality of the roles of Y). Also if a concept
has a number of associations with other domain concepts then some of its functions might
lead to those associated domain concepts (for example, Z, in Figure 6.22 which is a
different type of domain concept than X, is associated with X and hence Function3 is the
same as one of the roles of Z). The remaining functions of that domain concept lead to
various actions and each action is caused by some actor (another domain concept) and its
effect is propagated to some recipient (another domain concept). These cause and effect
phenomena lead that domain entity through various states of its existence. An example of
a semantic structure for a perturbation concept is shown in Figure 6.23.

Augmenting each domain concept with this semantic structure provides us with
multiple (but semantically equivalent) paths when a change is propagated in the CV
system. Some of these paths have only physiology parameters (and hence constitute the

parametric view of that change) and others have only anatomical objects (and form the
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anatomical perspective for that change). Changing a perspective for a causal action in the
CV system is now equivalent to selecting an alternative (but equivalent) path. The
domain independent semantic structure of Figure 6.22 can provide a prime mapping
mechanism to switch between various perspectives. The full functional mapping between
the parametric and the anatomical perspectives is not yet completely implemented in

CIRCSIM-Tutor (v.3).
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Figure 6.23 The Semantic Structure of a Perturbation

6.14 Model Switching Behavior of Our Tutors. Domain Models Viewed Through
the Tutor’s Eye

Most of the ideas to develop multiple models for the domain expert were created
by interviewing our tutors. These models were aso observed while analyzing transcripts
of keyboard-to-keyboard sessions. Although physiology is taught at a very wide range of
organizational levels (see Section 6.9), it would be interesting to know whether the
multiple models, described above, were organized by the characteristics of the domain

expert or whether it is the pedagogy expert that shaped the domain knowledge into this
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form. Also it would be interesting to know which models and transitions between them
are most used by our tutors while performing in the keyboard-to-keyboard sessions.

Dr. Allen Rovick and | have coded 24 keyboard-to-keyboard sessions to get more
insight about the model switching behavior of our tutor. Three different tutoring
protocols have used in our 45 keyboard-to-keyboard sessions (see Section 5.5.2). We
have encoded eight sessions from each set representing different tutoring protocols used
in our tutoring experiments.

Although we do agree that there may be many more domain models besides those
| have described above, we have limited ourselves to two perspectives and three levels
(see Section 6.11 & 6.12) for CIRCSIM-Tutor (v.3). For coding purposes, we have
categorized the domain knowledge in 24 keyboard-to-keyboard sessions according to
these domain models. We have created 12 categories for transitions between models.
Figure 6.24 shows these categories and a representative excerpt from a keyboard-to-
keyboard session for each category. In Figure 6.24 MPT, MPI, and MPD refer to the top,
intermediate, and deep level concept maps. MA is anatomical model of CV system. In
this Figure MPT -> MPI represents a transition from the top to the intermediate level
concept map. A schematic view of transitions between domain models is shown in
Figure 6.25.

Figure 6.26 shows two examples from transcripts in which the tutor
systematically guides the student between different parametric models to achieve his
goals. In Figure 6.26 (a), at K1-tu-53-5, the tutor guides the student to switch from the
top to the intermediate level of concept map (see Figure 6.17). The student at K1-st-54-1
did not provided the answer that the tutor wants, as a result he, at K1-tu-55-2, again
guided the student to respond at the deep level of concept map (see Figure 6.18). At K1-
st-56-1 the student supplied a wrong answer, as a result, the tutor at K1-tu-57-1 & 2
provided the correct answer for his question. Next at K1-tu-57-3 he wanted the student to

provide a correct reply for the value of a CV parameter. After getting this reply the tutor
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at K1-tu-59-2 summarized this CV mechanism by making a transition from the deep to

the top level of concept map.

MPT --> MPI
K1-tu-53-5:

MPI --> MPD
K 39-tu-60-6:
MPT --> MPD
K39-tu-120-1:

MPD --> MPI
K40-tu-46-2:

MPI --> MPT
K40-tu-54-5:

MPD --> MPT
K39-tu-62-1:

K 39-tu-62-2:

MPT -->MA
K39-tu-126-2:

MPI -->MA
K42-tu-100-1:

MPD --> MA
K12-tu-47-2:

MA -->MPT
K 39-tu-18-3:

K 39-tu-18-4:
MA --> MPI
K11-tu-67-2:

MA --> MPD
K2-tu-32-3:

When MAP goes up what change occurs to the autonomic
outflow to the arterioles?

That one does physiologically mostly by changing the
sympathetic stimulation o f the ventricle or by changing
the circulating epinephrine levels.

When you said that TPR D, you implied that the reflex
decreased sympathetic activity.

Do you know of away to make the heart beat more force
fully without changing the fiber length?

And filling is changed by altering RAP or itsrelated
variables, EDP.

End diastolic fiber length as measured by end diastolic
pressure or end diastolic volume.

Which variable in the predictions table represents
preload?

When CO D, the ventricle takes less blood out of the
atrium and the central venous compartment.

If I pump more blood per minute out of the heart (hence out
of the venous compartment) ...

Venous return means blood returning from the systemic
circulation to the heart.

When you give a transfusion, most of the blood will
end up there.
Now what do you think will be the first variable affected?

If the volume of blood in the central veins decreases,
what would happen to central venous pressure?

With increasing COs, blood is removed more rapidly from
the central blood compartment leading to smaller volumes
and pressures (including RAP) there.

Figure 6.24 Categoriesfor Domain Model Transitions
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Parametric Perspective Anatomical Perspective (MA)

Top Level > @
-——————————————
Concept Map —.
(MPT)

Intermediate Level
Concept Map
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A
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Concept Map
(MPD)

Figure 6.25 A Schematic View of Transitions Between Domain Models

Figure 6.26 (b) shows an excerpt in which the tutor makes a transition between
the parametric to the anatomical view point. At K3-tu-53-1 the tutor initiated this
transition from the parametric to the anatomical view point. When he thought that the
student at K3-st-54-1 understood the domain knowledge under discussion, he made a
transition back from the anatomical to the parametric viewpoint.

Figures 6.27, 6.28, and 6.29 show the result of encoding of keyboard-to-keyboard
sessions. Some of the results are described as follows. Refer at Section 6.10 for more

observations about this behavior.
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K1-tu-53-5:

K1-st-54-1:

K1-tu-55-1:
K1-tu-55-2:

K1-st-56-1:

K 1-tu-57-1:
K1-tu-57-2:
K1-tu-57-3:

K1-st-58-1:

K1-tu-59-1:
K1-tu-59-2:

K3-tu-53-1:

K3-st-54-1:

K 3-tu-55-1:
K 3-tu-55-2:

When MAP goes up what change occurs to the autonomic

outflow to the arterioles?

The efferent outflow causes vasodilation of arterioles.

That'sright.

What nerves are affected and in what way?

Sympathetic cholinergic nerves.

no. They're not part of the baroceptor reflex.

The sympathetic adrenergic vasoconstrictor nerves are.

What happensto their firing rate in this situation.
Decreased firing.

Right.

That's why TPR goes down.

@

The venous return may not change for a couple of minutes
but what about the rate at which blood is being removed
from the central blood compartment?

That rate would increase, perhaps increasing RAP???

Y ou are correct the rate of removal of blood would

increase because CO is going up.

But if you take blood out of the central venous compartment
faster than it is returning, what happens to the central
venous (I.E. RAP) pressure?

()

Figure 6.26 Tutor Systematically Guiding the Student to Make Transitions

Between the Domain Models

If we compare the total number of transitions between domain models under the

three tutoring protocols then there is a dramatic increase in sessions where Protocol 3 is

used (see Figures 6.27, 6.28, and 6.29). It is difficult to pinpoint exactly the reason for

this active behavior.

uncontrolled variable. Our tutors (like any other tutor) learn while tutoring.

It could be due to the nature of Protocol 3 or some other

It is

reasonable to assume that instead of the domain expert it is the pedagogy expert that is

learning. One aspect of this learning deals with “How to tutor.” It is possible that with

time and experience our tutors find model switching to be the most effective method of
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remediating misconceptions. It should be noted that before this research, our tutors were

not consciously aware of their model switching behavior.

Figure 6.27 Model Transitionsin Sessions Using Protocol 1

Model MPT MPI MPT MPD MPI MPD MPT MPI MPD MA MA MA
Transition| --=-> | > | - >| > > > | > > > > | > [TOTAL
MPI MPD MPD MPI MPT MPT MA MA MA MPT MPI MPD

K1 1 1 1 0 0 2 1 0 0 1 0 0 7

K2 0 0 1 0 0 2 1 0 0 0 0 1 5

K3 1 1 4 1 1 3 1 0 0 1 0 0 13

K4 1 0 0 0 2 0 0 0 0 0 0 0 4

K5 4 0 0 0 4 0 0 0 0 0 0 0 8

K6 1 0 0 0 . 0 0 0 0 0 0 0 2

K7 3 1 1 0 3 ) ) 0 0 1 1 0 14

K8 0 0 1 0 0 L 0 0 0 0 0 0 2
ITOTAL 12 3 8 1 11 10 5 0 0 3 1 1 55
LEGEND

MX --->MY = THE TUTOR HAS SWITCHED FROM MODEL X TO MODEL Y.

HERE X OR Y CAN BE PT, PI, PD, or A.

PT = PARAMETRIC MODEL (TOP LEVEL CONCEPT MAP)

Pl = PARAMETRIC MODEL (INTERMEDIATE LEVEL CONCEPT MAP)

PD = PARAMETRIC MODEL (DEEP LEVEL CONCEPT MAP)

A =ANATOMICAL MODEL OF CV SYSTEM

Among models, our tutors make more transitions between the three levels of

parametric viewpoint of CV system than between the parametric and the anatomical

viewpoint. In most cases the number of transitions from the top to the intermediate and

the deep level concept maps (i.e., MPT -> MPI & MPT -> MPD) is the same as the

number of transitions from the intermediate and the deep levels to the top level concept

map (i.e., MPD -> MPT & MPI -> MPT). One reason for this symmetry is that the top
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level concept map isthe goal level of our tutors. For Protocol 3 the most used transitions
are MPT -> MPI, MPT -> MPD, and MPD -> MPT. The number of transitions between
the parametric and the anatomical viewpoint is almost negligible in the first two
protocols. This behavior is significantly noticeable in Protocol 3. The most popular

transition here is from the anatomical model to the top level concept map, i.e., MA ->

MPT (see Figure 6.29).
Model MPT | MPI MPT | MPD MPI MPD MPT | MPI MPD MA | MA MA
Transition | T >N [ > | - > | - > | - e S > | s > - ST e— S [ > | > FOTAL
MPI MPD MPD MPI| MPT MPT MA MA MA MPT MPI MPD
K9 3 1 0 0 2 0 0 0 0 0 0 0 6
K10 4 1 1 1 2 2 1 0 0 0 0 1 13
K11 2 0 0 0 3 0 1 0 0 0 1 0 7
K12 3 2 2 1 2 2 0 0 1 0 0 1 14
K13 2 0 0 0 2 0 0 0 0 0 0 0 4
K14 1 0 0 0 1 0 0 0 0 0 0 0 2
K15 1 0 0 0 1 0 0 0 0 0 0 0 2
K16 2 0 0 0 1 0 0 0 0 0 0 0 3
TOTAL 18 4 3 2 14 4 2 0 1 0 1 2 51
LEGEND
MX--->MY = THE TUTOR HAS SWITCHED FROM MODEL X TO MODEL Y.
HERE X OR Y CAN BE PT, PI, PD, or A.
PT = PARAMETRIC MODEL (TOP LEVEL CONCEPT MAP)
Pl = PARAMETRIC MODEL (INTERMEDIATE LEVEL CONCEPT MAP)
PD = PARAMETRIC MODEL (DEEP LEVEL CONCEPT MAP)
A =ANATOMICAL MODEL OF CV SYSTEM

Figure 6.28 Model Transitionsin Sessions Using Protocol 2
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These results indicate that our tutors certainly make use of the models described

in the previous sections. Their remediation method in Protocol 3 depends heavily on

model transitions to tutor student’ s misconceptions.

Figure 6.29 Model Transitionsin Sessions Using Protocol 3

Model mpt| mpi | mpT | mPpDo | mPi | mep [ wmpT| P | meo| ma | ma | ma

Transition | > | === | —= > N (NS R— TN RS R [p— > | [TOTAL
mpi [ mpp | mep | wmpi | mpT | mPT | mA | ma MA | wpT | mPi | WD
4

K39 2 1 3 0 1 4 0 0 4 0 0 19

o 6 2 7 2 6 . 4 0 1 4 0 1 40

i 3 0 5 0 2 3 3 0 1 3 1 0 21

ka2 3 0 1 0 2 2 1 1 0 1 0 . 1

a3 4 0 1 0 4 0 1 0 0 1 0 0 1

s 2 1 6 N 1 4 0 0 0 0 0 0 15

s 2 1 2 0 0 3 1 0 0 . 0 0 10

Ka6 0 0 0 0 0 N 0 0 0 0 0 0 1
TOTAL 22 5 25 3 16 24 14 1 2 14 1 2 129
LEGEND

MX —-> MY = THE TUTOR HAS SWITCHED FROM MODEL X TO MODEL Y.

HERE X OR Y CAN BE PT, PI, PD, or A.

PT = PARAMETRIC MODEL (TOP LEVEL CONCEPT MAP)

Pl = PARAMETRIC MODEL (INTERMEDIATE LEVEL CONCEPT MAP)

PD = PARAMETRIC MODEL (DEEP LEVEL CONCEPT MAP)

A= ANATOMICAL MODEL OF CV SYSTEM

6.15 Integration Between Roles of the Tutor: Shared | nfer ence Processes

As we have seen in the previous sections that the domain expert uses different

models to perform reasoning in the domain. These models are the general models of the

domain (see Section 6.8). These multiple models are also used by the pedagogy expert to
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perform tutoring in the domain. One of the functions that the pedagogy expert performs
with these models deal s with remediating misconceptions of the student.

In away, these multiple domain models are shared resources that both experts use
for their own purposes. We can still ask: are there other resources that both of these
experts share to produce effective tutoring behavior? One type of domain knowledge that
can also be a potential resource is the problem-solving algorithm. This algorithm, as we
have seen in Section 5.5.1, is used by the domain expert to develop a situation specific
model of the domain. In this and following sections we will describe a study that is
primarily geared to understanding the nature of integration between the two experts. In
this study we will concentrate on the problem-solving algorithm of the domain expert.

6.16 Research Approach

We assume that the domain expert and the pedagogy expert result from the
collaborative behavior of various cognitive processes. The cognitive processes that
support the roles of the domain expert and the pedagogy expert are denoted by "Ds" and
"Ts' respectively.

One of the traditionally successful methods of performing cognitive analysis is
protocol analysis (Ericsson & Simon, 1993). Analyzing only the transcripts of tutoring
sessions will not solve our problem because in the transcripts the tutor's protocol is a
result of the interaction between the D and the T types of cognitive process and therefore
it is difficult to observe this interaction, clearly. It would be extremely helpful if we
could observe the tutor performing one of the two roles in isolation and then compare it
with the integrated behavior in the tutor’s protocol of tutoring transcripts. Fortunately, in
our case the tutor is also the domain expert, henceiit is possible to observe the behavior of
the tutor performing the domain task that he assigns to the student in the tutoring
situation. The research approach we have taken consists of the following steps:

(i) Model the behavior of the tutor, solving domain problems, in isolation. This will

delineate a set of cognitive processes (Ds).
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(if) Using a set of Ds (obtained from above step) and Ts (obtained from the research
work reported in this thesis) analyze the tutor’s protocol in the tutoring transcripts. This
analysis, we hypothesized, would yield a clear interaction between D and T types of
cognitive processes and hence between the two roles of the tutor.

6.17 Skilled Tutor AsDomain Expert

In this section we will concentrate on the problem-solving behavior of the domain
expert. Using various knowledge acquisition techniques we have identified a set of
cognitive processes (Ds) which our tutors use while solving a task in the domain of
cardiovascular physiology. These processes together form a knowledge structure that we
call the Inference Triangle. This structure is used by the domain expert in a variety of
ways to solve a problem in the domain. We have used the think-aloud method as a prime
source to delineate cognitive processes (Ds), which together constitute the problem-
solving behavior of the domain expert. We have conducted a set of think-aloud sessions.
Section 4.6.3 describes the method used in these sessions.

6.17.1 Thelnference Triangle: A Qualitative Causal Reasoning Tool Used

by the Domain Expert. In thissection we will describe various cognitive processes (Ds)

used by the domain expert in solving CV problems. These processes were combined in
different ways by the domain expert to form high level operations. A task structure for
the problem-solving behavior of the domain expert is built out of a sequence of these high
level operations. The prime technique for this analysis was protocol analysis (Ericsson &
Simon, 1993). We have also used other knowledge acquisition techniques (e.g.,
interviews with the domain expert) to add details to this analysis.

We have identified three basic cognitive processes (Ds) used by the domain expert
in solving aCV problem. These are defined as follows:

I) Collection. Thisisafunction that is applied to a concept C and yields a set of
concepts U. Each member of U will then have arelationship R with C. The nature of the

relationship (R) between C and the members of U, in our domain, is causal. The type of
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concepts used in this function can be parameter, anatomy, or perturbation (Khuwajaet al.,
1992). An example of use of thisfunction by the domain expert is. “RAPs, of course, a
determinant of SV ...”.

1) Selection. Thisisalso afunction. Input to thisfunction isaconcept C and a
set of concepts U. Each member of U has a relationship R with C. The output of this
function is a set of concepts V that is a subset of U. The nature of the relationship R, in
our domain, is causal and the type of concept C can be parameter, anatomy, or
perturbation. An example of use of this function by the domain expert is. “...thisisa
matter of prior knowledge, in this instance the predominating factor that influences SV
happensto be RAP...”.

There is a special case for each of above functions which we describe as follows.
Each concept C has a state at each instant in time. This state can be represented by
gualitative values, increase (+), decrease (-), or no change (0). In the special case the
input to the collection function is a concept C and the output is a set of state values of C
that it had back in time (e.g., in some phase of CV system). An example of this caseis:
“The original procedure was a beta blocker which decreases the HR, and we had a reflex
effect through the parasympathetics on HR ...”. In the case of the selection function, the
input is a set of state values for a concept C and the output is a state value of C, which is
also amember of the set of input valuesto C.

[11) Inference-calculation. This function takes two concepts C1 and C2 and a

state value of C1 as input. Its output contain a state value of C2. C1 and C2 have a
predefined relationship R between them. An example use of this function by the domain
expertis: “...so | indicate in DR that mean arterial pressure has fallen”. A special case
also exists for this function. Inthiscaseinput is a state value for the concept C at time t1.
Output of this function is a state value of C at time t2. An example use of this case is:

“so | put adecrease herein TPR ... “.
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Figure 6.30 The Inference Triangle

These three functions are interrelated and form a knowledge structure that we call
the inference triangle (see Figure 6.30). There are some special characteristics of this
triangle, which we describe below. Figure 6.30 can also be viewed as a directed graph.

The domain expert traversesit to perform reasoning in the domain. A repeated use of this
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knowledge structure enables the domain expert to develop a situation-specific model
from the domain model of CV system.

Traversing successfully from node A to node B, in this structure, requires the
domain expert to use knowledge from the general model of the domain. A successful
traversal from node B to node C requires the domain expert to consider situation-specific
knowledge (e.g., “ The procedure variable is to block beta adrenergic receptors ... and we
know that when we put beta blocker in, what we are going to basically do is reduce the
tonic activity of those particular tissues.”) in conjunction with the general model of CV
system. A traversal between nodes A and C yields the prediction for the state value of the
concept at either A or C (depending upon the situation at hand). A complete traversal of
this knowledge structure yields a prediction for any CV parameter.

The domain expert traverses the inference triangle in a number of different ways
while solving problems. In other words the domain expert uses these three cognitive
processes in different sequences, as follows:

(&) collection ---> selection ---> influence-calculation

(b) collection + selection ---> influence-cal culation

(c) collection + selection + influence-calculation

(d) collection + influence-calculation ---> selection

(e) collection ---> selection + influence-calculation

In case (a), the domain expert uses collection, selection, and then influence-cal culation
functions, in this sequence. But each of these functions can be used separately. In case
(c), for example, al three functions are used at the same time, i.e., case (C) is a true
compilation (Anderson, 1983) of (a). By compilation we mean that the domain expert
has mastered these functions so that he can use all three as a unit rather than treating each
as a separate entity. This behavior of the domain expert is not surprising and agrees with

the findings in the literature on expert-novice differences (Chi et a., 1988). Examples of
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the use of each compiled form of these cognitive processes, by the domain expert, are
shown in Figure 6.31.

These three cognitive processes together form three high level operations which
the domain expert uses to perform the prediction task. These operations are defined as

follows:

|) Spreading operation. This operation determines the direction of inference
used by the domain expert. In this operation inferences are made from the cause to its
effect (i.e., in the forward direction). For example, in an instance, the domain expert used
this operation to predict the value of CVP from CBV by propagating the causal
effect/influence. Here CBV is the source variable and CVP is the affected variable.

Figure 6.32 schematically shows this operation by instantiating the inference triangle.

» collection + selection: “... and total peripheral resistance is a determinant of
mean arterial pressure...”

» collection + selection + influence-calculation: “TPR isaneura variable and
therefore it does not changein DR.”

» collection + influence-calculation: “... and now | have the two determinants
of SV moving in opposite directions ...”

» selection + influence-calculation: “... soitisgoingtobeupin SS.”

Figure 6.31 Examples For Compiled Cognitive Processes

II) Originating operation. This operation is the opposite of the spreading

operation, i.e., here inferences are made from the effect towards its cause. Using this
operation the domain expert predicted a variable by reasoning backwards from its source.

An example use of this operation is shown in Figure 6.32.
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EXAMPLE: PROCEDURE:  RA {
STAGE OF CV SYSTEM RR

SPREADI NG OPERATI ON ORI G NATI NG OPERATI ON

EDV & CVP o BV, & WR

EXAMPLE:  PROCEDURE: RA‘
STAGE OF CV SYSTEM  SS

CAUSAL SUMVATI ON

SV(DR VALUE) & SV(RR VALUE)

WLV RL A

SS) <@——————SV (DROrRI

Figure 6.32 Examples of the Spreading, Originating, and
Casua Summation Operations

Spreading

collection -> selection -> influence-calculation
collection + selection -> influence-cal cul ation
collection + selection + influence-cal culation
collection -> selection + influence-cal culation

Originating

collection -> selection -> influence-calculation
collection + selection -> influence-cal cul ation
collection + selection + influence-cal culation
collection + influence-calculation -> selection
collection -> selection + influence-cal culation

Causal summation

collection -> selection -> influence-calculation
collection + selection -> influence-cal cul ation
collection + selection + influence-cal culation
collection + influence-calculation -> selection
collection -> selection + influence-cal cul ation

Figure 6.33 Possible Sequences of Cognitive Processesin the Spreading, Originating,

and Causal Summation Operations
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[11) Causal summation. Like the spreading and the originating operations this

operation is also composed of all three cognitive processes. This operation enables the
prediction of a variable, say X, at time instance Tn by causally summing (this requires
both general and situation-specific knowledge of the domain) the state values of X at time
instances Tm and To. Figure 6.32 shows an example use of this operation by the domain
expert.

All three of these operations are fundamental to the solution of a CV problem.
From Figure 6.32 it is clear that these operations are obtained by using the inference
triangle. The domain expert traverses this triangle in variety of ways for each operation.
Figure 6.33 lists all possible sequences of cognitive processes for each operation. A
repeated use of these operations/inference triangle by the domain expert created a task
structure, which is shown in Figure 6.34 in the form of aflow chart. Compare this flow
chart with Figure 5.2. The problem description requires the prediction of each of seven
CV variablesin three stages (Michael et al., 1992). Thisis accomplished by the domain
expert using the inference triangle repeatedly. The selection of the next variable for
prediction, depended, most of the time, upon the result of using the inference triangle.
For example, in a think-aloud session, the domain expert predicted CO after applying
inference triangle on HR. The very next variable predicted was MAP, as a result of
applying the inference triangle to CO. Hence the inference triangle not only enabled the
domain expert to predict CV variables but it also provided a means for selecting the next
variable for prediction, during problem-solving. The task structure of Figure 6.34 is
fixed, that is, the domain expert always used it to solve all CV problemsin these sessions.
Thisresult is not surprising and agrees with the findings of Wielinga and Breuker (1990).
The representation of this task structure has been simplified here. An other view of it can

be found in Section 5.5.1.
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-| PREDICT CV VARIABLES FOR DR, RR,
I AND SS STAGES

L

USE INFERENCE TRIANGLE TO
PREDICT A CV VARIABLE

NO PREDICTED
ALL VARIABLES?2

PREDICTED FOR

Figure 6.34 Flow Chart Representing the Task Structure Used by
the Domain Expert

6.17.2 Think-Aloud Sessions. Results. The taxonomy of the domain expert’s

actions (cognitive processes and inference operations) described in the previous sections
was used as the basis for a coding scheme on protocols in these think-aloud sessions.
This was done to achieve more insight into the domain expert’ s reasoning process. All of
the cognitive processes, along with their different compiled forms, were counted in these
sessions. Each cognitive process was also categorized with reference to the inference
operation (spreading, originating, and causal summation) that contained it. These results
are presented in Figure 6.35. Out of 190 instances of cognitive processes and their
compiled instances, 102 were used as a part of the spreading operation, 51 as the
originating operation and 37 as the causal calculation. The spreading operation, by
definition, istypical of a prediction oriented task, hence this result is not surprising. In
the protocols of these sessions, most of the time an originating operation was used when
the CV variable in focus had multiple interacting causal influences from more than one

CV variable. The prediction of such a variable requires the selection of the actual
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(domain) source of causal influence on it. The causal calculation operation is only

relevant in SS. InaCV problem, only 7 out of 21 predictions are required for this phase

of the CV system. This explains why thisinferencing operation was used least often.

