Proceedings of the Twentieth Annual Conference of the Cognitive Science Society,

Madison, WI, 1998.

Using Rule Induction to Assist in Rule Construction for a
Natural-Language Based Intelligent Tutoring System

Reva Freedman® (freedrk+@pitt.edu)
Learning Research and Development Center
University of Pittsburgh
3939 O’Hara Street #819
Pittsburgh, PA 15260

Yujian Zhou (zhouyuj@charlie.cns.iit.edu)
Michael Glass (glass@charlie.cns.iit.edu)
Jung Hee Kim (janice@steve.csam.iit.edu)
Martha W. Evens (csevens@minna.cns.iit.edu)
Department of CSAM
linois Institute of Technology
10 W. 31st Street 236-SB
Chicago, IL 60616

Abstract

We used Quinlan’s C4.5 machine learning algorithm to
analyze tutorial dialogues as part of the derivation of planning
rules for CIRCSIM-Tutor v.3, a natural-language based
intelligent tutoring system. We annotated a corpus of tutoring
dialogues with an SGML-based representation of tutorial
goals in order to make mechanical processing possible. We
looked for rules of the form “under what conditions is goal x
implemented with plan y?”. We discovered rules for high-
level planning of the tutoring session and dynamic
modification of the tutorial agenda. At a lower level of
planning, we looked at rules for generating sections of the
tutor’s utterance. The use of the rule induction algorithm has
helped us discover which knowledge available to the planner
is significant in making these decisions, as well as producing
some decision trees we can actually use in CIRCSIM-Tutor.

Introduction

CIRCSIM-Tutor (v. 3) is a conversational intelligent tutoring
system (ITS) which uses natural language for both input and
output. The core of CIRCSIM-Tutor is an integrated planning
and execution module that uses STRIPS-style planning
operators. Here is an example of an operator;

(def-operator neural-DLR

raction ()

:goal (did-neural-DLR ?vbl)

:precond ((is-neural ?vbl) ...)

:recipe ((did-tutor mechanism ?vbl)
(did-tutor DR-info ?vbl)
(did-tutor vbl-value ?vbl))

:filter

radd Ce

:del ..)

The goal of the planner is to generate a conversation
resulting in the student knowing some desired concepts.

"This work was performed while Reva Freedman was at the
[llinois Institute of Technology.

Each goal is satisfied by replacing it on the planner’s agenda
by the prerequisites and recipe steps of an operator which
achieves it. When a primitive operator, i.e. an individual
speech act request such as elicit or inform, is reached, it is
added to a buffer whose contents will eventually form the
tutor’s next turn.

When a reply is required from the student, the planner is
temporarily suspended and text is generated from the
operators in the buffer. After the student replies, the planner
resumes operation. The student’s reply is one of the factors
which is then taken into account in order to generate the
following turn.

The question then becomes: where does the operator
library come from? In early text generation systems, the
operators were obtained from intuition and introspection.
More recently, researchers have used a variety of informal
means to abstract plan operators from naturalistic corpora
(Reiter & Dale, 1997). We have profitably used all of these
methods. Recently we have become interested in more
formal methods of identifying operators which would
provide a good model of our corpus. In this paper we report
on some experiments we have done using the decision tree
induction program C4.5 (Quinlan, 1993) to identify potential
operators in our corpus of human tutorial transcripts.

Rather than obtain rules which could be transferred
automatically to an automated system, our goal was to
obtain ideas for better modeling our human experts. In
addition, we wanted to find out which of the available
features were truly useful in explaining tutor behavior.

Our work attempts to discover rules connecting different
types of goals in our annotations, rather than discovering
relationships between directly observable phenomena such
as sentence length. Although it is therefore dependent on
solid definitions of the annotation categories, this strategy
increases the chance that the rules obtained will be
meaningful to humans, because we have chosen features
which are meaningful to humans.