COLLECTION + [SELECTION +  [BormEeman
COLLECTION | SELECTION [NFLUENGE-  EOLLECTION+ |NFLUENCE. |NFLUENCE.  bgm o, TOTAL
CALCULATION BELECTION  [CALCULATION [CALCULATION [a | cUl ATION
EPREADING
DPERATION 5 5 21 20 4 2 45 102
DRIGINATING
DPERATION 2 9 10 4 16 0 10 51
CAUSAL
EALCULATION 6 13 7 5 6 37
0 0
TOTAL 13 14 44 31 20 7 61 190

Figure 6.35 Think-Aloud Sessions - Results

A Highly Articulated Instance:

“ ... so that means the RAP is going to go up and that would have an effect on SV,
causing SV to rise. The fall in MAP also causes the SV to rise because that is the
decrease in after load and since the effect of right arterial pressure changing
simultaneously with the change in CC, will dominate then the SV goes up, ... Itis
going up for two reason: the decrease in, excuse me, the increase in RAP and the
decrease in Map. And the opposing effect is the decreasein MAP. And the opposing
effect is the decrease in CC. So the two things, which include the change in RAP
dominate ...

A Least Articulate I nstance:
“l am going down theline ... decrease SV ... “

Figure 6.36 Examples of Different Levels of Articulation

In these sessions, the domain expert expressed his reasoning aloud at many levels

of articulation. In the most articulated instances the domain expert took as small steps as

possible while traversing the inference triangle. On the contrary in the least articulated
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instances (i.e., in the highly compiled mode) the domain expert combined (compiled) the
cognitive processes together as much as possible while using the inference triangle. An
example of these two extremities in predicting the value for SV is shown in Figure 6.36.
The compiled cognitive process, collection + selection + influence-calculation is the
action most used by the domain expert.

6.18 Skilled Tutor AsExpert in the Domain and in the Process of Tutoring

In this section we will analyze the tutor’s protocol in the transcripts of our
tutoring sessions. Our purpose for this analysis is to observe the interaction between the
two roles (domain expert and pedagogy expert) of the skilled human tutor.

6.18.1 Nature of Integration between Two Roles of the Skilled Human Tutor .

In this section we will analyze the nature of integration between the two roles (domain
expert and pedagogy expert) of the skilled human tutor. For this we will use a
traditionally successful method of protocol analysis (Ericsson & Simon, 1993). In
Section 6.17 we have developed a problem-solving model of the domain expert. Just
using this model as a basis for a coding scheme on protocols of the tutor in the tutoring
sessions will not satisfy the goals of this study. We need, a'so, amodel of the pedagogy
expert and we need to use it as part of the coding scheme, together with the model of the
domain expert, on protocols of the skilled tutor in the tutoring sessions. The model of the
pedagogy expert developed in thisresearch is quite extensive. We are convinced that full
use of this extensive model along with the model of the domain expert as a coding
scheme will make the process of protocol coding and analysis quite complicated. We
therefore will use only afew of the actions of the pedagogy expert, as part of the skilled
tutor’s model, for protocol coding and analysis. The criteria for selecting the pedagogy
expert’s action is extensive usage and its importance in the process of tutoring. The
pedagogy expert’s actions selected for our purposes are: (asking) question, (giving)
explanation, and summarizing domain knowledge. These actions are domain

independent and also used in most tutoring methods, e.g., coaching (Breuker, 1990). As



204

mentioned above, our tutors use the Socratic method of tutoring. In this method the tutor
constantly asks questions to probe and remedy student misconceptions. Here the tutor
tries, as much as possible, not to convey the domain knowledge in an expository way.
The tutor’s major strategy is to use a sophisticated hinting process (Hume et al., 1993) so
that the student discovers knowledge by him/her self. Our tutors use hinting extensively.
Hints appear in different forms (Hume et a., 1993). These three tutor’s actions (asking a
guestion, giving an explanation, summarizing) are also the most common forms for
hinting.

Before we present the results of this analysis we would like to clarify afew more
points about our tutoring experiment. Eight sessions, which are considered for this study,
were conducted by two tutors (AAR and JAM). We are convinced that the reasoning
method of these tutors, during problem-solving and tutoring is not radically different.
Hence we will not make any further distinction in our analysis and results.

6.18.2 Analysis. Each instance of the use of the inference triangle (cognitive
processes and their compiled forms) was identified in the tutoring transcripts. We have
also specified the inference operation (spreading, originating, and causal summation) and
tutor’s actions (question, explanation, and summary) accompanying these instances. The
results of a coding of transcripts (K39 - K46) are presented in Figure 6.37. From now on
we will use the names inference triangle and cognitive process(es) interchangeably. This
is because any use of a cognitive process (or a compiled form of it) resultsin a use (part
or whole) of the inference triangle. The tutor has used the inference triangle in two
different ways. In the first way the tutor has himself used it to demonstrate a use of
inferencing in the domain. An example of thiscaseis. “there are 3 main determinants of
SV: RAP (filling or preload, CC (contractility) and MAP (afterload)”. In this example
the tutor has used the collection operation (left arm of the inference triangle) to make a
point. This usage of the inference triangle is abbreviated in the Figure 6.37 as TU. Inthe

second way the tutor has pointed at, part or whole of the inference triangle, for the student
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to use. This usage of the inference triangle is abbreviated in the Figure 6.37 as PSU.
An example for this case is. “What are the determinants of CO?’ In this example the
tutor has pointed to the collection operation in a question form. The student needs to use
this operation to come up with the correct answer. Hence the tutor guides the student in
our tutoring situation either by demonstrating a use of the inference triangle or by

pointing to an appropriate part of the inference triangle for the student to use and discover

knowledge.
COGNITIVE PROCESSES INFERENCE | WHOISDOING
EXPERT TUTORS QPERAT] INFERENOING
ACTION CULLECTIUN +

INFLUENCE | COLLECTION+{ COLLECTION+ [SELECTION+ [ g cTioN +
COLLECTION | SELECTION | CALOULATION | SELECTION | INFLU:CALCL. JNPLU.-CALCUL FLU CALCU, 05 (GS|TU PV

QUESTION 0 1 139 1% 0 4 M |63 2212 (0 (4

EXPLAINATION | 15 1 b 28 3 1 M4 129151100 %]0

SUMMARY 9 b 4 16 0 3 A | B10[10[64(0

TOTAL # 1 149 w3 8 145|115 |38 132 (158 (445

Figure 6.37 Tutoring Sessions - Results

Figure 6.37 shows that the tutor’s action, the question, has been combined with
most of the cognitive processes and their compiled forms. This ability gives the tutor a
powerful way of emphasizing different parts of the inference triangle, which can enable
the student to come up with the correct solution of the problem. Some of these
combinations are shown in Figure 6.38. It isinteresting to note that the tutor asked more
guestions using the collection + selection operation. This result is contrary to the use of
the fully compiled version of the inference triangle (i.e., collection + selection +

influence-calculation) by the domain expert during problem-solving (see Section 6.17.2).
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We believe that one reason for thisis that in the tutoring situation the tutor tries to ensure
that the student learns the basic reasoning behind the correct prediction for a problem.
Figure 6.37 also indicates that more spreading operations were used with the question
form. This is not surprising because the task at hand is prediction oriented and the
spreading operation is typical of thistype.

In the tutoring transcripts, explanation was aso combined with all of the cognitive
processes (see Figure 6.37). This combination allows the tutor to demonstrate different
ways to use domain knowledge. Some examples of this combination are shown in Figure
6.39. Figure 6.37 shows that unlike the question form more explanations were given by
the tutor using the collection + selection + influence-calculation operation. Comparing
this result with the results in Figure 6.35 shows that the collection + selection +
influence-calculation is the favorite operation when it comes to demonstrate the use of
domain knowledge by the skilled human tutor acting in both roles. Figure 6.37 aso
shows that more spreading operations were used with the explanation action.

Figure 6.37 shows that the tutor’s action, summary, was used with most of the

cognitive operations. Figure 6.40 shows some examples of this action.

K43-tu-54-3: There sone variable in the table that’ s under neural control that you didn’t
mention.
K43-tu-54-4. Do you have any ideawhat that might be?
In this example the tutor has used the collection + selection function in the form
of a spreading operation.

K43-tu-24-1: How does it change?
In this example the tutor has used the influence-cal culation function in the form of
a spreading operation.

K43-tu-104-2: And what variable would vasodilatation affect and in what direction?
In this example the tutor has used the collection + selection + influence-
calculation function in the form of a spreading operation.

Figure 6.38 Cognitive Functions as Questions
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K39-tu-174-3: Co and TPR are the determinants of MAP.
In this example the tutor has used the collection function in the form of an
originating operation.

K39-tu-122-3: The reflex accomplishes its work by changing the autonomic outflow to
the neurally controlled variables, our old friends TPR, HR and CC.
In this example the tutor has used the collection + selection function in the form of a
spreading operation.

K39-tu-124-2: When HR D it causes CO to D.
In this example the tutor has used the collection + selection + influence-calculation
function in the form of a spreading operation.

Figure 6.39 Cognitive Functions as Explanations

All in all, in eight sessions our tutors generated more guestions than explanations
or summaries. Our tutors also used more spreading operations than originating or causal
calculations. Figure 6.37 shows that isolated processes (collection, selection, influence-
calculation) and partially compiled processes (collection + selection, collection +
influence-calculation, selection + influence-calculation) were used more often than the
fully compiled inference triangle (collection + selection + influence-calculation). Every
pedagogy expert’s action (question, explanation, summary) accompanied at least one

cognitive process used in the inference triangle.

K40-tu-90-6. MAP went up in DR. So the baroceptor reflex does what you said.
K40-tu-90-7: It lower TPR in order to lower MAP.
In this example the tutor has used the collection + selection + influence-
calculation function in the form of spreading operation.

Figure 6.40 Cognitive Function as Summary

So far we have described the different ways in which the inference triangle was
used in generating the tutor’ s response. In the tutoring transcripts we have also identified
the instances in which the pedagogy expert used the inference triangle to generate

tutoring strategies. Again here our purpose is not to specify a full classification of
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tutoring strategies but rather to show some uses of the inference triangle by the pedagogy
expert in generating various aspects of the tutor’s protocol. We will describe three

tutoring strategies that the tutor generates by using the inference triangle.

K40-tu-90-7: It low err TPRin order to lower MAP.

K40-tu-90-8: How does the reflex cause TPR to go down?
Here the tutor hinted the student to use the collection and then the selection
functionsin the forward direction (spreading operation) to determine the
mechanism through which he reflex causes TPR to change.

K40-st-91-1:  Vasodilation of the vasculature.

K40-tu-92-1: Correct.
The tutor acknowledged the student’ s correct answer.

K40-tu-92-2: And how does it cause that dilatation to occur?
At K40-st-91-1 the student has responded with a correct intermediate step in the
causal chain which links the reflex and TPR, but the tutor hereislooking for the
step which links dilation and the reflex. Asa result he again hinted the student to
use the collection and then he selection functions in the forward direction to
determine the mechanism through which the reflex causes vasodilatation to occur.

K40-st-93-1: Through the ANS.

K40-tu-94-1: Correct again.
The tutor acknowledged the student’ s correct answer.

Figure 6.41 A Use of the Inference Triangle to Generate a Directed Line of Reasoning

) A repeated use of the inference triangle to generate a directed line of

reasoning. The directed line of reasoning is one of the common strategies used by our
tutors to enable the student to understand the causal mechanism between two physiology
concepts. In the directed line of reasoning the tutor guides the student from concept A to
concept B by repeatedly using the inference triangle. An example use of this strategy is
shown in Figure 6.41. In this example the tutor tried to make the student understand the
mechanism that causes TPR to change (K40-tu-90-8).

II) Theinference triangle as a causal equation. This strategy is used by our

tutors to use the inference triangle in the form of a causal equation. An example use of
this strategy is shown in Figure 6.42. In this example the student at K39-st-71-1 was

unable to use the cognitive process hinted by the tutor at K39-tu-70-3. As aresult the
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tutor adopted this strategy (K39-tu-72-2), which produced better understanding on the
part of the student (K39-st-75-1).

K39-tu-70-2: Come back to MAP.

K39-tu-70-3: What are its determinants?

K39-st-71-1: MAP depends on systole and diastole, however I'm not seeing them
directly on the data.

K39-tu-72-1: You are thinking of away to calculate the approximate value of MAP.

K39-tu-72-2: I'mthinking of acausal statement that says MAP =.

K39-tu-72-3: Finishit.

K39-st-73-1: MAP = pressure that {INTERRUPTED STUDENT INPUT}

K39-1i-74-1:  Write an equation using only variables in the prediction table that says
MAP =

K39-st-75-1: MAP=TPR X RAP?

K39-tu-76-1: Close.

Figure 6.42 The Inference Triangle as a Causal Equation

I11) Shift in the direction of inference operation. Our tutors used this strategy

for two purposes. In the first case this strategy helped the tutor to confirm or reinforce
the student’s reasoning. In the second case if the tutor’s reasoning in the forward
(spreading operation) or backward (originating operation) direction is not working then
the tutor switches the direction with the hope that it might be successful. An example of
each of these casesis given in Figure 6.43. In Figure 6.43 (a) the student did not know
about the concept of cardiac contractility (K44-st-61-1). The tutor at K44-tu-62-1 hinted
that the student should use the collection and then the selection functions in the backward
direction (originating operation) so that he could understand the mechanism for CC. At
K44-st-63-1 the student replied correctly but this did not convince the tutor that the
student clearly understood about CC. As aresult the tutor at K44-tu-64-1 again hinted
that the student should use the collection and then the selection functions but this time in
the forward direction. In Figure 6.43 (b), at K13-tu-37-3, the tutor hinted the student
should use the collection and then the selection functions in the backward direction
(originating operation) to determine the cause of the change in RAP. The student at K13-

st-38-1 did not demonstrate the right use of the inference triangle hinted at by the tutor.
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As aresult the tutor at K13-tu-39-2 hinted that the student should use the same function

but this time in the forward direction. This strategy worked and produced a correct

response from the student at K39-st-40-1.

K44-tu-60-1:

K44-st-61-1:

K44-tu-62-1:

K44-st-63-1:

K44-tu-64-1:
K44-st-65-1:
K44-<t-65-2:
K44-tu-66-1:

K13-tu-37-3:

K13-st-38-1:

K13-tu-39-1:
K13-tu-39-2:

K13-st-40-1:
K13-tu-41-1:

K13-st-42-1:

K13-tu-43-1:

Can you define cardiac contractility?
Not really.
Do you know what physiological inputs determine its value?

How does Ca determine contractility?

A direct ratio of the amount of calcium to excite the cardiac muscle fibers .
Along with the Na channels and nerve stimulation sympathetic.

Y ou're right, changing sympathetic inputs to the heart DOES change
contractility by varying the amount of Cathat is available inside each
cardiac cell to bring about e-c coupling.

First, what parameter determines the value of rap?
Venous return and peripheral resistance influences return
Not in the way that you seem to think.
If cois made to vary what effect will that have on the central venous
compartment or rap?
Rap will drop due to faster emptying than fulling
So, since you predicted that in dr the co i what must you predict will
happen to rap?
Rapd
And if rap d what will happento SV?
()

Figure 6.43 Examples Showing a Shift in the Direction of Use of the Inference

6.19 Shared Knowledge:

Operation. (a) To Confirm the Student’s Reasoning,
(b) To Suggest Another Way of Reasoning

“Glue’ Between the Domain and the Pedagogy Experts

Skilled tutoring requires expertise in the subject matter (domain knowledge) and

in the process of tutoring (Galdes, 1990; Khuwaja et al.,

in preparation (a)). Severd

papers by early researchers made us realize the importance of domain knowledge in the

process of tutoring. For example, Stevens et al. (1982) from their research in WHY

system concluded that

In much of psychology, there has been a bias towards emphasizing highly general,
domain-independent mechanisms that are supposedly central to the instructional
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process. Our work demonstrates that such a perspective is incomplete without a
detailed consideration of domain-specific knowledge, its representation and its
interaction with more general aspects of cognition (p. 13).

Although a great deal of work has been done in formalizing domain and
instructional knowledge (Polson & Richardson, 1988), we are still ignorant about one of
Stevens et al.’s conclusions: interaction of the domain knowledge with other types of
skilled tutor’ s knowledge.

We believe that one of the major reasons for the effectiveness of the skilled
human tutor lies in the nature of interaction between his different types of knowledge.
Thisinteraction provides the “glue” between different types of expertise and the different
roles of the skilled human tutor.

In the previous sections we have seen that the domain and the pedagogy expert
share two different types of knowledge: general domain models and the inference
triangle. These knowledge types are the characteristic of the domain expert. But these
have also facilitated the generation of tutoring responses and strategies by the pedagogy
expert. In other words the two roles of our skilled tutors used the same knowledge types
for different purposes. We believe that these knowledge types provide the “glue”’ that
integrates different types of expertise in the skilled human tutor and makes the whole
process of tutoring effective.

6.20 Theoretical Orientation of the Model of Tutoring: M etaphorsthat Explain
Our Tutor’s Behavior

The previous sections described a conceptual view of the model of tutoring that |
have developed for CIRCSIM-Tutor (v.3). In this section we will discuss the theoretical
orientation of this model. This model is based upon the behavior of our tutors in the
keyboard-to-keyboard sessions. Our tutors do not explicitly follow any theory while
tutoring, instead their behavior is purely based on their extensive experience as
physiology teachers and researchers in automated teaching systems (see Chapter |11 &

V). The purpose of finding the theoretical orientation of this model of tutoring is two-
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fold: (1) it will help us better understand the behavior of our tutors, and (2) this will
provide us with an opportunity to visualize the characteristics of our model in comparison
with the models available in the ITS/educational literature. In this section we will also
address the question: How the goals of CIRCSIM-Tutor (v.3) are achieved by the use of
this model of tutoring?

This model of tutoring is in the tradition of the second-order theory of tutoring
(Ohlsson, 1991). Putnam (1987) has called this theory “the diagnostic/remedial
perspective of tutoring,” whereas Littman et al. (1985) has called it “misconception-based
tutoring.” This theory assumes that the learner possesses some representation of the
subject matter but this representation is either incomplete or incorrect or both. “The job
of the teacher is to provide remediation for the discrepancies between the learner’s
representation and the complete and correct representation” (Ohlsson, 1991, p. 35). In
other words, the goal of thistheory isthat the learner ultimately integrates his’her view of
the domain into a correct, coherent, and desired model of the domain. | call this theory
the integration theory of tutoring. In accordance with this theoretical orientation this
model puts more emphasis on remedying the student’ s misconceptions.

The behavior of our tutors could be explained using the jigsaw-puzzle metaphor
(see Section 2.3.4), which is consistent with the integration theory of tutoring. According
to this metaphor the activities of the tutor could be visualized as if he/she is solving a
jigsaw-puzzle (see Figure 2.2). This puzzle represents the learner’ s mental representation
of the subject matter (see Figure 2.2 (b)). When the student comes for tutoring the tutor
assumes that the student’s domain knowledge at that point in time is analogous to a
partially completed puzzle, i.e., the student possess domain knowledge but not in a
complete and integrated form. The tutor classifies the pieces of this puzzle into five
different categories. (1) Chunks of domain knowledge that are correct, (2) chunks that
are assumed correct by the tutor, (3) chunks that are missing, (4) chunks that are distorted

due to a misconception, and (5) chunks that are dubious.
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Immediately after the prediction collection phase, the tutor classifies the
knowledge of the student roughly as either assumed correct or missing or distorted. Only
in the tutoring phase the tutor gets a chance, to some degree of certainty, to classify the
knowledge of the student according to these five categories. Asis clear from the previous
sections, the types of student’s knowledge that get most attention are missing and
distorted chunks. It is possible that, during the tutoring phase, the tutor changes his
classification about a piece of knowledge. For example, if this piece of knowledge is
assumed to be correct, the tutor might discover during the tutoring phase that it is instead
adistorted chunk of knowledge. In this case, this model will give more attention to this
piece of knowledge. The goal of the tutor here is that it at least fixes missing and
distorted pieces of the puzzle so that a clear picture may emerge. This puzzle solving
processis partially guided by the teacher’ s knowledge of the domain (see Figure 2.2 (a)).

Unlike a person solving a jigsaw-puzzle, the teacher in real life does not have
physical access to the student’s mental state of the subject matter knowledge. He/she can
only convey the domain knowledge using various teaching actions (e.g., asking questions,
providing summaries) such that it facilitates the student to integrate his/her knowledge
into a coherent, correct, and desired mental model of the domain.

In CIRCSIM-Tutor (v.3) the goal of the tutor is that the student learns a mental
model of the CV system and a problem-solving procedure that guides him/her to solve
CV problems. In other words the student should be able to develop a correct situation-
specific model for a CV problem. The tutor in our situation is neither teaching a
complete general model of the CV system in an expository way nor conveying a full
problem-solving algorithm to the student. Instead, the tutor hopes that the student will
acquire these if tutored about only the missing and the distorted chunks of knowledge.
This may sound like a big assumption, but the evaluation study of the method of our

tutors suggests that the student does learn in our tutoring session.
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Once different pieces of the puzzle have been identified, the tutor tries to solve
this puzzle, i.e., he starts the remediation phase. The activities of the tutor in this phase
turns this two dimensional puzzle into athree dimensional one. These activities could be
described by another metaphor called the zoom lens metaphor (see Section 2.5.3).
Reigeluth & Stein (1983) have described this metaphor in the context of the elaboration
theory of instruction. This theory has many characteristics that are similar to the model
of tutoring described here. Viewing the remediation process of this model of tutoring
through the zoom lens metaphor is similar in many respects to studying a picture through
a zoom lens on a movie camera. A person starts with a wide-angle view that allows
him/her to see the complete picture and its parts but without details. If the person wishes
he/she can zoom in using the lens to see more details of the parts of the picture. In this
metaphor, Reigeluth & Stein (1983) assume that “instead of being continuous, the zoom
operates in steps or discrete levels’ (p. 340). After studying a part of the picture the
person can zoom out again to the wide angle view to see other parts of the picture and
analyze the context of the inspected parts with the whole picture. The person can
continue the zooming in and zooming out operation at several levels and parts of the
picture to analyze the picture at sufficient depth.

Notice that the zoom lens metaphor analogously describes the domain model
switching behavior of our tutors mentioned in Section 6.14. In other words, the tutor
traverses different levels of this puzzle while solving a jigsaw-puzzle. The major
objective of the tutor here is to fix a piece of the puzzle at some deep level such that the
puzzleis solved at least at the surface level. Interestingly, the remediation process of our
tutors use different models of the domain. The elaboration dimension of the parametric
viewpoint (see Figure 6.19) form a simple-to-complex sequence. This sequence
“provides meaningful application-level learning” (Reigeluth & Stein, 1983, p. 337). This
sequence also ensures that the student is always aware of the context and importance of

the different ideas that are being taught. A form of this simple-to-complex sequence has
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also been used in Ausubel’s (1968) subsumptive sequence, in Bruner’'s (1966) spiral
curriculum, and in Norman’s (1973) web-learning.

The educational philosophy of the model of tutoring described here is also a
version of the view in which learning is described as a process of model tuning. This
view of learning is developed by Collins (1985) in the context of WHY system (see
Section 2.4.3.1). Unlike our model of tutoring, the tutoring scenario proposed by Collins
puts heavy demands on the diagnostic phase of tutoring. With the current state-of-the-art
Al research it is not possible to meet these demands. Our model instead uses a view of
the student that is much more pragmatic and satisfies the needs of the diagnostic

processing required in our tutoring context.
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CHAPTER VII
SYSTEM VIEW OF CIRCSIM-TUTOR (V.3)

7.1 Introduction

In this chapter we will discuss the system model of CIRCSIM-Tutor (v.3). This
model is the outcome of the system phase (see Chapter IV). Again the only aspects with
which | am concerned, in developing this model, are the domain and pedagogy
knowledge used in CIRCSIM-Tutor (v.3).

One of the major advantages of the ITS development framework, described in
Chapter 1V, is that each stage of development is independent of each other in the sense
that each uses a different development methodology. For example, in the conceptual
phase human tutoring expertise shapes the conceptual model whereas in the system phase
the focus is on the system issues and this produces the system model. In other words, the
system model is not based on the behavior of our human tutors. Instead it depends upon
system issues that are either domain dependent (e.g., educationa context) or independent
(e.g., considerations of how to represent curriculum and domain knowledge separately in
anlTS).

There are two major advantages of separating the conceptual and system phases.
First, the conceptual model, if based on the behavior of human tutors, as is the case in
CIRCSIM-Tutor, concentrates more on the expertise and more or less ignores the context
inwhich it exists. The activities in the system phase on the other hand provide a vehicle
to broaden the focus of the conceptual phase by making explicit the issues that are
implicitly assumed in human tutoring behavior. For example, the pre-session behavior of
our tutor (see Section 5.5) was ignored by the developers of the early versions of
CIRCSIM-Tutor. With the help of this ITS development framework, | have realized the
importance of this behavior in the development of CIRCSIM-Tutor (v.3). Second, the

system phase promotes the development of a generic ITS that is flexible and can be used
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for different domains. In this case the system model acts as a generic engine that is
fueled by a conceptual model of some domain.

The system model described in this chapter combines many different ideas in the
ITS field. Thismodel is an advance on Lesgold's (1988) view of an architecture of an
ITS (see Section 2.5.8). It is based on Ohlsson’s (1987) design hypothesis (see Section
2.5.10). It also generalizes Woolf’s (1984) planning architecture (see Section 2.5.13), for
use at several levels of pedagogy decision making during a tutoring session.

7.2 System Point-Of-View: Context Dependent | ssues

As has been mentioned before, in the system phase, the instructional system
issues shape the system model (see Section 4.1). There are two types of issues. Issues
that are dependent upon the context in which the ITS is used, for example, the domain,
the educational setting, and the student population using the system. The second type
deals with what we call the context independent issues. These issues are related to
developing an ITS that is generic and flexible, that can be used in many different domains
and educational settings. This section discusses the context dependent system issues,
whereas the next section discusses context independent system issues in detail.

It is the system phase that can use prescriptions from the Instructional System
Design (I1SD) field. There are many 1SD models that could be used to systematically
consider context dependent system issues for an ITS. See (Reigeluth, 1987) for some
examples of ISD models.

Research on CIRCSIM-Tutor has been going on for six years (see Chapter 111).
Decisions regarding many context dependent system issues have aready been crystallized
by the earlier versions. It has already been determined that this system will provide a
problem-solving environment to the student; CIRCSIM-Tutor will be a part of a
physiology course; the default tutoring method of this system will use the discovery
method. See Chapters 11l and IV for a detailed discussion of many of these issues. All

these decisions need to be made before the development of an I TS begins.
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Most of the context dependent system issues for CIRCSIM-Tutor (v.3) were
inherited from its earlier versions. Two major changes that this system introduces
compared to its earlier versions are: the tutoring protocol and the CV procedure set.
CIRCSIM-Tutor (v.3) uses Protocol 3 (see Section 5.5.9). It also now has a set of large
number of CV procedures from which it can select a problem for the student. Section
7.5.2 sheds more light on thisissue.

7.3 System Point-Of-View: Context |ndependent | ssues

One of the objectives in developing the system model is to make the design of the
ITS as general as possible so that it can be used to develop systemsin several domains.
Several context independent issues need to be considered in achieving such a system.
The system model described here has combined and improved many ideas in the ITS
field. Inthis section we briefly describe these ideas and the improvement this model has
made.

As | explained in Chapter I, it is highly desirable for the design of an ITS to
combine model-based and curriculum-based themes into a single model. Model-based
ITS s emphasize cognitive models of expertise for their domain tasks, whereas
curriculum-based ITS's organize their architectures purely around subject-matter. Any
model combining these themes at least needs to distinguish between curriculum
knowledge and domain knowledge. Lesgold et al. (1989) define the curriculum
knowledge as “the specification of the goal structure that guides the teaching of a body of
expertise” (p. 342). Common wisdom in the ITS field says that “expertise can be split
apart easily ... and that curriculum is a natural hierarchy of goals and subgoals to teach
the natural units of expertise” (Lesgold et al., 1989, p. 342). Aswe have seen in Chapter
V and VI, our tutor’s behavior is fundamentally based on their model of expertise but
they do not simply use this breakdown of expertise to perform effective tutoring in the
domain. Instead, selection of goals (e.g., to remedy misconceptions) and domain

knowledge depend upon, for example, their teaching method and the student’ s difficulty
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in understanding. Also in order for CIRCSIM-Tutor (v.3) to be a part of a physiology
course the system needs to make decisions that suit the curriculum of the physiology
course. These all require that CIRCSIM-Tutor (v.3) should support both curriculum and
model-based themes within a single system model.

The system model | have developed for CIRCSIM-Tutor (v.3) is based upon
Lesgold’s (1988) framework for knowledge representation in an instructional system (see
Section 2.5.8). Like Lesgold’s framework my model makes a distinction between the
domain and curriculum knowledge. But unlike Lesgold's framework, it explicitly
considers pedagogy knowledge. The basic assumption underlying this model is that the
tutor in a tutoring situation makes decisions using its pedagogy knowledge. This
knowledge uses curriculum knowledge to organize interaction with the student. The
curriculum knowledge, in turn, has its foundation in the underlying domain knowledge.
As aresult, this organization, naturally introduces structure in the tutoring session and
provides an explicit way of monitoring the progress of the student in achieving the goals
of the system.

This system model views tutoring as problem-solving or planning. The major
ingredients of this view are goals, strategies, and tactics. According to Ohlsson’s (1987)
principle of teaching plans, the plan generation process, used by the tutor, uses strategies
to generate plans for the goals of the tutoring system. The terminal ingredients of these
plans are tactics that represent the tutor’s actions (e.g., ask a question, give a summary).
Strategies, in this view of tutoring, determine the methods of the classical problems of
pedagogy (i.e., selection, sequencing, and presentation of the subject matter).

There are several planning architectures available in the ITS literature. For the
purposes of this system model | have generalized Woolf’ s (1984) planning architecture to
provide a mechanism for pedagogical decision making. This planning mechanism
divides the decision making process into different hierarchically organized levels. Each

level successively refines the decision making process into aform such that a customized



220

tutoring plan is generated for the student. Unlike Woolf’'s Discourse Management
Network (DMN), this planning mechanism is general enough to be used for all types of
decision making, e.g., to select different exercises for the student or to choose a tutor
action (e.g., ask aquestion, give a hint).

Notice that this organization of the system model does not depend upon the
domain issues, instead it is motivated by the idea that the system model be as independent

as possible of domain specific considerations.

CURRICULUM LAYER

DOMAIN KNOWLEDGE
LAYER

Figure 7.1 Knowledge Layersin Lesgold’s (1988) Framework (Meta
Cognitive Layer is not Shown Here)

7.4 Dimensions of the System M odel

Figure 7.1 indicates the organization of the curriculum and the domain knowledge
layers of Lesgold’'s (1988) framework. In this framework the curriculum layer (also
called the goal lattice layer) contains a hierarchy of goals (or topics). The domain
knowledge layer contains the domain knowledge that the system is designed to teach.
“One way to think about that knowledge is that it is a model of expert capability in the
domain. Such knowledge includes both procedures and concepts (i.e., both procedural
and declarative knowledge)” (Lesgold, 1988, p. 121). Goals and subgoals in the

curriculum layer point to the issues or chunks of knowledge in the knowledge layer.
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Figure 7.2 Knowledge Dimensions of the System Model

Lesgold's framework does not explicitly consider planning information, rather
here a distributed control mechanism is proposed that drives the system. This
organization severally limits the generality of the ITS because changing a planning
mechanism (or a conceptual model) for the system requires fundamental restructuring of
entitiesin different layers of this framework.

A schematic representation of the system model for CIRCSIM-Tutor (v.3) is
shown in Figure 7.2. Thismodel organizes the knowledge into three dimensions: (1) the
planning dimension, (2) the curriculum dimension, and (3) the domain knowledge
dimension. These dimensions are explained in the following sections. Notice that here

planning knowledge in the form of pedagogical decision making is handled separately
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and explicitly. Arrows in Figure 7.2 indicate that the planning knowledge uses

curriculum information that in turn points to or accesses the domain knowledge.

7.4.1 Planning Dimension: Fueled By the Pedagogical Prescriptions of the

Conceptual Model. It isthe planning dimension that makes this system model different

from Lesgold's (1988) framework. This dimension takes the view that tutorial decision
making is a kind of planning. It is also this dimension that uses the pedagogical
prescriptions of the conceptual model. In other words the tutoring theory is represented
by the tactics, strategies, and goals used in the planner. Therefore, this dimension

controls the activities of the tutoring system.

PEDAGOGY LEVEL
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Figure 7.3 A Schematic View of the Generic Planning
Mechanism Used in the Planning Dimension

As mentioned, | am using a generalized form of Woolf’'s (1984) DMN to
implement the planning mechanism in this dimension. This planning mechanism views

the tutor as making decisions at different levels. These levels basicaly refine the tutor’s
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decision making process. Figure 7.3 shows a schematic view of this general planning
mechanism.

Theoretically there is no limit to the number of planning levels that can be used in
the planning dimension but for the purposes of this system model | have limited these to
three levels. These levels are: pedagogical, strategical, and tactical. These are also the
levels used in the Woolf’'s (1984) DMN. One of the major assumptions behind this
planning mechanism is that the tutor while making pedagogical decisions jumps between
different states. Each state corresponds to a high level decision, a strategy, or a tactic.
The pedagogy level contains pedagogy states that represent the tutor’s high level decision
making. Here, the most commonly used states are “select,” “deliver,” and “complete.”
While tutoring, the decision making process revolves around these states. Notice that
these states correspond to the tutor’s major decisions of selecting, sequencing, and
remediating topics/errorgerror patterns/student difficulties. Repeated transitions between
these states form a cycle in which the tutor decides what to talk about next, determines
how to talk about it and then evaluates what the student has said in response to the tutor’s
action. Thiscycleis quite noticeable in tutoring transcripts (see Chapters V and V1).

In order to implement a high level decision, the tutor considers various strategies.
This is the time when the tutor jumps to the strategy level. Thislevel contains strategy
states. Depending upon the type of high level decision, the tutor may need to consider
one or more strategies to refine its decision making process. Once appropriate strategies
have been decided on, the tutor jumps to the tactical level. This level contains tactical
states. Each tactic represents an atomic action of the tutor. Each strategy ultimately
employs a set of tactics that the tutor needs to consider in order to achieve its current
goal. The decision making process viewed through this planning mechanism requires the
tutor to jump repeatedly between different tutoring levels and states. This planning
mechanism is very general in the sense that it can be used to make pedagogy decisions

for different pedagogical styles (see Section 2.5.11). Considering the nature of the
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behavior of our tutors in the keyboard-to-keyboard session the planning dimension of this
system model uses a mixed style of pedagogy, i.e., it combines a global plan-based style
with local opportunistic control (see Section 2.5.11). Section 7.5 describes in detail the
planning behavior of this system model for a mixed pedagogy style. This planning
dimension does not contain a uniform representation of different tutoring levels and
states, instead it breaks these levels and states into various spaces to mimic the tutor’s
different types of decisions. Section 7.5 discusses thisissue in detail.

7.4.2 Curriculum Dimension: Provides Goals For Tutoring. This dimension

issimilar to the Lesgold’s (1988) curriculum layer or goal lattice layer. This dimension
contains a hierarchy of goals (see Figure 7.2). Inthefield of Instructional System Design
the words goal, topic, and objective are used interchangeably. Here | will not make a
distinction between them. Lesgold’'s framework proposes a flat representation of the
hierarchy of goals. On the contrary | propose a systematic breakdown of the goal
hierarchy. This systematic breakdown is based on the observation that the tutor makes
decisions at different levels. The most common levels are the course level, the exercise
level, the unit level and the lesson level. At each level the tutor has a different set of
goals. Although these goals are interdependent, at each level their nature, organization,
and constraints are different. So instead of using a flat representation of the goal
hierarchy, it is more advantageous to use a layered representation of the curriculum. One
advantage of this organization is that it promotes the integration of the curriculum and
model-based themes of the ITS. Also because of this layered organization, it is possible
that the goals in each layer are represented using some customized approach.

It is the planning dimension that uses the curriculum dimension to obtain the goals
for the tutoring session. Section 7.5 describes the actual contents of the curriculum
dimension of CIRCSIM-Tutor (v.3).

7.4.3 Domain Knowledge Dimension: Containing the Actual Knowledge that

Needs to be Communicated to the Student. This dimension contains the domain
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knowledge that the system is intended to teach. This dimension is similar to Lesgold’'s
domain knowledge layer. In CIRCSIM-Tutor (v.3) this knowledge is in the form of
multiple qualitative models of the CV system (see Chapter VI). This knowledge is
accessed from the goals and subgoals in the curriculum dimension. It is the planning
dimension that uses this knowledge but only through the curriculum goals. See Chapter
VI for a detailed description of the nature and organization of domain knowledge in

CIRCSIM-Tutor (v.3).

Major-Objective Space

Exercise Space

Unit Space

Lesson Space

(Tutoring Episodes,
Tutoring Hypothesis, and
Tutoring Issue Spaces)

Figure 7.4 System Model as a Set of Tutoring Spaces

7.5 Tutoring Spaces. Another View of the System M odel

Human tutors make a number of decisions in order to take action in a tutoring
situation. These decisions can be classified into many different categories. A very broad
classification is pre-session and in-session decisions (see Chapter V). Instructional

system designers commonly distinguish the decision making process of a teacher into
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following levels: course level, exercise level, unit level, and lesson level (see
Romiszowski (1981) for more details). One of the major advantage of this division is

that it makes this decision making process modular and easy to manage.

PLANNING DIMENSION CURRICULUM DIMENSION

CURRICULUM FOR " A"

PLANNING MECHANISM
FOR"A"

TUTORING SPACE"A"

DOMAIN KNOWLEDGE
DIMENSION

DOMAIN KNOWLEDGH
FOR"A"

Figure 7.5 A Tutoring Space and Its Connectionsto
Different Types of Knowledge
One view of the system model is described in Section 7.4. In thisview the system
model consists of three knowledge dimensions. In this section we will describe another
view of this model. In this view the system model is consists of layers (I call these
tutoring spaces). Each space deals with one major class of decision that the tutor makes.
Each space has its own goal representation, constraints suitable to the nature of that
space, a planning mechanism, and pointers to the domain knowledge. For example, it is
common to tutor problem-solving using a set of exercises or domain problems (Wenger,

1987). The system model using this organization groups all the domain problems and
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their decision making process into a single layer. This layer will be used by the system
model when it tries to select a domain problem for the student. For CIRCSIM-Tutor
(v.3), the system model consists of four major spaces. These are the mgjor objective
space, the exercise space, the unit space, and the lesson space. These spaces are
hierarchically organized and for this reason the overall decision making process is
modular. Figure 7.4 shows this view of the system model. Figure 7.5 shows a tutoring
space and its connections to different types of knowledge. This figure shows that this
model views the tutor as performing decisions in different tutoring spaces. Each tutoring
space is driven by ageneralized form of Woolf’s planning mechanism (see Section 7.4.1).
Each space also has its own goal organization and constraints in the curriculum
dimension. Finally each space has its associated domain knowledge in the knowledge
dimension. The tutor, viewed through this organization of the system model, makes
decisions by making transitions between different tutoring spaces. Notice that adding a
space in this model is very simple. The designer simply has to add appropriate goal
objects in the curriculum dimension, domain knowledge items in the domain knowledge
dimension and strategies and tactics in the planning dimension. In other words the
designer has to worry about the contents rather than the organization and overall
framework of the new tutoring space.

As | have mentioned, we are using a generic form of Woolf’s planning
mechanism for the system model. With this tutoring space view of the system model, the
planning dimension now contains a multilevel mechanism that provides pedagogic
decision making for the tutoring system. A schematic view of this planning dimension is
shown in Figure 7.6. Here the planning mechanism described in Section 7.4.1 is used for
each tutoring space. Once a decision making process for a tutoring space is finished, the
system model invokes the planning mechanism in the next tutoring space. The tutor is
here viewed as jumping between different tutoring states (see Section 7.4.1). Each

tutoring state is connected to another via tutoring links. There are six different types of
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links. These have been classified into two types. default links and metalinks. This
classification is the one used in Woolf’s DMN (Woolf, 1984). The default links define
the sequences of states normally traversed by the tutor. From a pedagogical viewpoint,
these transitions correspond to default tutorial decisions. The metalinks represent
metarules that can move the tutor to any state in the planning dimension when their

conditions are satisfied.

MAJOR
OBJECTIVE
SPACE > Pedagogy
S—— Strategy
S >  Tacticd

EXERCISE \
SPACE Pedagogy

———  saw

- ———  Teclical
UNIT N
SPACE Pedagogy
C> Strategy
Sl >  Tactical

LESSON N
SPACE Pedagogy

S—— Strategy

— ————  Tectica

Figure 7.6 A Multi-Level View of the Planning Dimension

Figure 7.7 shows a schematic view of transitions between tutoring states. Here
only default links are shown. Besides the above classification, there are three different

types of tutoring links. The first one is the progression link. The system model jumps
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from one tutoring state to another of the same planning level (this could be pedagogical,
strategical, or tactical level in any tutoring space) using this type of link. Thistransition
represents the progression of activities of the tutor in the tutoring session. In Figure 7.7
links from states “n” to “z” and “z” to “0” represent this type of transition. The second
type of link is called an in-level refinement link. This transition allows a tutor’s action to
be refined to its more specific and detailed form. In Figure 7.7 links from states “p” to
“Z" and “Z" to “q” represent this type of transition. The third type of link is called a
between-level refinement link. These links are like in-level refinement links except that
the tutor can traverse these links to switch between different planning levels. For
example, if the tutor wants to refine a strategy into its associated tactics, then the tutor
needs to jump from the strategy level to tactical level. These links allow the tutor to
accomplish thisgoal. In Figure 7.7 links between states “I” to “z,” “m” to “z,” “z” to “r,”
and “z” to “s’ represent this type of transition. All three types of links can be either
default or metalinks. In the following sections we will briefly describe the content and

purpose of each tutor space used in the system model of CIRCSIM-Tutor (v.3).

Planning Level "a"

TF o\ T

\ Planning Level "c"

e
& > s>

Figure 7.7 Transition Between Tutoring States
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Figure 7.8 Goal Organization for the Mg or Objective Space

7.5.1 Major Objective Space: Organizing a Tutoring Session Around the

Major Goals of the System. The main purpose of this tutoring space is to decide on the

major objectives of the system, to select and sequence goals. It also monitors the
failure/success of each selected goal. Figure 7.8 shows the goal hierarchy for this space.
The major objective of CIRCSIM-Tutor (v.3) is for the student to learn about the
functioning of the baroreceptor reflex. This objective is achieved by two subgoals. that
the student build a mental model of CV system (i.e., internalize the top level concept
map) and that the student acquire a problem-solving algorithm that enables him/her to
solve a CV problem (see Figure 7.8). Notice in Figure 7.8 that both of these subgoals
need to be satisfied to achieve the major objectives of the system. In CIRCSIM-Tutor
(v.3) these two subgoals are not tackled separately. Instead it is assumed that helping the
student solve a set of CV problem successfully enables the system to achieve both

subgoals of this tutoring space.
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Figure 7.9 shows the organization of planning states for the major objective space.
This figure divides these states into three planning levels: pedagogical, strategic, and

tactical (see Section 7.4.1). Only default links are shown by solid arrows.

PEDAGOGY
LEVEL

STRATEGY

LEVEL
LECT A GOAL SELECT A GOA
SELECTION TUTORING
APPROACH APPROACH
/ TACTICAL
LEVEL

SEPARATE
APPROACH
COMBINED
APPROACH

PRE-ACT-POST
OVE TONEXT
NUTORING SPACE

INTRODUCE
SYSTEM

Figure 7.9 Planning States for the Mgjor Objective Space

In the “select” state the system collects goals from the goal hierarchy (see Figure
7.8). Here the system needs to select and sequence the goals. This is achieved by
considering the strategy “select a goal selection approach” in the strategy level. This
strategy basically points to two tactics in the tactical level. The first tactic, “ separate
approach,” enables the system to separately handle two subgoals in the goal hierarchy.
This tactic is not yet supported by the system. Recently a fellow researcher, Sudnya

Sukthankar, developed a computer system (Sukthankar et al., 1993) that enables the
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student to acquire a general model of the CV system (i.e., top level concept map). This
system is called the concept map builder. If this system is integrated with CIRCSIM -
Tutor (v.3) then it is possible to invoke this tactic to separately handle two subgoals. If
the student model suggests that the student using CIRCSIM-Tutor (v.3) is too confused
then the system might use this tactic and suggest that the student first play with the
concept map builder program before trying again to solve CV problems. The second
tactic, “combined approach,” treats two subgoals as a single unit.

Once the goals are selected and sequenced, the system jumps to the “deliver”
state. Here it decides about the tutoring approach for the selected goal. After considering
the tutoring strategy “select a goal tutoring approach,” the system selects one of the two
available tactics. The “pre-act-post” tactic enables the system to first administer a pre-
test to the student. It then allows the student to play with CIRCSIM-Tutor (v.3) by
solving CV problems. Once the student has achieved a satisfactory performance, the
system will administer a post test. This tactic is not yet supported by the system. The
second tactic “one-shot-act” ignores pre and post tests and directly allows the student to
solve CV problems. Next the system jumps to the “introduce system” state where it
introduces the selected system. At present it can only introduce CIRCSIM-Tutor (v.3).
In the future if other systems such as the concept map builder are integrated with
CIRCSIM-Tutor (v.3) then depending upon the selected tactic this state will introduce the
student to the selected system. Next the tutor jumps to the “move to next tutoring space’
state. This state enables the system to switch from the major objective space to the
exercise space because the major objective space is designed to reason only about the
major objectives of the system. In order to achieve (or tutor about) these objectives (or
goals), the system needs to next decide about the CV problems. Once the tutor leaves the
major objective space, the activities in this space are temporarily halted until the tutor
again jumps back to it. At that time it decides whether the current goal in this space is

satisfied by the activities of the tutor in the previous spaces. Depending upon this result,
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the tutor makes the next move. This decision about the success or failure of the current
goal is considered in the “complete” state. Here a metarule brings the tutor back to the
“select” state, where the tutor decides whether to select new goal, retry the current goal or
halt the activities of the system.

7.5.2 Exercise Space: Developing a Personalized CV Problem Set For the

Student. This is the second tutoring space after the major objective space (see
Figure 7.4). This space is activated once the approach to achieve the major objectives of
the system has been decided about. The purpose of this space isto select a CV problem
for the student. Figure 3.2 shows the procedures used in earlier versions of CIRCSIM -
Tutor. These versions also do not explicitly reason (or plan) in selecting a procedure for
the student. CIRCSIM-Tutor (v.3) has made a big leap in this respect. Here the total
number of procedures has greatly been extended. The domain model in CIRCSIM-Tutor
(v.3) is powerful enough to solve all these CV procedures (see Chapter V1II). This space
iswholly dedicated to choosing a customized set of CV procedures for the student. Two
major determinants in developing these instructional plans are the goals of the system and
the student capability in solving CV problems. In this section we will describe various
classifications of these CV procedures and a set of rules that enable the system to develop
apersonalized problem set for the student.

7.5.2.1 Different Approaches to Classifying CV Problems. Each CV

problem describes a perturbation that perturbs some component of CV system, e.g.,
hemorrhage affects blood volume (BV) - aCV parameter. For CIRCSIM-Tutor (v.3) our
tutors (AAR and JAM) have selected thirteen different kinds of perturbations. Appendix
B contains a list of all these perturbations. These perturbations have been divided into
three classes: basic procedures, perturbations involving drug effects, and artificial
pacemaker procedures. The perturbations in the basic procedure set have been inherited
from earlier versions of CIRCSIM-Tutor. The drug set contains six different types of

perturbations. The artificial pacemaker set contains two perturbations. Most of these
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perturbations initially affect a single CV parameter in the concept map. Some of the

drugs, on the other hand, affect two parameters in the concept map simultaneously. For

example, beta-adrenergic antagonists decrease HR and |IS. Due to the nature of the

artificial pacemaker it is possible to increase or decrease the heart rate.

Category 1: (Primary variable= CVP)

This category contains procedures which start affecting the CV system at

CVPinthetop level of the concept map.
D Increase Venous Resistance (RV) to 200% of normal.
2 Hemorrhage - Remove 1.0 L (Blood Volume=4.0L).

3 Increase Intrathoracic Pressure (PIT) from -2 to O mm Hg.

Category 2: (Primary variable=1S)

This category contains procedures which start affecting the CV system at

ISinthetop level of the concept map.

D Decrease Inotropic State (1S) to 50% of normal.

2 Administer a Beta-adrenergic agonist.

3 Administer a Beta-adrenergic antagonist (blocker).

Category 3: (Primary variable = HR)

This category contains procedures which start affecting the CV system at

HR in the top level of the concept map.

D Artificial pacemaker. Increases Heart Rate (HR) from 72 to 120.

2 Artificial pacemaker. Decreases Heart Rate (HR) from 72 to 50.

3 Administer a Beta-adrenergic agonist.
4) Administer a Beta-adrenergic antagonist (blocker).
Administer a Cholinergic agonist.

6) Administer a Cholinergic (muscarinic) antagonist (blocker).

Category 4: (Primary variable = TPR)

This category contains procedures which start affecting the CV system at

TPR in the top level of the concept map.

D Administer a Alpha-adrenergic agonist.