Background

Roughly speaking, the purpose of the C4.5 program is to
provide the best possible decision tree to explain a given set
of data. A decision tree is a set of rules for guessing the
value of a dependent variable, the result variable, given the
values of a set of features.

Each of our experiments attempts to determine a set of
rules for making one decision about the text to be generated.
As the criteria for making such decisions are encoded as
prerequisites for one or more plan operators, appropriate
features for experimentation include any predicates whose
values would be available during the operation of the
planner. These predicates deal with several kinds of
knowledge:

* Tutorial agenda, all goals which have been chosen but not
realized as text yet. Of these, the current goal and its
ancestors are most relevant.

» Tutorial history, a record of past tutoring goals enabling
us to answer questions such as “is this the first time we have
tried to explain this concept to the student?”. We also
maintain a dialogue history, which contains the student’s
responses

* Student input. One of the most important determinants of
the tutor’s response is what the tutor is responding to, i.e. the
student’s latest turn. What is generally important is not the
content of the student’s response but rather its relation to the
tutor’s question that elicited it. Our categorization of student
responses is described in more detail below.

» Student model. An important aspect of the student model
is the tutor’s overall evaluation of the student. In this paper,
we use the number of errors in the student’s initial solution
of the problem as a measure of this value. Note that a
dialogue history feature, namely the number of times a
question was asked before the student gave the correct

answer, could also be used as a measure of student
knowledge.
* Domain knowledge base. This category includes

information about the problem domain as well as
information about the task being tutored.

Our human tutors try to maintain a global tutoring plan
but at the same time reply to issues raised by students. As a
result, turns generated by human tutors tend to have the
following structure (Freedman & Evens, 1996), which we
have adopted for CIRCSIM-Tutor:

Response to student’s previous statement

Acknowledgment of student’s response)
Content-based reply to student 2)
Next step of tutorial plan 3)
The following example illustrates the tripartite structure:
T: Yes, D
that’s the effect of increased sympathetic
stimulation on the myocardium. 2)

But what happens to CC in the DR period? 3)

Each of the three segments is optional. For example, if the
content-based reply segment is omitted, the tutor might say:

T: Yes, but what happens to CC in the DR period?

CIrCSIM-Tutor builds each segment separately, then
combines them. In this paper we report on four experiments
that attempt to determine aspects of the tutor’s dialogue. In
experiment 1, we look at the high-level structure of the
conversation, attempting to find features that determine
which tutorial strategy the tutor will choose. In the next two
experiments, we look at rules for building the segments of a
turn. In experiment 2, we attempt to determine how the tutor
decides what to do after receiving the student’s response,
e.g. continue with the next step of the current plan, add a
content-based reply before continuing, or change plans
altogether. In experiment 3, we look at features which may
determine the existence and type of the acknowledgment.
Finally, in experiment 4, we move closer to surface text,
choosing one topic which tutors frequently teach and
attempting to determine when it will be realized with the text
generation primitive f-informs and when with t-elicits.
These experiments cover a spectrum of the types of rules
needed for CIRCSIM-Tutor.

The Corpus

Over the last seven years, we have accumulated over 5000
turns of transcripts of human tutoring sessions conducted by
typing over a modem. In the tutoring sessions, the students
are presented with a hypothetical medical problem which
affects blood pressure, such as a hemorrhage or an overly
fast pacemaker. The focus of the lesson is on the baro-
receptor reflex, the negative feedback loop by which the
autonomic nervous system adjusts blood pressure back
toward normal. Students are required to predict the
qualitative change (increase, decrease or no change) in
seven core variables, such as cardiac output and central
venous pressure, in each of the three physiological stages
which form the negative feedback loop.

In our current protocol, students work the problem one
stage at a time, followed by tutoring on their errors. The DR
or direct response stage, referred to below, includes the
changes that occur after the precipitating event but before
the activation of the nervous system. Since three of the
seven core variables are largely controlled by the nervous
system, they are known as neural variables. In the examples
below, the reader will see that whether or not a variable is
neural is one of the most important domain-level
determinants of various choices.