2 Administer a Alpha-adrenergic antagonist (blocker).
3 Reduce Arteria Resistance (RA) to 50% of normal.

Category 5: (Primary variable = BRP)

This category contains procedures which start affecting the CV system at

the baroceptorsin the top level of the concept map.
D Denervate the Baroreceptors.

Figure 7.10 CV Procedure Categories Based on the Didactic Goals
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In CIRCSIM-Tutor (v.3) we have introduced procedure combinations for the first
time. In aprocedure combination a perturbation is selected to perturb the CV system and
then the student is asked to predict the responses for the predictions table variables. Once
this procedure is completed, the system introduces a second perturbation on top of the
first one in the CV system. Again the student is asked to predict the responses for
prediction table variables. Obviously, these combination problems are relatively
challenging for the student to solve. Appendix B contain alist of 45 different procedure

combinations selected for CIRCSIM-Tutor (v.3).

Category 1:
This category contains procedures with a default difficulty level ="simple."
D Increase Venous Resistance (RV) to 200% of normal.
2 Hemorrhage - Remove 1.0 L (Blood Volume=4.0L).
3 Install artificial pacemaker. Increase Heart Rate (HR) from 72 to
120.
4) Install artificial pacemaker. Decrease Heart Rate (HR) from 72 to
50.
5 Reduce Arteria Resistance (RA) to 50% of normal.
Category 2:

This category contains procedures with a default difficulty level = "moderate.”
D Decrease Inotropic State (1S) to 50% of normal.
2 Administer a Cholinergic agonist.
3 Administer a Cholinergic (muscarinic) antagonist (blocker).
4) Administer a Alpha-adrenergic agonist.

Administer a Alpha-adrenergic antagonist (blocker).
Category 3:

This category contains procedures with a default difficulty level = "difficult.”
D Administer a Beta-adrenergic agonist.
2 Administer a Beta-adrenergic antagonist (blocker).

3 Denervate the Baroreceptors.
Category 4:
This category contains procedures with adefault difficulty level = "challenging.”
D Increase Intrathoracic Pressure (PIT) from -2 to O mm Hg.
2 Any two procedure combination in sequence (e.g. PRA after
DBB).

Figure 7.11 CV Procedure Categories Based on the
Default Procedure Difficulty Level
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In order to make the system capable of choosing a personalized set of procedures
for the student, these CV procedures and their combinations have been classified further.
These classifications are described as follows.

One classification of these CV procedures has been based on the didactic goals of
CIRCSIM-Tutor (v.3). This classification divides thirteen perturbations into five
categories (see Figure 7.10). All perturbations affecting one of the five critical CV
parameters have been grouped into a single category. For example in Figure 7.10, three
different perturbations affect CVP first among the parameters in the prediction table.
(The primary variable is our term for the first variable in the prediction table to be
affected.) The fundamental assumption behind this classification is that if the student
solves at least one problem from each of these five categories then he/she will be able to

understand the behavior of CV system at an acceptable level.

Category 1:
A procedure description in this category has a default difficulty level = 1.

Reason: Primary variableisexplicitly given.

Category 2:
A procedure description with a default difficulty level = 2.

Reason: Primary variableisimplicitly given in the problem description.

Category 3:
A procedure description with a default difficulty level = 3.

Reason: Procedure variableis explicitly given.

Cateqgory 4:
A procedure description with a default difficulty level = 4.

Reason: Procedural variable isimplicitly given in the problem description.

Figure 7.12 CV Procedure Categories Based on Default Procedure
Description Difficulty Level
Another classification of the CV problem is based on their level of difficulty.
This classification divides CV problems into four categories (see Figure 7.11). Thefirst

category contain procedures that are graded by our tutors as “simple.” The second
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category contain procedures that are moderately difficult. The third category contain
relatively difficult procedures and the final category has challenging CV problems.
Thefinal classification is not based on the CV procedures themselves but on their
problem descriptions. Each problem description of a CV procedure describes the first
action of the perturbation on CV system. A procedure description can explicitly or
implicitly describe the affect of this action on either primary or procedure variable. There
are four categories of problem description (see Figure 7.12). From their experience, our
tutors think that problem descriptions that explicitly state the primary or procedure
variables are easier for the student to understand than the description that implicitly
convey this information. Also problem descriptions that contain information about the
primary variable are easier than descriptions that only contain information about the
procedura variable. A complete list of possible descriptions for thirteen perturbationsis

givenin Appendix B.

PROBLEMS
“ ’

Figure 7.13 A Partial Goal Organization For the Exercise Space
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Figure 7.13 shows a partial goal hierarchy for the exercise space of the system
model for CIRCSIM-Tutor (v.3). This hierarchy shows that this space will achieve its
goalsif the student successfully solves a procedure from each of the five basic categories.
These categories are based on the didactic goals of the system (see Figure 7.10). Each
category node in Figure 7.13 has a pointer to its associated procedure node or procedure
combination node.

7.5.2.2 Developing a Personalized Problem Set for the Student. Figure

7.14 shows the planning states for the exercise space. Like the major objective space, this
space also divides these states into three levels. The functions of the “select,” “deliver,”
and “complete” states at the pedagogy level were explained in Section 7.5.1. In order to
select a goal (in this space this is a CV procedure) the system model uses various
strategies and tactics. The first strategy considered here is “who should choose the next
procedure.” There are two possibilities. either the tutor or the student makes this
decision. If it isthe tutor that is making this decision then the next strategy considered is
“select procedure category.” Here the system selects a category of procedures for the
student. This categorization is based on the didactic goals of the system. The next step is
to select the procedure default difficulty level for the student. Once thisis done, next the
tutor decides about the procedure description level. At this stage if the tutor ends up with
alist of procedures then it selects a procedure randomly from this list. The next step for
the tutor isto decide about the way to present the selected procedure to the student. Here
it first selects “describe procedure” and then “setup tutoring environment” tactics. Once
it has reached this stage, the system has finished goal selection. Next it jumps to the
deliver state which ultimately forces the tutor to use next tutoring space, the unit space, to
accomplish its goals.

If the system model decides that it is the student who should select the next CV
procedure then still the same set of strategies are considered by the system as in the case

when the tutor is making the decision. The only difference comes when the system
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model decides to present the selected set of procedures to the student. Here instead a
menu is provided by the system to the student to select a CV procedure. These activities
are accomplished by the “give menu,” “ask for choice,” and “ setup tutoring environment”
tactics. The system considers its goals and the knowledge state of the student while
developing a menu for the student. All the CV procedures in this menu are kept well
within the reach of the student’s capability. Next we briefly describe the logic used in

deciding about various strategies in the exercise space.

PEDAGOGY
LEVEL
SEL E_C_IT/ > @ »( COMPLETE
y STRATEGY
LEVEL

WHO SHOULD
CHOOSE NEXT

USE NEXT
TUTORING
SPACE

SELECT
PROCEDURE
CATEGORY

SELECT
PROCEDURE
DIFFICULTY

PRESENT
SELECTED
RROCEDUR

PROCEDURE
DESCRIPTION

TACTICAL
LEVEL
A sk For up

ChOI ce Tutori ng
avirgnment

oveto
ext tutoring
space

Figure 7.14 Planning States for the Exercise Space
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This space uses two concepts from the student model to decide about various
strategies. (1) Single problem global assessment (SPGA): Thisis the assessment of the
student’s knowledge state for a single CV problem. Possible assessment values come
from the following discrete set {-1, -1, 0, 1, 2}. Here -2 and +2 represent poor and very
good respectively. (2) Successive single problem global assessment (SSPGA). Thisis
the assessment of the student knowledge over successive problems. This variable can
take a value from the set {-1, O, +1}. Here +1 indicates that the student’s performance
has improved, 0 means it has not changed, -1 means it has gotten worse. The following

ruleis used to decide about the strategy “who should choose next procedure.”

Current SSPGA =0

SPGA

0 + Description Level

+1 + Difficulty Level

+2 + Difficulty Level,
+ Description Level

Current SSPGA = +1

SPGA

0 + Description Level

+1 + Difficulty Level

+2 + Difficulty Level,
+ Description Level

Current SSPGA =-1

SPGA

0 + Description Level

+1 + Difficulty Level

+2 + Difficulty Level,
+ Description Level

Current SSPGA =il

+1 + Description Level

+2  Not Possible

Figure 7.15 Rulesto Decide About Procedure Difficulty and Description Levels

If SPGA of the last problem is negative (-1 or -2) or
itisthefirst procedure
Then the tutor will make decisions about the procedure category, difficulty level,
and description
Else the student will make these decisions
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Now assume that it is the tutor who is making these decisions. In this case the
following rules apply to select a procedure for the student.
If it isthe first procedure

Then select a procedure from category 1. This procedure must have a
difficulty level of 1 and a description value of 1

If it is the second procedure
Then select a procedure from categories 2, 3, or 4

If the student’ s performance (SPGA) is good, and
thisisthe third procedure
Then introduce category 5

For the second and following procedures the system uses the strategy shown in
Figure 7.15 to make decisions about the procedure difficulty and description levels.
Figure 7.15 can be read as follows. If SSPGA = 0 and SPGA = 0 then increase the
current procedure description level by one for the next procedure. Keep the difficulty
level for the next procedure the same as the current procedure. If SPGA is negative in
any of the cases in Figure 7.15 then for the next procedure keep the procedure difficulty
and description levels the same as for the current procedure.

If thisis the fourth procedure and

the tutor has decided about the last three consecutive procedures

Then stop tutoring and suggest the student to do prerequisite reading before
continuing to solve CV problems

If thereis no procedure available having the required
difficulty or description level

Then give asingle increment to either procedure difficulty or description
level asrequired

7.5.3 Unit Space: Taking Care of the Tutoring Protocol. This is the third

space of the system model (see Figure 7.4). The main objectives of this space are to
divide a CV problem into its major units and then plan for the tutoring of these units. As

we have seen in Section 5.5.1 our tutors divide their problem solving methods into three
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major phases. DR, RR, and SS. While tutoring our tutors consider each of these phases
one at atime. The sequence in which these phases are considered is always the same, i.e.,

DR, then RR, and finally SS.

Figure 7.16 Goal Organization for the Unit Space

In the unit space the goals are organized as shown in Figure 7.16. Just like our
tutors this space divides a CV problem into three phases. All of these phases need to be
considered to satisfy the objectives of this space.

Our tutors use a tutoring protocol to exercise control over atutoring session. One
of the major responsibilities of the unit space is to plan the tutoring of the three phases
according to some tutoring protocol. Although the planning mechanism used in this
space is general enough to be used to plan using any tutoring protocol, for the purposes of
CIRCSIM-Tutor (v.3) we have selected Tutoring Protocol 3 (see Chapter V). This
protocol is carried out by the tutoring states of Figure 7.17. In this space, the function of
the pedagogy level isthe same as explained in the previous spaces (see Sections 7.5.1 and
7.5.2). The selection of a goal in this space is a straightforward function because here

there are only three subgoals and each of these needs to be used in a fixed sequence.
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The deliver state uses various strategies and tactics to accomplish its function. As
mentioned, this space uses tutoring Protocol 3. This protocol here is achieved by
considering following four strategies. First, the system introduces the selected phase to
the student. Next it introduces various rules that the student can use to predict the
gualitative values for the prediction table variables. Next, the system switches back and

forth between the prediction collection phase (PCP) state and the tutoring phase (TP)

state (see Figure 7.17).
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Figure 7.17 Planning States for the Unit Space
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Each of these two strategies have associated tactics. The system first considers
the “collect primary var” tactic and then jumps to the tutoring phase. If the student has
correctly predicted the value for the primary variable then it jumps back to the prediction
collection phase to “collect remaining prediction table variables.” On the other hand if
the student has made an error in predicting primary variable then the system jumps to the
“tutor primary variable” state. This tutoring is achieved by considering the next tutoring
space. Once the tutoring of the primary variable is successfully accomplished the system
again jumps back to the prediction collection phase state to “collect remaining prediction
table variables.” Next, while in the “tutor remaining predictions table variable” state, it
starts tutoring for the current CV phase. Each time the system successfully accomplishes
itsgoal for aCV phase it invokes the next CV phase for the student.

7.5.4 Lesson Space: Initiating a Dialogue with the Student. One of the major

purposes of the multilevel planning mechanism (see Figure 7.6) used in the system model
is to systematically and hierarchically divide the decision making process so that it
corresponds to the major decisions that our tutors perform while organizing and acting in
a tutoring session. The decision making process used in the first two spaces of this
system model is not directly observable in the in-session behavior of our tutors in the
keyboard-to-keyboard sessions. It is the system view that makes explicit this very high
level decision making of the tutor.

The decision making processes used in the spaces that are below the exercise
space are observable in the in-session behavior of our tutors. Once a decision about a
phase of CV procedure has been made, the system starts an interaction with the student.
The decision making process of the pedagogy expert during this interaction is captured in
the lesson space (see Figure 7.4). It isthe conceptual model described in Chapter V1 that
is responsible for the behavior of CIRCSIM-Tutor (v.3) in the lesson space. Two major
objectives of this space are: (1) tutor so that the major misconceptions of the student are

remediated, (2) teach the major concepts of the domain. The first objective has the
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highest priority. The second objective is pursued only if time and opportunity is available
to the tutor to convey such information. In order to mimic the behavior of our tutors, as
captured in the conceptual model (see Chapter V1), the lesson space of the system model
has been divided into the following subspaces. (1) tutoring episode, (2) tutoring
hypothesis, and (3) tutoring issue. The tutoring episode space contains the required
ingredients to make decisions about the error patterns (see Section 6.4) that are inferred
from the student behavior. The tutoring hypothesis space on the other hand deals with
the decision making that is required for the student difficulties (see Section 6.4). Once a
student difficulty has been selected the system model invokes the next space, the tutoring
issue space, that takes care of the actual interaction of the tutor with the student. This
tutoring space is the lowest space of the system model. Here it is assumed that the
system has done sufficient higher level planning to start a dialogue with the student. The
next few sections describe each of these subspaces of the lesson space.

7.5.5 Tutoring Episode Space: Handling Error Patterns and Domain Topics.

As we have seen in Section 5.5.11, the in-session behavior of our tutors is organized
around episodes of tutoring in which, most of the time, the tutor tries to remediate the
misconceptions of the student that cause errors in predictions. It is the responsibility of
the tutoring episode space to plan for such an episode of tutoring. Aswe have seen in the
previous chapters, two issues dictate the creation of such an episode. (1) Errors in the
student’s prediction. This causes sensitization of error patterns. It is the error pattern
level around which the decision process of the tutor revolves during a tutoring session
(see Section 6.6). Hence in this space error patterns usually invoke a tutoring episode.
(2) CIRCSIM-Tutor (v.3) has an explicit curriculum. The system tries as much as
possible to make sure that the student using the system covers most of this curriculum. It
is not the major goal of the system that it explicitly cover each part of this curriculum,

rather the major goal is that the student learn (via the discovery method) while
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performing problem-solving activities. The system silently tries to infer the coverage of
this curriculum by the student from his/her behavior.

It is not always possible to infer the knowledge of the student for all parts of
curriculum from his’her problem-solving activity. As aresult, as the opportunity arises
the system tries to invoke a generic topic of the domain for discussion.

Now we will describe the activities of the system model in the tutoring episode
space. But first we will consider the goal organization used in the lesson space.

7.5.5.1 Topic Network. Just like every other space of the system model,

the lesson space also has a goal organization that constitutes a portion of the curriculum
dimension of the system model. Thisgoal organization is common to al three sub-spaces
of the lesson space (see Figure 7.18). | call this goal organization the topic network. As
the name suggests, the topic network consists of a set of domain topics. | define atopic
as a short description of a piece(s) of domain knowledge (e.g., regulated variable). It is
an entity that the tutor can select for tutoring. These topics are connected to each other
via generic didactic links. These links are different from the domain relations (e.g.,
causal relations). The purpose of these relationships is to help the system develop a
personalized goal set for the student. Figure 7.19 illustrates various didactic links
between domain topics in the topic network.

The core topics are the essential topics that the student must know about in order
to understand fully the behavior of the baroreceptor reflex (e.g., the role of the
baroreceptor reflex). The supporting topics help in the understanding of the core topics.
These topics could be in the form of prerequisite knowledge (e.g., What is a physiology
parameter?) or basic skills (e.g., How to propagate causal influence from one physiology
variable to another?). The peripheral topics are not essential but help the student to
generalize and extend their domain knowledge (e.g., Intracellular agonist-receptor

transduction events).
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Figure 7.18 Lesson Space Accessing the Topic Network
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SUB(TOPIC) SUPER  CO(TOPIC)

Figure7.19 (@) A Partial Classification of Didactic Links,
(b) A Schematic View of Domain Topics Connected Via Didactic Links

All three types of topics are related to their respective types using subtopic, super
topic, and cotopic relations. A topic, say C, is a cotopic to another topic, say T, when C

is didactically related to T but C has no subtopic-super topic relationship with T (e.g.,
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heart rate has a co-topic relationship with total peripheral resistance and inotropic state
because all three are neurally controlled variables). The analogy relationship helps the
tutor to develop an analogy for a core topic (e.g., the multiplicative relationship MAP =
CO x HR has an analogy link to the Ohm’s Law EquationV = | X R).

The development of the topic network is one of the complex tasks in developing
the system model. This network is not yet complete. Further research is needed to fully

understand the nature and utility of these didactic linksin our domain.
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Figure 7.20 A Partial Network of Core Topics

Section 6.4 describes a view of the student as seen by the tutor. The last level of
this view contains student difficulties. In order to consider a student difficulty, the tutor
needs to use a set of topics to develop a plan for interaction with the student. In other

words each student difficulty has pointers to various domain topics. While considering
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these topics, it is possible for the tutor to traverse the topic network and select some other
topics that are related to the current situation. For example, while discussing an error in
HR in DR the tutor can stretch the neural variable topic to discuss TPR and IS (this could
be done by using the cotopic relationship). By doing this the tutor will be in a position to
determine the student’s knowledge about the role of the controlled variables in
baroreceptor reflex. Hence the topic network is a very useful store of structured goals
that the tutor can use to get, dynamically, the ingredients for a discussion with the

student. Figure 7.20 shows a partial network of core topics.
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Figure 7.21 Tutoring States for the Tutoring Episode Space

7.5.5.2 Generating tutoring Episodes. In this section we will describe

the behavior of the tutoring episode space. Figure 7.21 shows the tutoring states used in
this space. This space assumes that modeler has created lists of errors, error patterns, and
student difficulties. See Appendix C for alist of error patterns and student difficulties for

CIRCSIM-Tutor (v.3). The first thing it does is to access these lists from the student
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model. Once again the pedagogy level performs the same set of functions as in other
tutoring spaces. At the strategy level this space sequences error patterns, errors, and
topics. First preference is given to error patterns. This sequencing operation is achieved
by considering various tactics at the tactical level. Next, this space selects an error
pattern from a list of sequenced error patterns. If this error pattern is pointed to by

multiple errors then this space sequences and selects an error for this error pattern.

DR

RR

SS

1 Expediency
2 Core Causal Path

3 Core Causal Path
Dependent

4 Multiplicative
Relationship

5 Spin-Off Symptoms
6 Periphera

7 Prediction Sequence
Violation
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3 Core Causal Path
Dependent

4 Multiplicative
Relationship

5 Spin-Off Symptoms
6 Periphera

7 Prediction Sequence
Violation

1 Neura (Clamped)

2 Neurd (Non-Clamped)

3 MAP-SS

4 Core Causal Path
5 Core Causal Path
Dependent

6 Multiplicative
Relationship

7 Algebraic

8 Spin-Off Symptoms

9 Periphera

10 Prediction Sequence
Violation

Figure 7.22 Ordering Tactics Used in the Tutoring Episode Space
(here these are classified according to CV phases and are arranged
from highest to lowest default priority ranking)
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Once the functions of the “select” state are finished the system makes a transition
to the “deliver” state. Here this space invokes the next space to perform the next set of
tasks for tutoring.

The tutoring episode space is invoked periodically until all errors are remediated.
If time permits then this space tries to continue selecting error patterns until all are
discussed/remediated. If time still permits then this space considers the topic network as
a basis for discussing domain topics for tutoring. Next we describe in detail different
tactics that this space uses to sequence error patterns. Figure 7.22 lists a summary of
these tactics.

| Expediency. Thistactic selects error patterns that are, from the tutor’s point of
view, easy to get out of the way. This does not necessarily mean that error patterns
selected by this tactic are not serious problems but rather these are relatively isolated
from other problems and hence easy to remediate. Also tutoring on these first would help
the remediation process for other misconceptions of the student. Thistactic is often used
in the DR and RR phases of the system. It has the highest priority, i.e., the error patterns
selected by considering this tactic are planned first for tutoring with the student. An
example error pattern that is considered by thistactic is “non primary neural vars.”

I Core Causal Path. Thistactic isused in all three phases of CV system. It

orders error patterns that are on the core causal path. In DR, a core causal path is the
most direct path from the primary to the regulated variable. Figure 7.23 shows all
possible core causal paths in the top level of concept map. An error pattern that is at the
beginning of the core causal path has higher priority than an error pattern that is at the
end of this path. For example, for a CV procedure in which CVP isthe primary variable,
the core causal path consists of following relationships. CVP -> SV, SV -> CO, CO ->
MAP. Now if the student has made errors in SV and MAP then along with other error

patterns, following two error patterns are sensitized: CVP -> SV, CO -> MAP. In this
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case CVP -> SV has higher priority than CO -> MAP, because CVP -> SV comes earlier
than CO -> MAP on the core causal path.

Figure 7.23 Core Causal Pathsfor DR at the Top Level of Concept Map

In RR, following rules apply to develop a core causal path at the top level of
concept map.

If HR is not clamped
Then core causal pathis. HR -> CO -> MAP

If HR is clamped
Then pathis. IS->SV ->CO -> MAP

If HR and CC are clamped
Then pathis. TPR->MAP

Il Core Causal Path Dependent. Thistacticisalso usedin al three phases of

the CV system. Each error pattern representing a causal relationship consists of at least
two CV parameters. If only one of the CV parameters of an error pattern falls on the core
causal path then this tactic considers that error pattern for tutoring. For example, for a
CV procedure in which HR is the primary variable, the core causal path consists of the
following relationships: HR -> CO, CO -> MAP. If the student has made an error in

CVP then along with other error patterns CO -> CVPisaso sensitized. This error pattern
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is not considered by the core causal path tactic because CVP is not on the core causal
path. But the core causal path dependent tactic will consider this error pattern for
tutoring.

IV Multiplicative Relationships. This tactic considers error patterns that

involve more than two CV variables, e.g., MAP = CO x TPR. Thistactic haslow priority
compared to the tactics described above because three variable relationships are more
difficult to understand compared to the two variable relationships. Hence two variable
relationship error patterns are considered first. If there are several multiplicative
relationships then these are ordered, again according to the core causal path tactic. For
example if two relationships. CO = SV x HR and MAP = CO x TPR are sensitized then
this tactic will first consider CO = SV x HR equation because here CO falls first on the

core causal path before MAP.

V Spin-Off Symptoms. This tactic considers error patterns that surface as a
result of some tutoring episode. It is the student model that flags these error patterns.
These error patterns are considered for tutoring by this tactic only if the student’s global
assessment is high. For example if the student’s predictions for CVP and SV are
incorrect but the relationship between them is correct then the error pattern CVP-> SV is
not sensitized. As soon as tutoring is done and the error in CVP is corrected, the error
pattern CVP -> SV is sensitized by the student modeler (because this relationship is now
incorrect). The spin-off symptoms tactic can select this error pattern for tutoring,
depending upon the global assessment of the student.

VI Peripheral. All error patterns that are not considered after using the above
fivetactics are classified as peripheral. Thistactic selects these error patterns only if time
permits. These error patterns are not essential considering the current stage of tutoring or
knowledge state of the student, hence they have been assigned a low priority rating for
tutoring. For example, consider that thisis the DR phase of the second procedure and the

MAP = TPR x CO error pattern has been sensitized by the student modeler. In this case,
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if this error pattern was selected by the system in the first procedure and the current state
of the student model indicates that the student has a good understanding of the
multiplicative relationship between MAP, TPR, and CO then for the current procedure
this error pattern will be classified as peripheral.

VIl Prediction Sequence Violation. The domain expert of CIRCSIM-Tutor

(v.3) solves a CV problem by predicting qualitative values for different CV variablesin
the concept map. These variables are predicted in a sequence. The student while solving
aCV problem may or may not follow this sequence. It isthe responsibility of the student
modeler to keep track of the sequence violations committed by the student. A sequence
violation by the student may or may not point to a problem in the student’s
understanding. It isfor this reason that this tactic has the lowest priority in the tutoring
episode space. For example in a CV problem where HR is the primary variable the
student might after predicting the value for HR, predict IS. It is possible that here the
student is trying to predict values of al neural variables first before proceeding in the
problem. In this case the sequence violation does not convey any information to the
tutor. On the other hand, it is quite possible that the student has a serious misconception
about the functioning of neural variables. In this case the tutor may plan a tutoring
episode to discuss this issue with the student. Our tutors rate the probability that the
student is trying to predict al neural variables as considerably higher than the possibility
of a serious underlying confusion, in the absence of other information.

VIIl Tacticsto Order Error Patternsin SS. A list of tactics that are used in

the SS phase are shown in Figure 7.22. In this section we describe four tactics that order
error patternsin SS. The first tactic selects all error patterns that involve clamped neural
variables. This tactic has the highest priority, hence all error patterns selected by this
tactic are tutored first. The second tactic collects all error patterns that involve
nonclamped neural variables. Our tutors think that it is easier to understand the

functioning of non-clamped neural variables than clamped neural variables. The third
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tactic selects error patterns involving MAP-SS. The last tactic orders error patterns that
violate algebraic rules (see Section 5.5.1).

7.5.6 Tutoring Hypothesis Space: Handling Student Difficulties. Thisisthe

second subspace of the lesson space (see Figure 7.4). The major purpose of this spaceis
to create hypotheses about the underlying problems that are responsible for the student’s
incorrect predictions. This space assumes that the tutoring episode space already has

ordered and selected an error pattern.

PEDAGOGY LEVEL

Corver) CompLET

STRATEGY LEVEL

TACTICAL LEVEL

- Moveto Next
Tutoring Space

Figure 7.24 Tutoring States for the Tutoring Hypothesis Space

Figure 7.24 shows tutoring states for this space. The “select” state orders and
selects student difficulties by looking at the current error pattern. Once a student
difficulty has been selected, the “deliver” state is activated. At the strategy level this

space considers the “remove misconception” state. This strategy is refined down to three
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major tactics. The first tactic engages the system in the exploratory phase (see Section
6.5). Thistactic requires that the system model switch to the next tutoring space where it
interacts with the student. If the selected student difficulty does not require this tactic
then the next tactic “remediation phase” is invoked. If a single student difficulty is
available for consideration then this space uses a default tutoring method to tutor the
student. Instead of an error pattern, if the tutoring episode space has selected a domain
topic on which to tutor the student, then at the “select” state, the tutoring hypothesis space
tries to discover whether the student requires prerequisite knowledge before discussing
the selected domain knowledge. The “deliver” state in this case considers the “teach”
strategy, which in turn pushes the system to consider next tutoring space.

7.5.7 Tutoring Issue Space: Handling Communication with the Student.

This is the third subspace of the lesson space (see Figure 7.4). This space assumes that
the tutoring hypothesis space has already selected a student difficulty. The maor purpose
of this space is to organize a tutoring interaction with the student around the selected
student difficulty. This space is more like the DMN of MENO-Tutor (Woolf, 1984) and
the discourse planner of CIRCSIM-Tutor (v.2) (Woo, 1991). Figure 7.25 shows the
tutoring states used in this space.

The functioning of the pedagogy level here is the same as in the other spaces of
the system model. The “select” state, considering the selected student difficulty, collects
aset of topics. These topics are then used by the “deliver” state to communicate with the
student. The “complete”’ state here merely finishes the operations of this space.

The “deliver” state uses various strategies and tactics to plan an interaction with
the student. At the strategy level this space uses acycle. This cycle mimics the behavior
of our tutors in the keyboard-to-keyboard sessions. In this cycle the system introduces a
new topic or makes decision about continuing the same topic. Then it evaluates the
student’s response and finally it responds to student’s input. This cycle is repeated as

long as the system continues interacting with the student.
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One of the essential functions of this space is to make decisions about how to
interact with the student. This function is achieved by considering a set of strategies and
tactics. These strategies, for example, decide on the general teaching strategy, the type of
knowledge that needs to be communicated, the method of use of the inference triangle,
and the type and level of domain models that need to be used. In addition, this space also
uses communication strategies to help generate utterances for the student in English.

7.6 System Moddl: A Step Towardsa GenericlTS

In this chapter we have discussed the system model for CIRCSIM-Tutor (v.3).
This model results out of the system phase of the ITS development framework described
in Chapter 1V. This model is based upon the system issues that need to be considered in
order to develop an ITS. These issues can be related to context dependent or to context
independent factors. It is these context independent factors that make our model a
generic model that could be used for many domains.

This model is based on Lesgold’'s framework that distinguishes between
curriculum and domain knowledge. But unlike this framework, the system model also
makes the planning information explicit. The major theme behind this model is that it
attempts to integrate curriculum and model-based I TS designs.

CIRCSIM-Tutor’s domain knowledge is organized into models. The earlier
versions of CIRCSIM-Tutor were purely model-based systems. These versions suffered
from the common problem that there were no distinction between the domain and the
curriculum in the system. As Lesgold (1988) noted, this is the most common problem in
the majority of the ITS s developed to date. The system model described here has
removed this problem by explicitly distinguishing between the planning knowledge, the
curriculum knowledge, and the domain knowledge. Making explicit the curriculum
knowledge has provided a vehicle for the system to explicitly reason about the goals of
the system. Here the system has a mean of monitoring the progress of the student

towards achieving the goals of the system. The planning knowledge allows this model to
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be driven by a number of different conceptual models of tutoring. | have generalized
Woolf’'s (1984) DMN to act as the planning mechanism for the system model. Due to the
nature of the knowledge organization in the system model, it is perfectly feasible to use
some other planning mechanism than that used for CIRCSIM-Tutor (v.3). The domain
knowledge of the system model contains information in the form of the CV model that it
uses to communicate with the student. Unlike the Lesgold’s framework, the system
model does not restrict the system to use only the overlay model for the student. In
CIRCSIM-Tutor (v.3) the bug library method of student modeling has been given priority

to mimic as much as possible the behavior of tutorsin the keyboard-to-keyboard sessions.
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CHAPTER VIII

ARCHITECTURE OF CIRCSIM-TUTOR (V.3):
IMPLEMENTING THE DOMAIN AND THE PEDAGOGY EXPERTS

8.1 Introduction

The system model (see Chapter VII) is still distant from the design needed to
directly support the implementation (or physical) phase (see Chapter V). The system
model is at the same level of abstraction as the conceptual model. In the ITS
development framework described in Section 4.1, the second subphase in the system
phase emphasizes the software system point-of-view. This subphase brings the ITS
development one step closer to its physical realization as a computer program. Here the
developer views the ITS as a software system. In this subphase software engineering
principles shape the system model into a coherent architecture. The key issue hereis to
keep this architecture independent of the formalism used to realize the system (e.g., a
general purpose programming language).

In this chapter we will first describe a general architecture for CIRCSIM-Tutor
(v.3) (Khuwaja et al., 1994a). After thiswe will describe the design and implementation
of the components of this architecture that are related to my research work. These
components implement the pedagogy and the domain experts of CIRCSIM-Tutor (v.3)
(see Chapter V1).
8.2 Architecture of CIRCSIM-Tutor (v.3)

The architecture of CIRCSIM-Tutor (v.3) is shown in Figure 8.1. This
architecture divides its components into two major classes: modules (or subsystems) and
information stores. Modules are active processes that communicate and coordinate to
create the required intelligent behavior for the system. For example, in Figure 8.1, the
instructional planner is a module of CIRCSIM-Tutor (v.3). As the name implies, an
information-store is a store of information/knowledge. Each information store has an

interface through which the modules of the system access pieces of information. In
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Figure 8.1, the Domain Knowledge Base (DKB) is an information store and the Domain
Problem Solver (DPS) is an interface to it. In actuality, the DPS is more than an

interface. It also provides the mechanisms for domain inferencing (see Section 8.6 for

more details).
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Figure 8.1 Architecture of CIRCSIM-Tutor (v.3)

This architecture does not constrain the communication protocol adopted for the

system. For example, for a completely decentralized architecture, it allows
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communication between any two modules of the system. On the contrary, for a strictly
centralized architecture it offers a central module that controls/monitors the
communication traffic between the modules and information stores of the system.

Two types of messages are distinguished in this architecture. The first one is
called acall. A cal is a message that is generated by a module to communicate with
another module in the system. The second type of message is called an information
request. An information request is a message that is generated by a module to
fetch/update/store a piece of information from/to an information store. Currently a
decentralized approach has been selected for CIRCSIM-Tutor (v.3) so that it can be
changed in future without much effort.

One of the attractive characteristics of this architecture is that it supports the
notion of recursive architecture, i.e., each module of this architecture can be developed
using the same architecture. In this case this architecture supports a layered design that
greatly increases the system’s modularity and flexibility.

8.3 Architectural Equivalence of the Domain and the Pedagogy Experts

In the ITS development framework, described in Chapter 1V, each phase yields a
different model (see Figure 4.1). The conceptual phase yields a conceptual model. This
model must be transformed into a system model in the first subphase of the system phase.
The system model must then be transformed into an architecture at the second subphase
of the system phase. The resulting components of the architecture are then coded into
pieces of software.

The conceptual models of the domain and the pedagogy experts are described in
Chapter VI. These models have been transformed into a system model, as described in
Chapter VII. In this chapter we will describe the transformation of the system model into
architectural components and their implementation in CIRCSIM-Tutor (v.3).

The system model described in Chapter VII has been transformed into one

subsystem and three information stores (see Figure 8.2). The DKRS stands for the
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Domain Knowledge Representation System. It is an information store in the architecture

of CIRCSIM-Tutor (v.3) (see Figure 8.1). This store consists of two parts, the DKB

(Domain Knowledge Base) and the DPS (Domain Problem Solver). Sections 8.5 and 8.6

describe these two partsin detail, respectively. The DKRS is the system embodiment of

the domain expert (see Figure 8.2).
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Figure 8.2 Outcome of Phases of the ITS Developmental Framework for
the Research Described in this Thesis

The pedagogy expert is transformed into one subsystem, the Instructional Planner,

(see section 8.7) and two information stores, curriculum and tutoring history (see

Sections 8.8 and 8.9).
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8.4 Object-Oriented Methodology: Developing and | mplementing the Components
of Architecture of CIRCSIM-Tutor (v.3)

In order to design, develop, and implement some of the important components of
the architecture of CIRCSIM-Tutor (v.3) (see Figure 8.2), | have used an object-oriented
methodology. This methodology, nowadays, is very popular in the development of
software systems. In this section we will briefly describe this methodology and the way
it has been used in my research.

In the object-oriented methodology, a software system is developed using the
class and object as basic building blocks (Booch, 1991). One of the major activitiesin
this methodology is to develop an object model for the target software system. Usually
three different stages have been used to develop this model. The first stage is called
object-oriented analysis (OOA). According to Booch (1991):

Object-oriented analysis is a method of analysis that examines requirements from

the perspective of the classes and objects found in the vocabulary of the problem
domain (p. 37).

The second stage is called object-oriented design (OOD). According to Booch (1991):

Object-oriented design is a method of design encompassing the process of object-
oriented decomposition and a notation for depicting both logical and physical
models as well as static and dynamic models of the system under design (p. 37).

The final stageis called object-oriented programming (OOP). This stage is defined as:

A method of implementation in which programs are organized as a collection of
cooperating objects each of which represents an instance of some class, and
whose classes are all members of a hierarchy of classes united via inheritance
relationships (p. 36).

According to Booch (1991) these three stages are related as follows.

Basically, the products of object-oriented analysis can serve as the models from
which we may start an object-oriented design; the products of object-oriented
design can then be used as blueprints for completely implementing a system using
object-oriented programming methods (p. 37).
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| have used a version of Booch’s (1991) methodology. The knowledge
engineering methodology (see Chapter 1V) used at the conceptual and the system phases
of my research, has provided an aternative to the object-oriented analysis. | did object-
oriented design to develop the architecture for the components of CIRCSIM-Tutor (v.3)
shown in Figure 8.2. During the physical phase (see Section 4.1) | did object-oriented
programming to implement these architectural components as a software program. | used
CLOS (Common Lisp Object System) (Keene, 1989) of Procyon Common Lisp for this
purpose. The hardware platform on which this programming activity was performed is
the Apple Macintosh.

The following steps were used to design and implement each architectural
component of Figure 8.2. In the first step a hierarchy of classes was developed. In the
second step objects representing the instances of different classes are created. The third
step deals with connecting various objects based upon the knowledge captured in the
conceptual and the system models. In the fourth step each object is assigned its
associated behavior(s) so that it can participate in the functioning of the software system
being developed. In the following sections we will describe the object-oriented design
and implementation for each of the architectural components shown in Figure 8.2.

8.5 Domain Knowledge Base: Providing General Knowledge About the CV System
to CIRCSIM-Tutor (v.3)

The domain knowledge base (DKB) is a store of factual knowledge about the CV
system. It isresponsible for providing general domain knowledge (see Section 6.8) to
CIRCSIM-Tutor (v.3). The DKB contains information about the three levels of concept
maps (see Section 6.11) and the anatomical model of the CV system (see Section 6.12).
This knowledge is accessible to the rest of the system via the domain problem solver (see
section 8.6 for more details).

In the architecture of CIRCSIM-Tutor (v.3) the DKB is characterized as an

information store (see Figure 8.1). The four steps described in Section 8.4 are used to
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develop this store. Figure 8.3 shows a partial hierarchy of classes that are used in the
DKB. This figure also contain example instances (or objects) of these classes. Each
object of the DKB has a current state, exhibits some well-defined behavior, and has a
unique identity.
The state of an object encompasses all of the (usually static) properties of the
object plus the current (usually dynamic) values of each of these properties. . .
Behavior is how an object acts and reacts, in terms of its state changes and

message passing. . . ldentity is that property of an object that distinguishes it from
all other objects (Booch, 1991, pp. 78-84).

Domain
Concept

Equation Stage of
\V systel

|
!!H40DYNAMICS!! ‘S I
I'DIRECT-RESPONSE!!

of Perturbation
/ .%

I1BASIC-PROCEDURE-1!!

/ 11SMOOTH-MUSCLE!
IIBETA-ADRENERGIC-ANTAGONISTS!!

IIMEAN-ARTERIAL-PRESSURE!!

LEGEND
() - acass _ P e = PART-OFRELATIONSHIP
5 = ISARELATIONSHIP
UX-Y-ZIl = ANOBJECT ! a = INSTANT-OFRELATIONSHIP

Figure 8.3 A Partial Hierarchy of Classes Used in the Domain Knowledge Base
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Figure 8.4 contains a template showing the state of an example DKB object.
When all objects of DKB are connected then they form general models of the domain.
Figures 6.15 (a), 6.18, 6.19, and 6.22 show schematic views of these models.

OBJECT-IDENTITY
I'MEAN-ARTERIAL-PRESSURE!!

TEMPLATE

NAME: MEAN-ARTERIAL-PRESSURE
DEFINITION: "the average pressure in the arteries over time"
SYNONYMS: (AFTER-LOAD REGULATED-VARIABLE)

LEVEL-OF-CONCEPT-MAP:
(TOPINTERMEDIATE DEEP)

EQUATION: ("'"HEMODYNAMICS!!)
HAS-PART: NIL
STATE: #<STATE-OF-A-PARAMETER #x1948A0> ; A pointer to an object.

ASSOCIATED-WITH:
(NARTERIAL-SYSTEM!!)
PART-OF: NIL
CAUSAL-RELATION:
(ICAUSAL-RELATION-MAP/BRP!!
INCAUSAL-RELATION-ABV/MAP!!
ICAUSAL-RELATION-MAP/SV!!
HCAUSAL-RELATION-CO/MAP!!
ICAUSAL-RELATION-TPR/MAP!!)
ABBREVIATION: MAP
NATURE-OF-REGULATION:
PHY SICAL-CHEMICAL
TONIC-ACTIVITY: NIL
UNIT: (MM-OF-HG)

Figure 8.4 A Domain Knowledge Base Object

8.6 Domain Problem Solver: Providing Accessto the Domain Knowledge and
I nferencing about it for CIRCSIM-Tutor (v.3)

The domain knowledge representation system (DKRS) is an information store in
the architecture of CIRCSIM-Tutor (v.3) (see Figure 8.1). This store has two parts the
domain knowledge base (see Section 8.5) and the domain problem solver (DPS)
(Khuwaja et a., 1993). The DPS has three purposes in the architecture of CIRCSIM -

Tutor (v.3). First, it provides an interface to the DKB through which other components
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of CIRCSIM-Tutor (v.3) can access pieces of the domain knowledge. Second, it provides
an inferencing mechanism to perform reasoning in the domain. Third, with this
inferencing capability, this component is capable of solving all the CV problems that
CIRCSIM-Tutor (v.3) gives the student to solve. The relationship between the DKB and
the DPS is shown schematically in Figure 8.5.

The DPS supports a querying process that helps other modules of CIRCSIM -
Tutor (v.3) to communicate with the DKRS. Any piece of domain knowledge (a stored
fact or an inferred one) can be accessed by other parts of CIRCSIM-tutor (v.3) by
composing a query and posing it to the DPS, which, depending upon the form of query,
accesses or infers appropriate piece(s) of domain knowledge. Before we discuss this

guery process, let us describe various entities in the DPS (see Figure 8.6).

OTHER SYSTEM
MODULES

DOMAIN

KNOWLEDGE
BASE

PROBLEM

LEGEND
—& = AQuery —®» = A Response

Figure 8.5 A Schematic View of the DKRS

The CLOS objects for the primitive inference functions (see Figure 8.6) of DPS

represent the atomic inference functions in the domain, which determine what inferences
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can be made on the basis of domain relations (e.g., causal) in the DKB. The DPS also
distinguishes between various inference forms. An inference form determines a type of
inference on a piece of domain knowledge in the DKB. Four such inference form objects
are identified in CIRCSIM-Tutor (v.3) (see Figure 8.6). The main function of the query
analyzer is to extract the inference form and information about the type of knowledge
source from the input query to the DPS. The inference engine uses the inference form
information to perform the requested operation by invoking the appropriate inference

form object.

P R = Part-of
Primitive
> QUERY Inferencel
ANALYZER Function
f 43
R I I

| = Instant-of

DETERMINES
DETERMINANT

RETRIEVE SOLVE SOLVE/ RETRIEVE/
PROVE PROVE

Figure 8.6 A Partia Hierarchy of Classes Used in the Domain Problem Solver

The sequence of events that takes place when the DPS is asked to perform a
knowledge related task is shown in Figure 8.7. The input query to the DPS is first
analyzed by the query analyzer, which extracts the inference form and information about
the type of knowledge source. Thisinformation isthen directed to the inference engine,

which, as a response, invokes the appropriate inference form object. This object then
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invokes an appropriate knowledge source to perform a domain related inference
operation. Finaly, the response to the input query is returned to the caller. Appendix D
explains different types of queries with examples that the DKRS handles in order to
access/infer the domain knowledge.

The process of querying the DPS provides a unifying accessing protocol to other
components of CIRCSIM-Tutor (v.3), with which they can access domain knowledge.
Various inference forms allow the DPS to access both factual and inferred domain
knowledge with equal ease. The knowledge in the DKRS is kept fully transparent for
other components of CIRCSIM-Tutor (v.3). The unified access protocol, as a result of
this transparent domain knowledge, provides full functional access to each chunk of
domain knowledge in the DKRS. Also, due to the use of object-oriented methodol ogy,

the DKRS s highly modular, extensible, and maintainable.

» [AQuery] [Form of Query and Inference
Knowledge Source Engine
Required to Answer

the Query]

[Cdltoan
Appropriate
Form Object]

[Call toan Appropriate
Knowledge Source
Object]

Inference
form

<« [Regn]

Figure 8.7 A Flow of Events Representing the Querying Process in the DPS
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Figure 8.8 Hierarchy of Classesfor the Instructional Planner

8.7 Instructional Planner: Containing the Reasoning M echanism for the Pedagogy
Decision Making

The instructional planner is an important module in the architecture of CIRCSIM-
Tutor (v.3) (see Figure 8.1). It isan architectural equivalent of the pedagogy expert (see

Figure 8.2), i.e., this module contains the reasoning mechanisms that perform the
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pedagogy decision making for the system. At the architectural level, the object model for
the instructional planner has the same design as for the planning dimension described in
Section 7.4.1. Thisdesign could be viewed as a set of tutoring spaces, each of which has
tutoring levels. Each tutoring level has a set of tutoring states that are connected via a set

of tutoring links. Figure 8.8 shows the class hierarchy used for the instructional planner.

Instructional Planner (a Folder)
Generic Structures & Tutoring Space 1 (a Folder)
Mechanisms (a Folder) .
Tutoring Space 2 (a Folder)
Tutoring Space 3 (a Folder)
Tutoring Space 4 (a Folder)

Class Declaration for

Tutoring Spaces.Isp

Create Initialize Objects.Isp

Connect Objects.Isp
Make Instructional Planner.Isp
Planning Engine.lsp
o%gét ngtné:n%efso o-lr— %ﬁ’sp
Behavior of TS1 Objects.Isp
Create Instances for{fSZ |
Connect Instances for TS2.1sp
Behavior of TS2 Obj ectslsp
greate Itnlstgtnces for TS3. I
Orglgav[l]oranfcﬁssfo-g ectg.l) P
e ST FER
Behavior of TSA4 Obj ects.l

Figure 8.9 File Organization for the Instructional Planner

The four steps described in Section 8.4 are used to develop the object model for
this module. At the physical (or code) level the file format for this module is shown in
Figure 8.9. The “Generic structures and mechanisms’ folder (see Figure 8.9) contains
filesthat help in creating and connecting objects for different tutoring spaces. This folder

also contains code for the generic engine that provides a planning mechanism for
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different tutoring spaces of the instructional planner. Section 8.8 describes the
functioning of this planning engine in detail.

The instructional planner is the central component of CIRCSIM-Tutor (v.3). It
communicates and coordinates with other modules to create a tutoring behavior. The

modules with which the instructional planner communicates are shown in Figure 8.1.

\

»| Decide About Planning Level
Y \

Plan For A Tutoring Space Decide About Tutoring State

‘Ys

\

Plan For a Tutoring State

Exit Current
Jutoring Spa

Figure 8.10 Flow Charts Representing the Higher Level Planning Behavior
for the Instructional Planner

8.8 Planning Engine

The structures of the tutoring space used in the instructional planner are the same

(see Section 7.5) athough the contents are different. This means, technically, it is
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possible to use a generic planning mechanism for all tutoring spaces of the instructional
planner. This is exactly the approach | have taken. This section describes the
functioning of the generic planning engine that powers the decision making process of the
instructional planner.

The functional behavior of this engine is shown in Figure 8.10 and 8.11 by a set
of flow charts. At avery high level this engine plans for atutoring space (see Figure 8.10
(@)). At this level it keeps on planning until some global condition forces it to stop

functioning (e.g., the student quits without completing a CV problem).

‘
Bein Find Valid Links/Rules

Process Current Tutoring State \
l Find Enabled Links/Rules
Find Next Tutoring State y

Find Fired Links/Rules

Figure 8.11 Detailed Behavior of the Planning Engine Shown in Figure 8.10

At the second level (see Figure 8.10 (b)), this engine enables the system to jump

between tutoring states to perform pedagogy decision making. Basically Figure 8.10 (b)
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is an expansion of the box “plan for a tutoring space” in Figure 8.10 (a). At this second
level of decision making the planning engine decides about the current planning level in
the current tutoring space. Next it plans for the current tutoring state in the current
planning level. This processis repeated until some condition forces this engine to switch
the current tutoring space (e.g., as aresult of the failure of the tutor’s current hypothesis).
In this case this engine jumps to a higher level planning loop of Figure 8.10 (a).

Figure 8.11 (a) is an expansion of the decision making process of “plan for a
tutoring state” box in Figure 8.10 (b). Here the planning engine performs two major
functions: it first processes the current tutoring state, and then finds the next tutoring
state. In each tutoring state the instructional planner performs a tutoring action. Each
tutoring action contributes to the overall behavior of the instructional planner. The first
function of Figure 8.11 (a) enables the execution of the tutoring action for the current
tutoring state. The second function deals with deciding about the next tutoring state that
the instructional planner jJumpsinto.

Figure 8.11 (b) is an expansion of this second function of Figure 8.11 (a). Here
the planning engine performs three major functions. Firgt, it findsalist of valid links (or
rules) that could be traversed from the current tutoring state. Next, it creates a subset of
these valid links containing only the links that are enabled due to the situation at hand.
And finaly, alink from this subset is selected that the instructional planner could use to
traverse and jump into the next tutoring state. Two sets of these enabled links are created.
The first set contains al enabled links that have lately been used by the instructional
planner. The second set contains the enabled links that have not yet been used by the
instructional planner. The selection rule used hereis:

If the list of not lately used linksis empty

Then select the first link from the recently used list

Else select the first link from the not recently used list
The consequence of this rule is that the instructional planner gives higher priority to a

tutoring action that has not yet recently been used than to an alternative action that has
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recently been used. This will give the instructional planner a variety of alternative
actions each time it interacts with the student.

This generic planning engine is used in conjunction with the tutoring spaces and
two information stores - curriculum and tutoring history.

8.9 Tutoring Spaces

The instructional planner is composed of four major tutoring spaces. major
objective space, exercise space, unit space, and lesson space (see Section 7.5). Each
space consists of three tutoring levels, a set of tutoring states, and a set of tutoring links.

The contents of an example tutoring state object is shown in Figure 8.12.