Tracing the operation of our planner creates a hierarchy of
goals. Although nothing in the planner itself requires it, we
have attempted where possible to maintain consistency in
the type of goal which appears at each level of the hierarchy.
*» Physiological stage
» Physiological variable to be taught
» Tutoring strategy
» Topics which implement the strategy
» Text generation primitive (inform or elicit) for each topic

In the example at the beginning of this paper, neural-DLR is
a tutoring strategy which consists of the three topics named
in the recipe in the order listed.

We annotated one section of our corpus, namely the DR
section of every transcript dealing with a broken pacemaker,
with the same hierarchical goal structure our planner uses.

Then we added annotations for features available in the
planning environment at the time the turn was generated,
using each of the sources above. Finally, we used Quinlan’s
(1993) C4.5 learning algorithm to determine tutoring goals
based on subsets of the available features.

The following is an example from the annotated corpus.
We used SGML format because a number of utilities are
available for processing SGML mechanically. In SGML, as
in HTML, the opening delimiter of a piece of text is an
identifier in angle brackets, and the closing delimiter is
identical except for an initial slash. The identifiers
correspond to the names of our plan operators.

The numbers in parentheses are the turn number and
sentence number from the original corpus. The ~ack and
s-answer forms model a cooperating process which
responds to student utterances; they do not belong to the
goal hierarchy.

<T-does-neural-DLR>
<T-tutors-mechanism>
<T-elicits-mechanism>
(29.4) Can you tell me how TPR is controlled?
<S-answer catg=correct>
(30.1) Autonomic nervous system.
</S—-answer>
<T-ack type=positive>
(31.1) Yes.
</T-ack>
</T-elicits-mechanism>
</T-tutors-mechanism>
<T-tutors-DR-info>
<T-informs-DR-info>
(31.2) And the predictions that you are
making are for the period before any neural
changes take place.
</T-informs-DR-info>
</T-tutors-DR-info>

<T-tutors-value>
<T-elicits-value>
(31.3) So what about TPR?

<S-ans catg=correct>
(38.4) I would like to change my response re
TPR to zero change.
</S-ans>
<T-ack type=positive>
(39.1) Good.
</T-ack>
</T-elicits-value>
</T-tutors-value>
</T-does-neural-DLR>

The example above shows a successful attempt to remediate
the neural variable TPR in the DR stage. It shows a tutoring
strategy (neural-DLR), the three topics which make up the
strategy, and the primitives (inform or elicit) used to realize
the topics. A DLR, or directed line of reasoning, is a pre-
planned series of questions designed to make a particular
point. In this example, t-does-neural-dir is realized as a
sequence of three topics: r-tutors-mechanism (to teach the
fact that TPR is neural), #tutors-dr-info (to teach basic

information about the DR stage), and t-tutors-value (to
discuss the corrected value of TPR). Each of these three
topics can be realized as an instance of the tutorial primitive
t-inform (conveying the information to the student) or
t-elicit (eliciting the information).

Since the purpose of these experiments was to suggest
rules for CIRCSIM-Tutor, we considered only dialogue that
will be emulated by dialogue in CIRCSIM-Tutor, eliminating
dialogue used for giving instructions, collecting data, and
other operations that the graphical user interface will handle.

Choosing a Tutorial Strategy

The first experiment explored how tutoring operators are
chosen at the tutoring strategy level. Each case represented
one attempt to tutor one variable. The features we
considered were:

* The total number of variables predicted incorrectly

» The number of neural variables predicted incorrectly

» Whether the variable is neural or non-neural

* Sequence of the variable within the neural or non-neural
group. The tutors usually tutor all the neural variables
first, followed by the others. Within each group, the tutors
have a standard order but do not include all the variables.