NAME: TUTORING-PHASE/TS-3
TYPE-OF-STATE: STRATEGICAL-STATE
PARENT-LEVEL: !STRATEGICAL-LEVEL/TS-3!!
DEFAULT-PROGRESSION-LINKS:
(""PREDICTION-COLLECTION-PHASE/TS-3=>
TUTORING-PHASE/TS-3!!)
META-PROGRESSION-LINKS:
("TUTORING-PHASE/TS-3=>PREDICTION-
COLLECTION-PHASE/TS-3!!)
DEFAULT-IN-LEVEL-REFINEMENT-LINKS:
NIL
META-IN-LEVEL-REFINEMENT-LINKS:
NIL
DEFAULT-BETWEEN-LEVELS-REFINEMENT-LINKS:
(M"TUTORING-PHASE/TS-3=>TUTOR-PRIMARY -
VARIABLE/TS-3!!
HTUTORING-PHASE/TS-3=>TUTOR-REMAINING
-PREDICTION-TABLE-VARIABLES/TS-3!!)
META-BETWEEN-LEVELS-REFINEMENT-LINKS:
NIL
HISTORY: INH/TUTORING-PHASE/TS-3!!

Figure 8.12 A Tutoring State Object

Each tutoring state object has a set of methods (or behaviors) attached to it. When
a tutoring state object has been selected by the instructional planner, these methods

determine its actions. An example link object is shown in Figure 8.13. Each link object
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also has its associated behavior. This behavior is responsible for the criteria that

determine which link the planning engine traverses to select next tutoring state.

MIX-IN-NAME: DEFAULT-LINK

TYPE-OF-LINK: DEFAULT-PROGRESSION-LINK
ANTECEDENT-STATE: INPREDICTION-COLLECTION-PHASE/TS-3!!
CONSEQUENCE-STATE: !'TUTORING-PHASE/TS-3!!
RULE-USAGE-HISTORY: NOT-LATELY-FIRED

Figure 8.13 A Tutoring Link Object

Goal Layer

P = Part-of Link

| =lsaLink

Goal for Goal for Goal for Goal for
utoring Space 1(  \Tutoring Space Tutoring Space Tutoring Space 4

CV Procedure Goal
Combination

Figure 8.14 Hierarchy of Classes for the Curriculum
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8.10 Curriculum: Containing Goals of CIRCSIM-Tutor (v.3)

The curriculum is an information store in the architecture of CIRCSIM-Tutor
(v.3) (see Figure 8.1). This store contains the goals of CIRCSIM-Tutor (v.3). Itisan
represents the curriculum dimension of the system model (see Figure 8.2). Here goals are
explicitly represented as objects. The hierarchy of classes used for this information store
is shown in Figure 8.14. In this store goals are classified according to their location in
various tutoring space. In other words, each tutoring space used in CIRCSIM-Tutor (v.3)
has its own set of goals. It is because of this organization, it is possible to customize the
representation and content of each goal object according to the needs of a tutoring space.

Figure 8.15 shows the contents of a goal object used in the exercise space.

NAME: CV-PROCEDURE-COMBINATION-35

SYNONYM: NIL

DIRECTLY-TEACHABLE-P: NO

TYPE-OF-GOAL: NON-CORE

LOCATION: HTUTORING-SPACE-2!!

SUPER-GOALS: (IGOAL-3/TS-2!! HGOAL-4/TS-2!!
GOAL-6/TS-2!1)

SUB-GOALS: (AND-STUDENT-HISTORY (!!GOAL-8/TS-2!!
GOAL-16/TS-2!1))

ANALOGY: NIL

SUPPORTING-GOALS: NIL

PERIPHERAL-GOALS: NIL

GOAL-STATUS: NOT-COVERED

POINTERS-TO-DOMAIN-LAYER: NIL

RESULT-OF-TUTORING: NIL

RE-TUTORABLE: NO

LAST-TUTORING-PLAN-USED: NIL
LAST-SELECTION-PLAN-USED: NIL
NO-OF-TIMES-TUTORED: 0
GOAL-CLASSIFICATION: CV-PROCEDURE-COMBINATION
DEFAULT-DIFFICULTY-LEVEL: CHALLENGING
FIRST-PROCEDURE-OF-THIS-COMBINATION:

INGOAL-8/TS-2!!
SECOND-PROCEDURE-OF-THIS-COMBINATION:

INGOAL-16/TS-2!!

Figure 8.15 A Goal Object
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8.11 Tutoring History: Storing a Trace of Key Decisions of the | nstructional
Planner

The tutoring history is also an information store (see Figure 8.1). The major
purpose of this store is to store the key elements of the instructional planner’s decisions
so that these could be used while performing pedagogy decision making. Theoretically,
this store can be used to store the complete history of pedagogical decision making
performed by the instructional planner but currently it only stores the most recent key

decisions of the instructional planner.

Tutoring History

P = Part-of Link

Tutoring History ltepp

History Item for a
CV Problem

Global Tutoring
History Item

utoring Space Specific
Tutoring History lte

History Item for a

Tutoring History ltepa

Figure 8.16 Hierarchy of Classesfor the Tutoring History

A hierarchy of classes used in the tutoring history is shown in Figure 8.16. The
objects of this store are classified according to the level at which the instructional planner

makes decisions, e.g., this could be at the global level and the tutoring space level. The
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contents of a tutoring history object are shown in Figure 8.17. This object shows the

activity status of the instructional planner at different planning levels.

NAME: ACTIVITY-STATUS
CONTENT/SPACE-1/PEDAGOGICAL: BUSY
CONTENT/SPACE-VUSTRATEGICAL: BUSY
CONTENT/SPACE-U/TACTICAL: BUSY
CONTENT/SPACE-2/PEDAGOGICAL: BUSY
CONTENT/SPACE-2/STRATEGICAL: BUSY
CONTENT/SPACE-2/TACTICAL: BUSY
CONTENT/SPACE-3/PEDAGOGICAL: BUSY
CONTENT/SPACE-3/STRATEGICAL: BUSY
CONTENT/SPACE-3/TACTICAL: BUSY
CONTENT/SPACE-4/PEDAGOGICAL: FREE
CONTENT/SPACE-4/STRATEGICAL: FREE
CONTENT/SPACE-4/TACTICAL: FREE

Figure 8.17 A Tutoring History Object

8.12 A Run of thelnstructional Planner

Appendix E contains a partial trace of the decision making performed by the
instructional planner while executing. This trace shows only the major decisions of the

instructional planner.
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CHAPTERIX
CONCLUSIONS, LIMITATIONS, AND FUTURE DIRECTIONS

9.1 Introduction

In this thesis a model of tutoring has been described. This model is intended for
CIRCSIM-Tutor (v.3) - an Intelligent Tutoring System (ITS) - that tutors first year
medical students on the functioning of the baroreceptor reflex, a negative feedback
system. The fundamental assumption behind this research is that basing the development
of an ITS on the study of the effective human tutors provides the best approach to
devel oping effective machine tutors.

This model of tutoring is based on the behavior of our human tutors (AAR and
JAM) in the keyboard-to-keyboard sessions. The effectiveness of the tutoring method of
our human tutors has now been formally evaluated. This gives us confidence in the
effectiveness of this model of tutoring.

My model defines the behaviors of the domain and the pedagogy experts (see
Figure 4.2). The assumption here is that the domain expert provides the domain
intelligence to the rest of CIRCSIM-Tutor (v.3), whereas the pedagogy expert is mainly
responsible for two functions, the tutoring protocol used throughout the session and
ongoing decisions during the session. The tutoring protocol provides a higher level plan
for tutoring. During a session the pedagogy expert makes three major types of decisions:
what to teach, when to teach, and how to teach. It is this last function that causes the
pedagogy expert to interact heavily with the domain expert.

The domain expert basically uses a set of qualitative and causal models of the
domain. These models in this thesis have been classified as. the parametric and the
anatomical models of the CV system. To represent this domain knowledge a

classification scheme is used. This scheme distinguishes six dimensions in which the
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domain knowledge can be represented. These modeling dimensions are: perspective,
elaboration, scope, sufficiency, aggregation, and generalization.

This thesis also reports a study of the nature of integration between these two
experts. This study showed that the integration between these experts can be explained in
terms of a set of knowledge structures. One such structure is the inference triangle that
has been used by these experts to perform the domain and the pedagogy reasoning.

For CIRCSIM-Tutor (v.3) a specific view of the student has been created that is
used by the pedagogy expert to develop tutoring responses during a session. This view
has three levels. the error level, the error pattern level, and the student difficulty level.
The major objective of the pedagogy expert is to develop lessons that remediate the
student’ s misconceptions.

The major goal of the model of tutoring described in this thesis is to help the
student integrate his/her knowledge into a coherent qualitative causal model of the
domain and solve problems in the domain. The key feature of this model is that the tutor
uses multiple models of the domain in the process of facilitating knowledge integration.
This model of tutoring is in the tradition of the Ohlsson’s (1991) second-order theory of
tutoring. | call this theory the integration theory of tutoring. In accordance with this
theoretical orientation my model puts more emphasis on remedying the student’s
misconceptions.

The development of my model of tutoring has been approached using an ITS
development framework. This framework has been developed by combining the key
features of KADS, a popular knowledge based system development methodology with
some design prescriptions from the field of instructional system design (ISD). This
framework views the development of an ITS as a modeling activity. There are three
major phases of this methodology. These are the conceptual phase, the system phase, and
physical phase. At each phase a different model of an ITS results. This framework also

agrees with the currently popular view of knowledge acquisition. According to this view
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the development of a knowledge base system is a collaborative activity that takes place
between the knowledge engineer and the domain expert.

The description of the model of tutoring described above is more or less at the
conceptual level. Once the conceptual model was ready | transformed it into the system
model. This model is the outcome of the first subphase of the system phase of
development. The major effort during the development of the system model was to make
it as general as possible. This model is an improvement on Lesgold’'s (1988) framework
for machine tutors. The knowledge in an ITS, viewed through the system model, is
organized around three dimensions: the planning dimension, the curriculum dimension,
and the domain knowledge dimension. The key feature of this system model is that it
attempts to combine the model-based and the curriculum-based themes of ITS. From
another point of view, the system model consists of a set of tutoring spaces. Each space
is responsible for performing one type of major decision of the tutor during interaction
with the student. For CIRCSIM-Tutor (v.3) the following tutoring spaces are used: the
maj or-obj ective space, the exercise space, the unit space, and the lesson space.

The outcome of the second subphase of the system phase is an architecture. This
research has developed an architecture for CIRCSIM-Tutor (v.3). This architecture
divides its components into two major classes. modules (or subsystems) and information
stores. Modules are active processes that communicate and coordinate to create the
required intelligent behavior for the system. Asthe name implies, an information storeis
a store of information/knowledge. | have used a version of Booch's (1991) object-
oriented methodology to develop an object model for four major architectural
components of CIRCSIM-Tutor (v.3). These components are the instructional planner,
the domain knowledge representation system (DKRS), the curriculum, and the tutoring
history. The first one is a module and the remaining three are information stores. The
DKRS is the system embodiment of the domain expert, whereas the remaining three

components are the system embodiment of the pedagogy expert.
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In the last phase of the ITS development methodology these architectural
components are coded into software program. | have used the Common Lisp Object
System for this purpose. The hardware platform on which this implementation was
performed is the Apple Macintosh.

9.2 Sionificance and L imitations of This Research

There are many significant aspects of the research described in this thesis. The
ITS development framework used for this research is a step towards a generic
methodology to develop an ITS. There are two major advantages of this framework.
Since it is based on a popular knowledge based system methodology, it provides a
systematic methodology that can be used to develop large scale ITSs for real world
application domains. Second, it is also based on the field of instructional system design,
the development of these ITSs can be tailored so that it can be used in areal educational
setting. The field of ITS needs such a development methodology (Khuwaja et al.,
1994a). A successful use of this methodology for my research provides a feasibility
study for along term goal of developing a generic ITS methodology.

This research has developed a conceptual model of an ITS which is broken down
into different levels (see Figure 4.2). The successive levels of this space define an
increasing approximation to the behavior of human tutors.

The model of tutoring developed in this research uses the integration theory of
tutoring to combine the Socratic method and the mental model theme into a single
framework. Research on the WHY system (Collins, 1985) also had a similar agenda but
it did not crystallize into a model of tutoring. Perhaps one reason for this is that the
tutoring scenario Collins proposed puts heavy demands on the diagnostic phase of
tutoring. We cannot meet these demands using current state-of-the-art Al research. Our
model makes use of both an overlay and a bug library approach to the diagnostic

problem. This method is quite commonly used in ITS research.
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Using the Socratic method to teach problem-solving is itself a challenge because
it raises an age old issue of immediate vs. delayed feedback. This model of tutoring uses
a novel tutoring protocol, developed by our expert tutors. It merges the themes of
immediate and delayed feedback.

Based on the elaboration hierarchy this model of tutoring uses multiple models of
the domain to remedy the student’s misconceptions. Only a few research efforts have
been geared to use multiple models for tutoring. The method of use of multiple models
of the domain in this model of tutoring is quite pragmatic and novel.

The integration between the domain and the pedagogy expert has been formally
studied in this research. This study shows that these two roles of the tutor use common
knowledge structures for their reasoning purposes. We believe that these knowledge
types provide the “glue” that integrates different types of expertise in the skilled human
tutor and makes the whole process of tutoring effective.

This model of tutoring is influenced by variables such as: the style and method of
tutoring, the tutoring domain, the learning context, the teaching goals, and the nature of
tutoring task (see Section 5.3). We hope that taking these variables into account will give
us amore general model of tutoring.

The system model combines the curriculum and model-based themes of ITS. It
advances Lesgold’' s knowledge representation framework for ITSs. The system model is
generic and domain independent. It divides the tutoring expertise into three dimensions:
the planning dimension, the curriculum dimension, and the domain knowledge
dimension.

The system model forces the designer to concentrate on the “system” rather than
“conceptual” issues of tutoring. This division of emphasis is important for different
phases of ITS development. The separation of this model from the conceptual model is
an important contribution in itself. Very few research efforts have made this explicit

division. One advantage of thisdivision is that the system model can use any conceptual
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model to develop an ITS. In other words the system model can provide a research tool
for the ITS designer to test hissher theories of tutoring. In CIRCSIM-Tutor (v.3) the
system model allowed us to use our conceptual model of tutoring to develop the system.

The architecture of CIRCSIM-Tutor (v.3) is very generic. It is domain and
tutoring method independent. | am in favor of the use of the multiple expert metaphor for
ITS development. But | think this metaphor should not be carried over to develop the
architecture of an ITS. This architecture encourages the devel oper to break this metaphor
into its components. This architecture uses software engineering principles to support
modularity, portability, and extendibility. Historically the conceptual model is
continuously changing in the CIRCSIM-Tutor project. One characteristic of this
architecture is that it attempts to minimize, as much as possible, the effect of change of
the conceptual model on the physical design of the system.

9.3 Future Research Directions

The research reported in this thesis can be continued along several directions. The
purpose of this section is to identify these directions.

The ITS development framework described in this thesis needs further research to
make it complete and general enough to be useful to develop all types of ITSs. At the
conceptual phase this research assumes that the study of human tutors provides the best
tutoring scenario. This assumption needs further investigation. It would be interesting to
see how other methods of developing conceptual models (see Section 2.2.3) affect this
ITS development methodology.

| have developed a knowledge based development methodology to develop
conceptual models of the domain. It would be interesting to investigate the generality of
this approach to develop qualitative models in other domains (such as respiratory
physiology and electronic circuit design).

The domain expert uses multiple models of the domain. | believe that the models

developed during this research are only a small set of the possible ones that our tutors use
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while performing reasoning in the domain. A definite research direction is to investigate
all possible domain models and their usage in our tutoring context.

Only a subset of behaviors of our tutors in the keyboard-to-keyboard sessions
have been considered for the pedagogy expert. It would be extremely advantageous to
model other complex behaviors (e.g., behaviors responsible for the exploratory phase of
the tutoring cycle - see Section 6.5) for CIRCSIM-Tutor (v.3). This indeed will put
heavy burden on all components of CIRCSIM-Tutor (v.3) but it will make the behavior of
the system much more like the behavior of our tutors in the keyboard-to-keyboard
sessions. We have avoided exploring this area further because of the limitations of the
input understander.

The anatomical model of the CV system is not yet fully developed, it is extremely
important to make it fully functional so that the pedagogy expert could use both
anatomical and physiological perspectives of the CV system for tutoring.

A study to investigate the nature of the integration between the domain and the
pedagogy expert has already been initiated by this research. It would be advantageous to
expand this study to explore al the types of glue that combine to allow the experts (e.g.,
the communication expert, the student modeler) to create an effective tutoring behavior.

Once the implementation of CIRCSIM-Tutor (v.3) is complete it would be
extremely advantageous to compare its effectiveness with the effectiveness of our human
tutorsin the keyboard-to-keyboard sessions.

The system model is domain independent. It would be interesting to test its utility
in developing ITSs in other domains.

My long-term goal is to generalize this model to develop a theory of tutoring that

isgeneral enough to be used in various tutoring situations and domains.
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APPENDIX A

RESULTS OF AN EVALUATION STUDY FOR A
KEYBOARD-TO-KEYBOARD TUTORING METHOD
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TUTORING EXPERIMENT
APRIL 1993

Controal Protocal

1. Pretest
a. CV Réationship exam #1 (10 minutes allotted)
b. Problem-half of group received Problem A, half received Problem B (30
minutes allotted)
2. Text

Segments of 3 chapters from Heller and Mohrman, Cardiovascular Physiology
were provided. Studentswere given 1 hour to read the text.

3. Problem P

Students were given problem P (the same problem as the experimental group were
tutored on) to solve (30 minutes allotted).

4. Posttest
a. CV Reéationship exam #2 (same questions as #1 but rearranged - 10 minutes
allotted).

b. Problem - students who had done Problem A as pretest were given problem B;
and those that had done Problem B were given Problem A.

Experimental Protocol

1. Pretest - same as above.

2. Problem P
Students solved problem and were tutored by faculty. Students were required to
get primary variable and its value correct. Otherwise tutoring took place only
after each Prediction Table column was completed. No time limit.

3. Posttest - same as above.

Analysis

1. CV Relationship exams. Number of correct entries (#C) and number of wrong entries
(#W) weretallied.

2. Problems. Number of incorrect predictions (#W) and number of relationship errors
(#bugs) were tallied.
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APPENDIX B
CV PROBLEMS: THEIR COMBINATIONS AND DESCRIPTIONS
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BASIC PERTURBATION REPERTOIRE

BASIC PROCEDURES

PRA: Reduce Arterial Resistance(RA) to 50% of normal.

PDB: Denervate the Baroreceptors.

PBV: Hemorrhage - Remove 1.0 L (Blood Volume=4.0L).
PIS: Decrease Inotropic State (1S) to 50% of normal.

PRV: Increase Venous Resistance(RV) to 200% of normal.
PIT:  Increase Intrathoracic Pressure(PIT) from -2 to 0 mm Hg.

DRUGS

DAB: Administer aBeta-adrenergic agonist.

DAC: Administer aCholinergic agonist.

DAA: Administer a Alpha-adrenergic agonist.

DBB: Administer a Beta-adrenergic antagonist(blocker).

DBC: Administer a Cholinergic(muscarinic)
antagonist(blocker).

DBA: Administer a Alpha-adrenergic antagonist(blocker).

ARTIFICIAL PACEMAKER

APU: Install artificial pacemaker. Increase Heart Rate(HR) from 72 to 120.
APD: Install artificial pacemaker. Decrease Heart Rate(HR) from 72 to 50.



1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

POSSIBLE PERTURBATION COMBINATIONS

PRA After (DBB Or DBC Or AP(U Or D)).

PBV After (DBB Or DBC Or DBA Or AP(U Or D)).

PIS After (DBC Or DBA Or AP(U Or D)).

PRV After (DBB Or DBC Or DBA Or AP(U Or D)).

PIT After (DBB Or DBC Or DBA Or AP(U Or D)).

DAB After (DBC Or DBA Or AP(U Or D)).

DAC After (DBB Or DBA).

DAA After (DBB Or DBC Or AP(U Or D)).

AP(U Or D) After (DBB Or DBC Or DBA).

(DBB Or DBA) After AP(D).

(PRA Or PISOr APD Or DBB) After PDB.
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CIRCSIM-Tutor PROBLEM DESCRIPTIONSTYPES

DIRECT DEFINITION OF PRIMARY VARIABLE
INDIRECT DEFINITION OF PRIMARY VARIABLE
DIRECT DEFINITION OF PROCEDURE VARIABLE

A W NP

INDIRECT DEFINITION OF PROCEDURE VARIABLE

REDUCE RaTO 50% (PRA)

1. A patient was given a drug by his physician that reduced his total peripheral
resistance by 50%.

2. A medical student injected an experimental animal with a drug that reduced the
animal's arterial resistance to 50% of normal.

3. An unsupervised child was playing in the kitchen and drank some fluid that
contained a chemical that significantly dilated the child's blood vessels.

4. A group of teenagers were experimenting with drugs. One of them swallowed
some pills that contained a specific arteriolar smooth muscle relaxant.

DENERVATE THE BAROCEPTORS (PDB)

1. As part of an experiment in the physiology laboratory, a medical student cut
the nerves from the baroreceptors. As a result, information about blood pressure
can not reach CV centersin the central nervous system.

4. In the process of trying to remove some tumors growths in a patient's neck, a
surgeon accidentally cut the patient's carotid sinus nerves.

HEMORRHAGE (PBV)

2. A medica student donated 1 liter of blood to a patient about to undergo
surgery. Predict the effects of the student's blood donation.

4. AB played severa vigorous games of tennis on a hot, humid summer day,
without a break and without drinking anything.

DECREASE INOTROPIC STATE TO 50% (PLS)

1. Mr. HT has a condition that reduces the inotropic state of his heart.
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2. MissEM isgiven adrug that resultsin increased intracellular calcium in heart
muscle célls.

3. Ms. BF has coronary artery disease. This condition reduces the blood flow to
her myocardium, limiting the delivery of oxygen and nutrients to the heart
muscle.

4. Mr. NS has a condition that reduces the synthesis of adrenergic receptors by
his heart muscle cells.

INCREASED VENOUSRESISTANCE TO 200% (PRV)

1. Predict the effects of increasing venous resistance. Assume that no changein
Venous capacitance or venous compliance occurs.

2. A patient was admitted to the hospital after experiencing afainting spell. After
a series of tests her problem was determined to be an abdominal tumor that was
compressing her vena cava, reducing her venous return.

3. Certain agents are known to cause veno-constriction, without affecting venous
compliance or capacitance. What would be the effect of administering this agent
to a patient?

4. An astronaut was placed in a human centrifuge. The centrifuge was rotated to

provide a force of 3 gees (3 times the force of gravity) acting from his head
toward his feet.

INCREASED INTRATHORACIC PRESSURE (PIT)

2. A medical student was testing her cardiovascular reflexes in the physiology
lab. She performed a procedure that raised her intrathoracic pressure from -2 to O
mm Hg.

4. A parent was preparing for her 5 year old's birthday by blowing up balloons.
One very large balloon was particularly stiff. What would be the cardiovascular
effect of her effort to inflate this balloon. Assume that she tried to blow it up in
one very long, sustained expiratory effort.

BETA ADRENERGIC AGONIST (DAB)

1. Predict the effects of simultaneously increasing both heart rate and cardiac
contractility (cardiac inotropic state) using the maintained infusion of a drug.

2. Predict the effects of continuously administering a long-acting, potent drug
that produces the same effects as stimulating the sympathetic nerve supply to the
heart.

3. What would be the effect of continuously infusing a subject with a potent,
long-acting beta-adrenergic agonist?
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CHOLINERGIC AGONIST (DAC)

1. Anindividual was continuously infused with a long-acting drug that reduces
heart rate. Predict the consequences.

2. Predict the effects of continuously infusing an individual with a long-acting,
potent drug that has the same effect as cholinergic stimulation of the SA node.

3. Anindividual was infused with along-acting cholinergic agonist. Predict the
effects.

ALPHA-ADRENERGIC AGONIST (DAA)

1. Predict the effects of a maintained infusion of an individual with a potent,
long-acting drug that increased total peripheral resistance.

2. Anindividual was continuously infused with a potent, long-acting drug that
has the same effects as stimulating the sympathetic nerve supply to the blood
vessdls.

3. Predict the effects of continually infusing an individual with a potent, long-
acting a pha-adrenergic agonist.

BETA-ADRENERGIC ANTAGONIST (DBB)

1. Predict the effects of simultaneously reducing the inotropic state (cardiac
contractility) of the heart and the heart rate.

2. Anindividual was continuously infused with a potent, long-acting drug that
interferes with the tonic effects of the sympathetic nervous system on the SA node
and the myocardium.

3. Predict the effects of continually infusing an individual with a potent, long-
acting beta-adrenergic antagonist.

CHOLINERGIC ANTAGONIST (DBC)

1. Predict the effects of continually administering a potent, long-acting drug
whose only effect is to increases the heart rate.

2. Predict the effects of a maintained infusion with a potent, long-acting drug that
prevents the tonic para-sympathetic stimulation of the SA node.

3. What would be the effects of continually infusing an individual with a potent,
long-acting cholinergic muscarinic antagonist (blocking agent)?

ALPHA-ADRENERGIC ANTAGONIST (DBA)

1. Predict the effects of continually administering an potent, long-acting drug that
decreases the total peripheral resistance.
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2. Predict the effect of continually infusing a subject with a potent, long-acting
drug that prevents the effects of the tonic sympathetic action on blood vessels.

3. What would be the effects of a continuous infusion with a potent, long-acting
alpha-adrenergic antagonist (blocking agent)?

PACEMAKER (APU / APD)

1. Anindividual with a non-functioning SA node has had an artificial pacemaker
implanted that is the sole determiner of her heart rate. The pacemaker has been
running at 72/minute for months. Suddenly, it misfunctioned and the rate
changed to 120/minute (50/minute).
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APPENDIX C
A LIST OF ERROR PATTERNS AND STUDENT DIFFICULTIES



Phase=DR

Phase=RR

LIST OF ERROR PATTERNS

Wrong Primary Variable
Wrong Primary Variable Prediction
Any Neura Error DR
CVP-> SV

SV ->CO

CO > MAP

TPR -> MAP

HR->CO

IS->SV

COinv CVP

MAPinv SV
MAP=TPR x CO
CO=HRx SV

Any Clamped Neural RR

Any Neural Error RR

Any Non Clamped 0 in Neural-RR
Any Non Clamped 0 in RR
RR-MAP Incorrect
MAPInDRinv TPRinRR
MAPiInDRinv HRinRR
MAPInDRinvISinRR

CVP-> SV

SV ->CO
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Phase=SS

CO ->MAP

TPR -> MAP
HR->CO
IS->SV

COinv CVP
MAPinv SV
MAP=TPR x CO
CO=HRx SV

MAP Incorrect SS
Any 0in SS

HR Algebraic SS
CO Algebraic SS
SV Algebraic SS
IS Algebraic SS
TPR Algebraic SS
CVP Algebraic SS
CVP-> SV

SV ->CO
CO->MAP

TPR -> MAP

HR ->CO
IS->SV

COinv CVP
MAPinv SV
MAP=TPR x CO
CO=HRx SV
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LIST OF STUDENT DIFFICULTIES

Slip

Does Not Know

Mechanism

Definition of DR

Actual Neural Variables

IS Confusion

|S/Pre Load Confusion

Pre Load Confusion

In/Out Balance of Heart

After Load Confusion
Causality/Algebra

Approximate MAP

CO/SV Confusion

Effect of Clamping

Definition of RR

Regulated/Effector Variable Confusion
Compared to What
Sympathetic/Parasympathetic Confusion
Incorrect DR and RR Summation

Fully Compensated
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APPENDIX D
HOW TO QUERY THE DKRS
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| Introduction

The Domain Knowledge Representation System (DKRS) is an information store
in the architecture of CIRCSIM-TUTOR (v.3). It contains two main parts: the Domain
Knowledge Base (DKB), and the Domain Problem Solver (DPS). The DKB defines
domain knowledge base objects and their behavior, whereas the DPS defines domain
problem solver objects and their behavior. The DKRS is implemented in CLOS of
Procyon Common Lisp. Itiscomprised of the following files:

1) class-declarations-for-DKB.Isp
2) class-declarations-for-DPS.Isp
3) create/init-DKB-instances.Isp
4) create/init-DPS-instances.Isp
5) connect-DKB-objects.Isp

6) connect-DPS-objects.Isp

7) declare/initialize-DKRS.Isp

8) accessory-operations.Isp

9) behavior-of-DKB-objects.Isp
10) behavior-of-DPS-objects.Isp

There are two types of knowledge available in the DKRS: factual and inferred.
The factual knowledge is explicitly represented in the DKRS whereas the inferred
knowledge can be obtained by manipulating the factual knowledge using inference
procedures. Most of the knowledge in the DKRS is accessed by composing a query. A
guery has two main forms. In the first form, it can be used to obtain a specific
information about a domain object. In the second form it can be used to confirm or reject
any previously acquired information about a domain object. In this appendix Lisp
expressions are shown in italics.

Il Composing a Query to Access the Factual Domain K nowledge

There are two types of factual knowledge in the DKRS: static and dynamic. The
static knowledge is the unchangeable information about a domain object whereas the
dynamic knowledge about an object changes with the state of the system. Both of these
types are obtained by accessing the slot contents of an object.

A Accessing the Static Domain Knowledge

The general template for a query to access the static knowledge of a domain
object isasfollows:

Template: (query '(<slot-name> <object-name> <?/value-of-got>))

Where:
<glot-name> = The name of aslot of an object whose contents need to be analyzed, e.g.
definition.

<object-name> = The global name of an object whose slot value need to be analyzed, e.g.
I"HEART-RATE!!, 'BLOOD!!,
INCAUSAL-RELATION-MAP/SV!!, TEQUATION-CO!!,
IHALPHA-ADRENERGIC-ANTAGONISTS!!
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<?lvalue-of-slot> = This part of a query can be either "?' or a value of the specified slot.
If itis"?" then the DKRS will fetch the content of the slot for the specified object.
But if it isavalue of the specified slot then the DKRS will assume that the caller
wants to confirm this value by comparing it with the current value of the specified
dot.

Result of aquery: If the last section of aquery containsa"?" then, provided the given
sot exists for the specified object, the DKRS will return the current value of that
dlot. But if the last section of aquery contains a value then, provided the given
slot exists for the specified object, the DKRS will try to compare this value with
the current value of the specified ot. If these two slot values are the same then a
"True" isflagged otherwise a"nil" is returned.

The set of possible values for <dlot-name> is. definition, synonyms, name, causal -

relation, abbreviation, nature-of-regulation, tonic-activity, equation, unit, antecedent,
consequence, medium, and nature-of-causal-rel ation.

Examples:

> (query '(synonyms 'SMOOTH-MUSCLE!! ?))
(CV-EFFECTOR)

> (query '(synonyms ! SMOOTH-MUSCLE!! CV-EFFECTOR))
T

> (query '(synonyms ! SMOOTH-MUSCLE!! xyz))
NIL

B Accessing the Dynamic Domain K nowledge

The general templates for queries to access the dynamic knowledge of a domain
object are asfollows:

1) A number of dynamic dlots (<slot-name>) sharing the same template structure asis for
static slots (given above) are: perturbation-in-action, current-stage-of-cv-system, mode-

of-perturbation, level-of-concept-map, last-perturbation. These slots are only applicable
for the"I"ENVIRONMENT!!" object.

Examples:

> (query '(perturbation-in-action !environment!! ?))
BASIC-PROCEDURE1

> (query '(perturbation-in-action !"environment!! BAS C-PROCEDURELY))
T

> (query '(current-stage-of-cv-system !environment!! ?))
STEADY-STATE

> (query '(mode-of-perturbation !environment!! ?))
MULTIPLE

> (query '(level-of-concept-map !environment!! ?))
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DEEP

> (query '(last-perturbation !environment!! ?))
HARTIFICIAL-PACEMAKER!!

2) Template: (query '(<head of query> <stage of cv system>
<level of concept map> ?))

Where:

<head of query> can be either "solution-path" or "first-variable-affected"

<stage of cv system> can be either "DR", "RR" or "SS" for Direct Response, Reflex
Response and Steady State respectively.

<level of concept map> can be either “top”, “intermediate” or “deep.”

Examples:

> (query '(solution-path dr top ?))

(M"TOTAL-PERIPHERAL-RESISTANCE!! DECREASE)
(""MEAN-ARTERIAL-PRESSURE!! DECREASE)
(""STROKE-VOLUME!! INCREASE)
('!CARDIAC-OUTPUT!! INCREASE)
(""RIGHT-ATRIAL-PRESSURE!! DECREASE))

> (query '(first-variable-affected dr top ?))
(MTOTAL-PERIPHERAL-RESISTANCE!! DECREASE))

> (query '(first-variable-affected DR deep ?))
((""'SMOOTH-MUSCLE-TONE!! DECREASE))

3) Template: (query '(<head of query> <object name> <stage of cv system>
<?/a-possible-answer>))

Where:

<head of query> is"value"

<object name> and <stage of cv system> are as defined above.

<?/a-possible-answer> = This part of query can be either "?" or a possible answer of this
query. If itis"?" then the DKRS will fetch the content of the slot represented by
the <head of query> for the specified object. But if it isapossible answer of the
specified query then the DKRS will assume that the caller wants to confirm the
specified answer.

Examples:

> (query '(value !"heart-rate!! dr ?))
NO-CHANGE

> (query '(value !Theart-rate!! rr ?))
INCREASE

> (query '(value !'heart-rate!! ssincrease))
T
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[1l Composing a Query to Infer the Domain Knowledge

Two types of knowledge structures are used in the DKRS. The first type enables
us to infer about the anatomical knowledge about the CV system, whereas the second
type holds the parametric qualitative and causal information about the CV system.

A Queriesthat Use Anatomical Knowledge of CV System

Template: (query '(<a-knowledge-source> <object-name> <?/a-possible-answer>
<an-optional-qualifier>))

Where:

<a-knowledge-source> = An information processing method. A possible set of
knowledge sourcesin thiscaseis: is-a, part-of, has-part, associated-with, and has-
association.

<object-name> = The global name of an object, e.g. '"HEART-RATE!!, I'HEART!!

<?/a-possible-answer> = This part of query can be either "?", to find information, or a
possible answer that need to be verified.

<an-optional-qualifier> = Thisis an optional part of this query and can be either
"immediate” or "al". If itis"immediate” then inference procedure will only look
for information one step above or below the current position in either is-a, part-
whole or association hierarchy. But if itis"all" then the inference procedure
searches the whole structure starting from the current position in the hierarchy.

Examples:

> (query '(is-a !lheart!! ?))
(ANATOMY-OBJECT)

> (query '(is-a!lheart!! ? immediate))
(ANATOMY-OBJECT)

> (query '(is-a !'heart-muscle!! ? all))
(HEART-MUSCLE MUSCLE ANATOMY-OBJECT DOMAIN-CONCEPT)

> (query '(is-a !'heart!! (ANATOMY-OBJECT DOMAIN-CONCEPT) all))
"Query has the wrong format!"

> (query '(is-a !heart!! (ANATOMY-OBJECT DOMAIN-CONCEPT) ))
T

> (query '(part-of !'heart!! ?))

("'CARDIOVASCULAR-SYSTEM!!)

> (query '(part-of !Theart!! ? immediate))
(""CARDIOVASCULAR-SY STEM!!)

> (query '(part-of !lsystemic-arterioles!! ? all))
(MARTERIOLES!! 'ARTERIAL-SYSTEM!!
I1SYSTEMIC-CIRCULATION!! 'ICARDIOVASCULAR-SY STEM!!)

> (query '(part-of !Theart!! I''CARDIOVASCULAR-SYSTEM!!))
T
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> (query '(has-part !'heart!! ?))
(M"PASSIVE-UNIT!! HRIGHT-ATRIUM!! 'SA-NODE!!
HLEFT-VENTRICLE!)

> (query '(has-part !'heart!! ? immediate))

(M"PASSIVE-UNIT!! HRIGHT-ATRIUM!! I'SA-NODE!!
HLEFT-VENTRICLE!)

> (query '(has-part !"heart!! ? all))

(""PASSIVE-UNIT!! HRIGHT-ATRIUM!! I'SA-NODE!!
INBETA-RECEPTOR!! I!C-M-RECEPTOR!! !LEFT-VENTRICLE!!)

> (query '(has-part !"heart!! 'PASSVE-UNIT!!))
T

> (query '(has-part !'heart!! asdf))

NIL

> (query '(associated-with !Theart!! ?))

"No such information is available!"

> (query '(associated-with !'heart-rate!! ?))
(""SA-NODE!)

> (query '(associated-with !Theart-rate!! ? immediate))
(""'SA-NODE!)

> (query '(associated-with !'heart-rate!! ? all))
(""SA-NODE!! I"HEART!! ICARDIOVASCULAR-SY STEM!!)

> (query ‘(associated-with !heart-rate!! I'"HEART!! all))
"Query has the wrong format!"

> (query '(associated-with !Theart-rate!! ''HEART!! ))
T

> (query '(has-association !!heart!! ?))

NIL

> (query '(has-association !'heart!! ? all))
(""STROKE-VOLUME!! 'FILLING-TIME!! 'HEART-RATE!!
I'SA-NODE-RATE!! '!CARDIAC-OUTPUT!! HRIGHT-ATRIAL-PRESSURE!!)

> (query '(has-association !'heart!! 1! STROKE-VOLUME!!))
T
> (query '(has-association !'heart!!
('!STROKE-VOLUME!! 'FILLING-TIME!! I'HEART-RATE!!
ISA-NODE-RATE!! ! CARDIAC-OUTPUT!! 'RIGHT-ATRIAL-PRESSURE!")))
T

> (query '(has-association !'heart!! srthrt))
NIL
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B Queriesthat Perform Parametric Qualitative and Causal Reasoning in the
Domain

1) Template: (query '(expand-causal-link <parameter-A> <parameter-B>
<level-of-concept-map> ?))

This query uses the knowledge source "expand-causal-link" to find all (causal) paths from
parameter A to B in the specified level of the concept map.

Examples:

> (query '(expand-causal-link !'heart-rate!!
I'mean-arterial-pressure!! deep ?))

(""HEART-RATE!! I!CARDIAC-OUTPUT!!
HARTERIAL-BLOOD-VOLUME!! 'MEAN-ARTERIAL-PRESSURE!!)
("HEART-RATE!! HFILLING-TIME!!
IHEND-DIASTOLIC-VOLUME!! 'MUSCLE-FIBER-LENGTH!!
HACTIN-MY OSIN-REACTION!!

I"MY OCARD-CONTRACTILE-FORCE!! ! STROKE-VOLUME!!
INCARDIAC-OUTPUT!! HARTERIAL-BLOOD-VOLUME!!
INMEAN-ARTERIAL-PRESSURE!!)

(""HEART-RATE!! 'INTRACELLULAR-CA++!!

HACTIN-MY OSIN-ASSOCIATION!!
IHCARDIAC-CONTRACTILITY!!

I'MY OCARD-CONTRACTILE-FORCE!! ! STROKE-VOLUME!!
INCARDIAC-OUTPUT!! HARTERIAL-BLOOD-VOLUME!!
INMEAN-ARTERIAL-PRESSURE!!))

> (query '(expand-causal-link !"heart-rate!!
I'mean-arterial-pressure!! intermediate ?))
(""HEART-RATE!! I!CARDIAC-OUTPUT!!
HARTERIAL-BLOOD-VOLUME!! 'MEAN-ARTERIAL-PRESSURE!!))

> (query '(expand-causal-link !"heart-rate!!
I'mean-arterial-pressure!! intermediasfgasgte ?))
"Thislink is not expandable in the given level!"

> (query '(expand-causal-link !"heart-rate!!
I'mean-arterial-pressure!! top ?))
(""HEART-RATE!! !CARDIAC-OUTPUT!! IMEAN-ARTERIAL-PRESSURE!!))

2) Template: (query '(<a-knowledge-source> <object-name>
<level-of-concept-map> <?/a-possible-answer>
<stage-of-cv-system>))

Where:

<a-knowledge-source> = "determinant” or "determines’

<object-name> and <level-of -concept-map> are as explained above. The last parameter
<stage-of-cv-system> is an optional parameter. If it is present in the query then
DKRS will interpret knowledge sources "determinant” and "determines’ as
"actual determinant” and "actually determines’ respectively. If this query
contains the knowledge source "determinant” then it will find the causal
determinant of the given object. On the other hand, if this query contains the
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knowledge source "determines’ then it will find the parameters that are
determined by the object given in the query.

Examples:

> (query '(determinant !!stroke-volume!! top ?))
(""MEAN-ARTERIAL-PRESSURE!! I!RIGHT-ATRIAL-PRESSURE!!
IHCARDIAC-CONTRACTILITY!)

> (query '(determinant !!stroke-volume!! top ? rr))
('"MEAN-ARTERIAL-PRESSURE!! lRIGHT-ATRIAL-PRESSURE!!)

> (query '(determinant !!stroke-volume!! deep ?))
(""MEAN-ARTERIAL-PRESSURE!! ''MY OCARD-CONTRACTILE-FORCE!!)

> (query '(determinant !!blood-volume!! top ?))
"The given parameter does not existsin the specified level of the concept map!™

> (query '(determinant !'sa-node-rate!! deep ? rr))
("EPINEPHRINE!! ''NOREPINEPHRINE!! '1ACETYLCHOLINE!)

> (query '(determines !!stroke-volume!! top ?))
(""CARDIAC-OUTPUT!!)

> (query ‘(determines !!stroke-volume!! top ? RR))
NIL

> (query '(determines !!stroke-volume!! deep ?))
(""CARDIAC-OUTPUT!!)

> (query '(determines !!blood-volume!! top ?))
"The given parameter does not existsin the specified level of the concept map!™

> (query '(determines!!sa-node-rate!! deep ? rr))
(""HEART-RATE!)

3) Template: (query ‘(proportionality <parameter-A> <parameter-B>
<?/a-possible-answer> <stage-of-cv-system>))

This query using the knowledge source "proportionality” finds the nature of causal
relationship between parameters A and B - it can be either direct, inverse or nil.

Examples:

> (query '(proportionality !'heart-rate!!
I'mean-arterial-pressure!! ? dr))
NIL

> (query '(proportionality !'heart-rate!!
I'mean-arterial-pressure!! ?rr))
DIRECT

> (query ‘(proportionality ! cardiac-output!!
INcentral-blood-volume!! inverserr))
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T

> (query '(proportionality !'heart-rate!!
I'mean-arterial-pressure!! invdfhdfherse rr))
NIL

4) Template: (query '(causes (<parameter-A> <?/a-possible-answer>)
(<parameter-B> <?/a-possible-answer>)
<stage-of-cv-system>))

This query using the knowledge source "causes" finds the value of parameter B/A given
the value of parameter A/B. In other words this query finds the direction of change in
parameter A/B as aresult of the change in parameter B/A.

Examples:

> (query '(causes (!'heart-rate!! increase)
(""mean-arterial-pressure!! ?) DR))
NIL

> (query '(causes (!!'heart-rate!! increase)
(""mean-arterial-pressure!! ?) rr))
INCREASE

> (query ‘(causes (!!'heart-rate!! decrease)
(""mean-arterial-pressure!! ?) rr))
DECREASE

> (query '(causes (!'heart-rate!! decreadghfghse)
(""mean-arterial-pressure!! ?) rr))
NIL

> (query '(causes (!!'heart-rate!! ?)
(""mean-arterial-pressure!! decrease) rr))
DECREASE

> (query '(causes (!'heart-rate!! ?)
(""mean-arterial-pressure!! increase) rr))
INCREASE

> (query '(causes (!'heart-rate!! decrease)
(""mean-arterial-pressure!! increase) rr))
NIL

> (query '(causes (!!heart-rate!! increase)
(""mean-arterial-pressure!! increase) rr))
T

> (query '(causes (!!'heart-rate!! incrghdgease)
(""mean-arterial-pressure!! increase) rr))
NIL
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IV Generic Functions

Besides the querying capability, DKRS also provides a set of generic functions
that are available to all modules of the CIRCSIM-TUTOR (v.3). These functions
perform various tasks in the domain to provide access to most frequently usable
information.

A (global-object-name <object-name>)
This function fetches the internal name of the given object.

Example:

> (global-object-name 'heart)
(""HEART!)

B Following functions fetch alist of internal object names of a specific type.

Examples:

> (list-of-equations ''DKRS!)
(""COMPLIANCE!! '"HEMODYNAMICS!! 'EQUATION-CQO!!)

> (list-of-causal-relations ' DKRS!)

(""CAUSAL-RELATION-BRP/CNSR!! ''CAUSAL-RELATION-CNSR/CC!!
INCAUSAL-RELATION-AMA/CC!! I'CAUSAL-RELATION-ICA/AMA!!
NCAUSAL-RELATION-EPI/ICAN!

INCAUSAL-RELATION-EPI/SANR!!
INCAUSAL-RELATION-NEPI/ICA!! ICAUSAL-RELATION-VR/EDV!!
INCAUSAL-RELATION-CNSR/HR!! '!CAUSAL-RELATION-HR/ICA!!
INCAUSAL-RELATION-HR/FT!! 'CAUSAL-RELATION-HR/CO!!
INCAUSAL-RELATION-SFR/NEPI!!

INCAUSAL-RELATION-SFR/EPI!!
IHCAUSAL-RELATION-CNSR/SFR!!
INCAUSAL-RELATION-PSFR/ACH!!
INCAUSAL-RELATION-CNSR/PSFR!!
INCAUSAL-RELATION-BRFR/CNSR!!
INCAUSAL-RELATION-CNSR/SANR!!
INCAUSAL-RELATION-NEPI/SANR!!
INHCAUSAL-RELATION-ACH/SANR!!
INCAUSAL-RELATION-SANR/HR!! 'CAUSAL-RELATION-CC/MCF!!
HCAUSAL-RELATION-AMR/MCF!!
HCAUSAL-RELATION-NEPI/SMT!!
INCAUSAL-RELATION-EPI/SMT!! ICAUSAL-RELATION-CNSR/AS!!
INCAUSAL-RELATION-SMT/AS!! !CAUSAL-RELATION-BRP/BRS!!
INCAUSAL-RELATION-BRS/BRFR!!
IHCAUSAL-RELATION-MFL/AMR!! NCAUSAL-RELATION-CC/SV!!
INCAUSAL-RELATION-SV/CO!! 1CAUSAL-RELATION-MCF/SV!!
INCAUSAL-RELATION-EDV/MCF!! '!CAUSAL-RELATION-FT/EDV!!
INCAUSAL-RELATION-EDV/MFL!! 'CAUSAL-RELATION-VR/CBV!!
INCAUSAL-RELATION-CO/CBV!! !lCAUSAL-RELATION-CBV/EDV!!
INCAUSAL-RELATION-BV/CBV!! ICAUSAL-RELATION-CO/ABV!!
INCAUSAL-RELATION-AS/RA!! ICAUSAL-RELATION-GVS/RV!!
INCAUSAL-RELATION-SVS/RV!!I CAUSAL-RELATION-RV/VR!!
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INCAUSAL-RELATION-CNSR/TPR!!

INCAUSAL-RELATION-TPR/ABV!! 1CAUSAL-RELATION-RA/TPR!!

INCAUSAL-RELATION-VR/CVP!! ICAUSAL-RELATION-BV/CVP!!

INCAUSAL-RELATION-CO/CVP!! ICAUSAL-RELATION-CBV/CVP!!

HNCAUSAL-RELATION-PVTM/GVS!!

INCAUSAL-RELATION-PIT/GVS!!

NCAUSAL-RELATION-PIT/PVTM!!

INCAUSAL-RELATION-PIT/CVP!! ICAUSAL-RELATION-RAP/SV!!

INCAUSAL-RELATION-CO/RAP!! ICAUSAL-RELATION-RAP/EDV!!

INCAUSAL-RELATION-CVP/RAP!! ICAUSAL-RELATION-RAP/EDP!!

INCAUSAL-RELATION-EDP/EDV!! ICAUSAL-RELATION-TPR/MAP!!

INCAUSAL-RELATION-CO/MAP!! ICAUSAL-RELATION-MAP/SV!!

INCAUSAL-RELATION-ABV/MAP!! IICAUSAL-RELATION-MAP/BRP!!
INCAUSAL-RELATION-CHOLINERGIC-ANTAGONISTS/'SA-NODE-RATE!!
INCAUSAL-RELATION-BETA-ADRENERGIC-ANTAGONISTSYINTRACELLULAR-
CA++!!
INCAUSAL-RELATION-BETA-ADRENERGIC-ANTAGONISTS/SA-NODE-RATE!!
INCAUSAL-RELATION-ALPHA-ADRENERGIC-ANTAGONISTS/SMOOTH-
MUSCLE-TONE!!
INCAUSAL-RELATION-CHOLINERGIC-AGONISTS/SA-NODE-RATE!!
INCAUSAL-RELATION-BETA-ADRENERGIC-AGONISTSINTRACELLULAR-
CA++l!
INCAUSAL-RELATION-BETA-ADRENERGIC-AGONISTS/SA-NODE-RATE!!
INCAUSAL-RELATION-ALPHA-ADRENERGIC-AGONISTS/'SMOOTH-MUSCLE-
TONE!!
INCAUSAL-RELATION-BASIC-PROCEDUREG6/MEAN-INTRATHORACIC-
PRESSURE!!
INCAUSAL-RELATION-BASIC-PROCEDURES/SMALL-VEIN-SIZE!!
INCAUSAL-RELATION-BASIC-PROCEDURE4/INTRACELLULAR-CA++!!
INCAUSAL-RELATION-BASIC-PROCEDURES3/BLOOD-VOLUME!!
INCAUSAL-RELATION-BASIC-PROCEDURE2/CENTRAL-NERVOUS-SY STEM-
RESPONSE!!
INCAUSAL-RELATION-BASIC-PROCEDUREY/SMOOTH-MUSCLE-TONE!!
INCAUSAL-RELATION-ARTIFICIAL-PACEMAKER/HEART-RATE!!)

> (list-of-anatomy-objects 'DKRS!)

(""C-M-RECEPTOR!! 'BETA-RECEPTOR!! ! ALPHA-RECEPTOR!!
HNSMOOTH-MUSCLE!! "EXPIRATORY-MUSCLE!!
NHEART-MUSCLE!! 'BLOOD!! 'PARASYMPATHETIC-NERVE!!
HNSYMPATHETIC-NERVE!!
HPARASYMPATHETIC-NERVOUS-SY STEM!!
HSYMPATHETIC-NERVOUS-SY STEM!!
HAUTONOMIC-NERVOUS-SY STEM!! l|BARORECEPTOR!!
INHCENTRAL-NERVOUS-SYSTEM!! lICENTRAL-VEIN!!
INSMALL-VEIN!! 'VENOUS-SY STEM!! lORGAN-ARTERIOLES!!
IISYSTEMIC-ARTERIOLES!! ''ARTERIOLES!!

HARTERIAL-SY STEM!! I1SYSTEMIC-CIRCULATION!!
HLEFT-VENTRICLE!! 'SA-NODE!! lRIGHT-ATRIUM!!
IPASSIVE-UNIT!! HHEART!! 'BARORECEPTOR-REFLEX!!
INCARDIOVASCULAR-SYSTEM!!)

> (list-of-parameters !!DKR3!)
(MACETYLCHOLINE!! ''NOREPINEPHRINE!! ''EPINEPHRINE!!
IHCENTRAL-NERVOUS-SY STEM-RESPONSE!!
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INCARDIAC-CONTRACTILITY!! HACTIN-MY OSIN-REACTION!
IHACTIN-MY OSIN-ASSOCIATION!! HINTRACELLULAR-CA++!!
NVENOUS-RETURN!! HCARDIAC-OUTPUT!! IFILLING-TIME!!
INHEART-RATE!! 'PARASYMPATHETIC-FIRING-RATE!!
NSYMPATHETIC-FIRING-RATE!!
IN'BARORECEPTOR-FIRING-RATE!! I'SA-NODE-RATE!!

MY OCARD-CONTRACTILE-FORCE!! '!SMOOTH-MUSCLE-TONE!!
NVENTRICULAR-COMPLIANCE!! HARTERIAL-COMPLIANCE!!
I'BARORECEPTOR-COMPLIANCE!! 'VENOUS-COMPLIANCE!!
INARTERIOLE-SIZE!! 'BARORECEPTOR-SIZE!!
NMUSCLE-FIBER-LENGTH!! '!SMALL-VEIN-SIZE!!
INGREAT-VEIN-SIZE!! I'STROKE-VOLUME!!
IHEND-DIASTOLIC-VOLUME!! HCENTRAL-BLOOD-VOLUME!!
INBLOOD-VOLUME!! 'ARTERIAL-BLOOD-VOLUME!!
INARTERIAL-RESISTANCE!! 'VENOUS-RESISTANCE!!
NTOTAL-PERIPHERAL-RESISTANCE!!
I'BARORECEPTOR-PRESSURE!! !CENTRAL-VENOUS-PRESSURE!!
NVENOUS-TRANSMURAL-PRESSURE!!
INMEAN-INTRATHORACIC-PRESSURE!!
NRIGHT-ATRIAL-PRESSURE!! 'END-DIASTOLIC-PRESSURE!!
INMEAN-ARTERIAL-PRESSURE!!)

> (list-of-perturbations ''DKRS!)

(""CHOLINERGIC-ANTAGONISTS!! !CHOLINERGIC-AGONISTS!!
NBETA-ADRENERGIC-ANTAGONISTS!!
INBETA-ADRENERGIC-AGONISTS!!
HALPHA-ADRENERGIC-ANTAGONISTS!!
NALPHA-ADRENERGIC-AGONISTS!! |BASIC-PROCEDURES!!
INBASIC-PROCEDUREDS!! 'BASIC-PROCEDUREA4!!
INBASIC-PROCEDURES3!! 'BASIC-PROCEDURE2!!
INBASIC-PROCEDURE1!! ARTIFICIAL-PACEMAKER!!)

> (complete-list-of-objects)

(""C-M-RECEPTOR!! 'BETA-RECEPTOR!! ! ALPHA-RECEPTOR!!
HNSMOOTH-MUSCLE!! "EXPIRATORY-MUSCLE!!
NHEART-MUSCLE!! 'BLOOD!! 'PARASYMPATHETIC-NERVE!!
HNSYMPATHETIC-NERVE!!
HPARASYMPATHETIC-NERVOUS-SY STEM!!
HSYMPATHETIC-NERVOUS-SY STEM!!
HAUTONOMIC-NERVOUS-SY STEM!! l|BARORECEPTOR!!
INCENTRAL-NERVOUS-SYSTEM!! ICENTRAL-VEIN!!
IHSMALL-VEIN!! 'VENOUS-SY STEM!! lORGAN-ARTERIOLES!!
IISYSTEMIC-ARTERIOLES!! ''ARTERIOLES!!
HARTERIAL-SYSTEM!! I1SYSTEMIC-CIRCULATION!!
HLEFT-VENTRICLE!! 'SA-NODE!! IRIGHT-ATRIUM!!
IPASSIVE-UNIT!! HHEART!! 'BARORECEPTOR-REFLEX!!
INCARDIOVASCULAR-SYSTEM!! l!COMPLIANCE!!
HHEMODYNAMICS!! HEQUATION-CO!!
INCHOLINERGIC-ANTAGONISTS!! 'CHOLINERGIC-AGONISTS!
NBETA-ADRENERGIC-ANTAGONISTS!!
INBETA-ADRENERGIC-AGONISTS!!
HALPHA-ADRENERGIC-ANTAGONISTS!!
NALPHA-ADRENERGIC-AGONISTS!! |BASIC-PROCEDURES!!
INBASIC-PROCEDUREDS!! 'BASIC-PROCEDUREA4!!
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INBASIC-PROCEDURES!! !BASIC-PROCEDURE2!!
INBASIC-PROCEDURE1!! ARTIFICIAL-PACEMAKER!!
HACETYLCHOLINE!! 'NOREPINEPHRINE!! ''EPINEPHRINE!!
INCENTRAL-NERVOUS-SY STEM-RESPONSE!!
INCARDIAC-CONTRACTILITY!! HACTIN-MY OSIN-REACTION!
HACTIN-MY OSIN-ASSOCIATION!! HINTRACELLULAR-CA++!!
NVENOUS-RETURN!! HCARDIAC-OUTPUT!! IFILLING-TIME!!
INHEART-RATE!! 'PARASYMPATHETIC-FIRING-RATE!!
NSYMPATHETIC-FIRING-RATE!!
INBARORECEPTOR-FIRING-RATE!! I!SA-NODE-RATE!!

MY OCARD-CONTRACTILE-FORCE!! '!SMOOTH-MUSCLE-TONE!!
NVENTRICULAR-COMPLIANCE!! HARTERIAL-COMPLIANCE!!
I'BARORECEPTOR-COMPLIANCE!! 'VENOUS-COMPLIANCE!!
NARTERIOLE-SIZE!! 'BARORECEPTOR-SIZE!!
IMUSCLE-FIBER-LENGTH!! '!SMALL-VEIN-SIZE!!
INGREAT-VEIN-SIZE!! lSTROKE-VOLUME!!
IHEND-DIASTOLIC-VOLUMEI!! HCENTRAL-BLOOD-VOLUME!!
INBLOOD-VOLUME!! ARTERIAL-BLOOD-VOLUME!!
INARTERIAL-RESISTANCE!! 'VENOUS-RESISTANCE!!
NTOTAL-PERIPHERAL-RESISTANCE!!
I'BARORECEPTOR-PRESSURE!! !CENTRAL-VENOUS-PRESSURE!!
NVENOUS-TRANSMURAL-PRESSURE!!
INMEAN-INTRATHORACIC-PRESSURE!!
NRIGHT-ATRIAL-PRESSURE!! 'END-DIASTOLIC-PRESSURE!!
I'MEAN-ARTERIAL-PRESSURE!! !lCAUSAL-RELATION-BRP/CNSR!!
INCAUSAL-RELATION-CNSR/CC!! 1CAUSAL-RELATION-AMA/CCI!
INCAUSAL-RELATION-ICA/AMA!! HCAUSAL-RELATION-EPI/ICA!!
INCAUSAL-RELATION-EPI/SANR!!
INCAUSAL-RELATION-NEPI/ICA!! HCAUSAL-RELATION-VR/EDV!!
INCAUSAL-RELATION-CNSR/HR!! '!CAUSAL-RELATION-HR/ICA!!
INCAUSAL-RELATION-HR/FT!! I'CAUSAL-RELATION-HR/CO!!
INCAUSAL-RELATION-SFR/NEPI!! ..))

V SolvingaCV Problem

The DKRS has the capability of utilizing its knowledge to solve alarge number of
CV problems. As soon as the tutor or the student selects a CV problem a set of messages
are sent by the Instructional Planner to the DKRS to solve the selected problem. Each
CV parameter in the DKB has capability to store its state information. When the DKRS
solves a CV problem the value for each CV parameter in DR, RR, and SS are stored as a
part of state information for each parameter object. This state information is accessable
at any moment during which CIRCSIM-Tutor (v.3) communicates with the student. In
the following example the DKRS has solved a CV problem. The value for each CV
parameter in the deep level concept map for DR, RR, and SSislisted as follows.

Procedure: BASIC-PROCEDURE1L

Description: A hypertensive patient was given adrug by his physician that reduced his
total peripheral resistance by 50%.

Solution path for DR (deep level):

(""SMOOTH-MUSCLE-TONE!! DECREASE)
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(MARTERIOLE-SIZE!! INCREASE)
(MARTERIAL-RESISTANCE!! DECREASE)
("TOTAL-PERIPHERAL-RESISTANCE!! DECREASE)
(MARTERIAL-BLOOD-VOLUME!! DECREASE)
("MEAN-ARTERIAL-PRESSURE!! DECREASE)
(""STROKE-VOLUME!! INCREASE)
(""CARDIAC-OUTPUT!! INCREASE)
("CENTRAL-BLOOD-VOLUME!! DECREASE)
("CENTRAL-VENOUS-PRESSURE!! DECREASE)
("RIGHT-ATRIAL-PRESSURE!! DECREASE)
(""END-DIASTOLIC-PRESSURE!! DECREASE)
("END-DIASTOLIC-VOLUME!! DECREASE)
(""MUSCLE-FIBER-LENGTH!! DECREASE)
("MACTIN-MY OSIN-REACTION!! DECREASE)
(""MYOCARD-CONTRACTILE-FORCE!! DECREASE)

Solution path for RR (deep level):

(""BARORECEPTOR-PRESSURE!! DECREASE)
('"BARORECEPTOR-SIZE!! DECREASE)
('"BARORECEPTOR-FIRING-RATE!! DECREASE)
(MCENTRAL-NERVOUS-SY STEM-RESPONSE!! DECREASE)
(MSYMPATHETIC-FIRING-RATE!! INCREASE)
(""NOREPINEPHRINE!! INCREASE)
(""SA-NODE-RATE!! INCREASE)

(""HEART-RATE!! INCREASE)
(""CARDIAC-OUTPUT!! INCREASE)
(MARTERIAL-BLOOD-VOLUME!! INCREASE)
('"MEAN-ARTERIAL-PRESSURE!! INCREASE)
('"STROKE-VOLUME!! DECREASE)
(MCENTRAL-BLOOD-VOLUME!! DECREASE)
("CENTRAL-VENOUS-PRESSURE!! DECREASE)
("RIGHT-ATRIAL-PRESSURE!! DECREASE)
('"END-DIASTOLIC-PRESSURE!! DECREASE)
("END-DIASTOLIC-VOLUME!! DECREASE)
(""MUSCLE-FIBER-LENGTH!! DECREASE)
("MACTIN-MY OSIN-REACTION!! DECREASE)
(""MYOCARD-CONTRACTILE-FORCE!! DECREASE)
(M"FILLING-TIME!! DECREASE)
(""SMOOTH-MUSCLE-TONE!! INCREASE)
(MARTERIOLE-SIZE!! DECREASE)
(MARTERIAL-RESISTANCE!! INCREASE)
("TOTAL-PERIPHERAL-RESISTANCE!! INCREASE)
(""INTRACELLULAR-CA++!! INCREASE)
("MACTIN-MY OSIN-ASSOCIATION!! INCREASE)
('"CARDIAC-CONTRACTILITY!! INCREASE)
(""EPINEPHRINE!! INCREASE)
(""PARASYMPATHETIC-FIRING-RATE!! DECREASE)
(MACETYLCHOLINE!! DECREASE)

State of parametersin SS (deep level):

(MACETYLCHOLINE!! DECREASE)
(""NOREPINEPHRINE!! INCREASE)
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INEPINEPHRINE!! INCREASE)
g!!CENTRAL-NERVOUS—SYSTEM-RESPONSE!! DECREASE)
('"CARDIAC-CONTRACTILITY!! INCREASE)
("MACTIN-MY OSIN-REACTION!! DECREASE)
(MACTIN-MY OSIN-ASSOCIATION!! INCREASE)
(""INTRACELLULAR-CA++!! INCREASE)
('"CARDIAC-OUTPUT!! INCREASE)
(MFILLING-TIME! DESFEQAEAS\E)E)

NHEART-RATE!! IN

g!!PARASYM PATHETIC-FIRING-RATE!! DECREASE)
("SYMPATHETIC-FIRING-RATE!! INCREASE)
(""BARORECEPTOR-FIRI NG-Igé)TE! ! DECREASE)
I1SA-NODE-RATE!! INCREA

g! IMY OCARD-CONTRACTILE-FORCE!! DECREASE)
(""SMOOTH-MUSCLE-TONE!! DECREASE)
(MARTERIOLE-SIZE!! INCREASE)
(""BARORECEPTOR-SIZE!! DECREASE)
(""MUSCLE-FIBER-LENGTH!! DECREASE)
(""STROKE-VOLUME!! INCREASE)
("END-DIASTOLIC-VOLUME!! DECREASE)
("CENTRAL-BLOOD-VOLUME!! DECREASE)
(MARTERIAL-BLOOD-VOLUME!! DECREASE)
(MARTERIAL-RESISTANCE!! DECREASE)
("TOTAL-PERIPHERAL-RESISTANCE!! DECREASE)
('"BARORECEPTOR-PRESSURE!! DECREASE)
("CENTRAL-VENOUS-PRESSURE!! DECREASE)
("RIGHT-ATRIAL-PRESSURE!! DECREASE)
(""END-DIASTOLIC-PRESSURE!! DECREASE)
("MEAN-ARTERIAL-PRESSURE!! DECREASE)
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APPENDIX E

A PARTIAL TRACE OF THE FUNCTIONING OF
THE INSTRUCTIONAL PLANNER
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This appendix contains a partial trace of the instructional planner’s decision making
process. During execution the instructional planner visits different tutoring states. In
each tutoring state it performs various actions. This trace shows various activities
performed by the instructional planner. The words “poping-up” in this trace indicates
that the instructional planner isjumping from alower planning level or tutoring spaceto a
higher planning level or tutoring space. Refer Chapters VII and VIII for a detailed
description of the design and implementation of the instructional planner of CIRCSIM -
Tutor (v.3). Thistraceishere printed initalics.

Visiting Tutoring Space: !!tutoring-space-1!!

Visiting Tutoring Level: !!'pedagogical-level/ts-1!!

Visiting Tutoring Sate: select/ts-1

Deciding about the next tutoring state.

Type of rule/link under consideration: default-between-levels-refinement-links
valid-rules: (!!select/ts-1=> sel ect-a-goal-sel ection-approach/ts-1!1)
enabled-rules. (!!select/ts-1=> select-a-goal -sel ection-approach/ts-1!!)
fired-rule: !select/ts-1=> select-a-goal - sel ection-approach/ts-1!!

Visiting Tutoring Level: !!strategical-level/ts-1!!

Visiting Tutoring Sate: select-a-goal-sel ection-approach/ts-1

Deciding about the next tutoring state.

Type of rule/link under consideration: default-between-levels-refinement-links
valid-rules: (!!select-a-goal-sel ection-approach/ts-1=> separ ate-approach/ts-1!!
Isel ect-a-goal - sel ection-appr oach/ts-1=>combined-approach/ts-1!)
enabled-rules:

(M'select-a-goal -sel ection-appr oach/ts-1=>combined-approach/ts-1!)
fired-rule: ! sel ect-a-goal-sel ection-approach/ts-1=>combined-approach/ts-1!!

Visiting Tutoring Level: !tactical-level/ts-1!!

Visiting Tutoring State: combined-approach/ts-1
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Deciding about the next tutoring state.

Type of rule/link under consideration: default-between-levels-refinement-links
valid-rules: nil

enabled-rules: nil

fired-rule: nil

I POPING-UP !!
LT

Visiting Tutoring Level: !!strategical-level/ts-1!!

Deciding about the next tutoring state.

Type of rule/link under consideration: default-between-levels-refinement-links
valid-rules: (!!select-a-goal-sel ection-approach/ts-1=> separ ate-approach/ts-1!!
Isel ect-a-goal - sel ection-appr oach/ts-1=>combined-approach/ts-1!)
enabled-rules: nil

fired-rule: nil

I POPING-UP !!
LT

Visiting Tutoring Level: !!'pedagogical-level/ts-1!!

Deciding about the next tutoring state.

Type of rule/link under consideration: default-between-levels-refinement-links
valid-rules: (!!select/ts-1=> sel ect-a-goal-sel ection-approach/ts-1!1)
enabled-rules: nil

fired-rule: nil

Type of rule/link under consideration: meta-progression-links
valid-rules: (!!select/ts-1=>complete/ts-1!!)

enabled-rules: nil

fired-rule: nil

Type of rule/link under consideration: default-progression-links
valid-rules: (!!select/ts-1=>tutor/ts-1!!)
enabled-rules. (I'select/ts-1=>tutor/ts-1!!)
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fired-rule: !!select/ts-1=>tutor/ts-1!!
Visiting Tutoring Level: !!'pedagogical-level/ts-1!!
Visiting Tutoring Sate: tutor/ts-1
Deciding about the next tutoring state.

Type of rule/link under consideration: default-between-levels-refinement-links
valid-rules: (!!'tutor/ts-1=> select-a-goal-tutoring-approach/ts-1!1)
enabled-rules. (I'tutor/ts-1=> select-a-goal -tutoring-approach/ts-1!!)
fired-rule: !tutor/ts-1=> sel ect-a-goal-tutoring-approach/ts-1!!

Visiting Tutoring Level: !!strategical-level/ts-1!!

Visiting Tutoring State: select-a-goal-tutoring-approach/ts-1

Deciding about the next tutoring state.

Type of rule/link under consideration: default-between-levels-refinement-links
valid-rules: (!!select-a-goal-tutoring-approach/ts-1=>one-shot-act/ts-1!!
Ilselect-a-goal -tutoring-approach/ts-1=> pre-act-post/ts-1!!)

enabled-rules. (!!select-a-goal-tutoring-approach/ts-1=>one-shot-act/ts-1!!)
fired-rule: !'select-a-goal-tutoring-approach/ts-1=>one-shot-act/ts-1!!

Visiting Tutoring Level: !tactical-level/ts-1!!

Visiting Tutoring State: one-shot-act/ts-1

Deciding about the next tutoring state.

Type of rule/link under consideration: default-between-levels-refinement-links
valid-rules: nil

enabled-rules: nil

fired-rule: nil

Type of rule/link under consideration: default-progression-links
valid-rules: (!!'one-shot-act/ts-1=>introduce-systenvts-1!!)
enabled-rules: (I'one-shot-act/ts-1=>introduce-systerm/ts-1!!)
fired-rule: !'one-shot-act/ts-1=>introduce-systenmts-1!!
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Visiting Tutoring Level: !tactical-level/ts-1!!

Visiting Tutoring Sate: introduce-systenvts-1

Deciding about the next tutoring state.

Type of rule/link under consideration: default-progression-links

valid-rules: (!!introduce-system/ts-1=>move-to-next-tutoring-space/ts-1!!)
enabled-rules; (Mintroduce-systenvts-1=>move-to-next-tutoring-space/ts-1!!)
fired-rule: lintroduce-systenvts-1=>move-to-next-tutoring-space/ts-1!!

Visiting Tutoring Level: !tactical-level/ts-1!!

Visiting Tutoring State: move-to-next-tutoring-space/ts-1

Deciding about the next tutoring state.

Type of rule/link under consideration: default-between-levels-refinement-links
valid-rules: (!'move-to-next-tutoring-space/ts-1=>next-tutoring-space!!)
enabled-rules. (!'move-to-next-tutoring-space/ts-1=> next-tutoring-space!!)
fired-rule: 'move-to-next-tutoring-space/ts-1=> next-tutoring-space!!

Visiting Tutoring Space: !!tutoring-space-2!!

Visiting Tutoring Level: !!'pedagogical-level/ts-2!!

Visiting Tutoring Sate: select/ts-2

Deciding about the next tutoring state.

Type of rule/link under consideration: default-between-levels-refinement-links
valid-rules: (!!select/ts-2=>who-shoul d-choose-next-procedure/ts-2!!)
enabled-rules. ('select/ts-2=>who-should-choose-next-procedure/ts-2!1)
fired-rule: ! select/ts-2=>who-shoul d-choose-next-procedure/ts-2!!

Visiting Tutoring Level: !!strategical-level/ts-2!!



Visiting Tutoring State: who-shoul d-choose-next-procedure/ts-2

Deciding about the next tutoring state.

Type of rule/link under consideration: default-in-level-refinement-links
valid-rules: (!!'who-should-choose-next-procedur e/ts-2=> students-choice/ts-2!!
I'who-shoul d-choose-next-procedur e/ts-2=>tutor s-choice/ts-2!!)

enabled-rules: (!'who-should-choose-next-procedure/ts-2=>tutors-choice/ts-2!!)
fired-rule: 'who-should-choose-next-procedur e/ts-2=>tutors-choice/ts-2!!

Visiting Tutoring Level: !!strategical-level/ts-2!!

Visiting Tutoring Sate: tutors-choice/ts-2

Deciding about the next tutoring state.

Type of rule/link under consideration: default-in-level-refinement-links
valid-rules: nil

enabled-rules: nil

fired-rule: nil

Type of rule/link under consideration: default-progression-links
valid-rules: (!!'tutors-choice/ts-2=> sel ect-procedure-category/ts-2!!)
enabled-rules: (I'tutors-choice/ts-2=> select-procedure-category/ts-2!!)
fired-rule: !tutors-choice/ts-2=> sel ect-procedur e-category/ts-2!!

Visiting Tutoring Level: !!strategical-level/ts-2!!

List of candidate CV procedures.
('goal-9/ts-2!! lgoal-11/ts-2!! 1goal-12/ts-2!!)

Visiting Tutoring State: select-procedure-category/ts-2

Deciding about the next tutoring state.

Type of rule/link under consideration: default-progression-links
valid-rules:

(M'select-procedur e-category/ts-2=> sel ect-procedur e-difficulty-level /ts-2!1)
enabled-rules:

(M"select-procedur e-category/ts-2=> sel ect-procedur e-difficulty-level /ts-2!1)
fired-rule:

Isel ect-procedur e-categor y/ts-2=> sel ect-procedur e-difficul ty-l evel /ts-2!!
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Visiting Tutoring Level: !!strategical-level/ts-2!!

List of candidate procedures after deciding about the difficulty level:
("goal-9/ts-2!! 'goal-11/ts-2!")

Visiting Tutoring State: select-procedure-difficulty-level/ts-2

Deciding about the next tutoring state.

Type of rule/link under consideration: default-progression-links

valid-rules:

("' select-procedur e-difficulty-level /ts-2=> sel ect-procedur e-description/ts-2!!)
enabled-rules:

("' select-procedur e-difficulty-level /ts-2=> sel ect-procedur e-description/ts-2!!)
fired-rule:

INsel ect-procedur e-difficulty-level /ts-2=> sel ect-procedur e-description/ts-2!!

Visiting Tutoring Level: !!strategical-level/ts-2!!

List of candidate procedures after deciding about the description level:
('goal-11/ts-2!)

Visiting Tutoring State: select-procedure-description/ts-2

Deciding about the next tutoring state.

Type of rule/link under consideration: default-progression-links
valid-rules:

("' select-procedur e-description/ts-2=> present-sel ected-procedure/ts-2!1)
enabled-rules:

(M'select-procedur e-description/ts-2=> present-sel ected-procedure/ts-2!1)
fired-rule:

Isel ect-procedur e-description/ts-2=> present-sel ected-procedur e/ts-2!!

Visiting Tutoring Level: !!strategical-level/ts-2!!

Visiting Tutoring State: present-sel ected-procedure/ts-2

Deciding about the next tutoring state.
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Type of rule/link under consideration: default-between-levels-refinement-links
valid-rules: (!!present-selected-procedure/ts-2=>describe-procedure/ts-2!!

I present-sel ected-procedur e/ts-2=> give-menu/ts-2!!)

enabled-rules. (I'present-sel ected-procedure/ts-2=>describe-procedure/ts-2!1)
fired-rule: ! present-sel ected-procedure/ts-2=>describe-procedure/ts-2!!

Visiting Tutoring Level: !tactical-level/ts-2!!

Visiting Tutoring State: describe-procedure/ts-2

Deciding about the next tutoring state.

Type of rule/link under consideration: default-between-levels-refinement-links
valid-rules: nil

enabled-rules: nil

fired-rule: nil

Type of rule/link under consideration: default-progression-links

valid-rules: (!!describe-procedure/ts-2=> setup-tutoring-environment/ts-2!1)
enabled-rules: (I'describe-procedure/ts-2=> setup-tutoring-environment/ts-2!!)
fired-rule: !'describe-procedure/ts-2=> setup-tutoring-environment/ts-2!!
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