* How many previous attempts had been made to tutor this
variable

Our sample included five different tutoring methods:

* t-does-neural-dlr, tutoring using a guided series of
questions exploring the behavior of a neural variable

* t-shows-contradiction, tutoring using an inconsistency in
the predicted values of the variables

* t-tutors-via-determinants, tutoring using the set of
variables which have an effect on the variable which was
incorrect

* t-moves-forward, tutoring using causal reasoning from a
known-correct variable to the incorrect one

* t-tutors-via-deeper-concepts, tutoring using other
concepts and more particular physiological parameters

In this experiment we had 23 cases, each with 5 features.
There were 5 possible outcomes. The original tree produced
by C4.5 is too specific to be useful. C4.5 produced the
following simplified tree:

If variable is neural
if first neural variable, use -does-neural-dir
if second, use t-shows-contradiction
else {variable is not neural}
if first non-neural vbl, use z-tutors-via-determinants
if second, use t-moves-forward

This tree misclassifies 3 of the 23 cases, for an error rate of
13%. Of the three which are misclassified, two involve
second and subsequent attempts to tutor the same variable.
These attempts tend to employ the less common tutoring
methods. Although we have coded about half of the
transcripts involving these tutoring methods, we have coded
only about 10% of the total corpus. We hope that
completing the annotation of the corpus will provide criteria
for invoking the lesser-used tutoring methods.

What this tree has uncovered is a high-level plan for the
entire tutoring session. Previous research has found an

algorithm for sequencing the variables to be tutored, and the
rule described here tells us which tutoring strategy to use for
each variable.

Within each group of variables, neural and non-neural,
C4.5 found an interesting rhetorical pattern. The second
variable to be tutored in each group uses a method which
builds on knowledge taught in the first variable. For
example, a common rhetorical pattern for tutoring two non-
neural variables v; and v, is to tutor v, via determinants,
then move forward to v, as follows:

<t-corrects-variable variable=v,>
<t-tutors-via-determinants>
What variables in the prediction table determine v,?
(vy is tutored, based on its determinants)
</t-corrects-variable>
<t-corrects-variable variable=v,>
<t-moves forward>
And what effect would v, have on v,?
(v, is tutored by moving forward from v;)
</t-corrects-variable>

The pattern for neural variables is similar.

Choosing a Response Strategy

In the second experiment, we were interested in categorizing
the change (or not) in tutoring goals directly after a student
replies to a tutor query. The following are the most frequent
categories of student responses in our current markup:

« Correct. The student’s answer contained the information
the tutor was attempting to elicit.

* Correct but hedged. The student’s answer was correct but
contained some indication that the student was unsure of
the answer, e.g. saying “maybe heart rate?”

* Partially correct. One correct answer, when two or more
items were requested.

* Near miss. The student’s answer was technically correct
but was not what the tutor was attempting to elicit, e.g. it
was at the wrong level of detail.

* Don’t know. The student’s response was equivalent to “I
don’t know.”

* Incorrect.

We tried a number of features, of which the most

explanatory turned out to be:

+ The category of student response

« Whether the variable is neural or non-neural

« Sequence of the variable within its category

« How many previous attempts had been made to tutor this
variable

Possible tutor behaviors were:

* Proceed. The tutor proceeded with the next tutorial goal.
This is the normal action when the student gave the
desired answer.

* Give info and proceed. The tutor responded with some
tutorial information before proceeding with the next
tutorial goal.

* Give info and re-elicit. The tutor responded with some
tutorial information before asking substantially the same
question again.

* Give answer and proceed. The tutor gave the student the

answer, then proceeded with the next tutorial goal.

» Nested method. The tutor introduced a new tutoring
method to address the current tutorial goal. When the new
method terminates, the tutor will return to the next goal of
the original method, i.e. the younger sibling of the current
goal.

* New method. The tutor abandoned the current method-
level tutoring goal and all its descendants, and tried
another method to tutor the same variable.

For this experiment we had 57 cases of tutor behavior
following a student response. C4.5 produced the following
decision tree, which required no simplification:

If student answer was correct,
proceed
If student answer was correct but hedged
give info and proceed
If student answer was partially correct
give info and proceed
If student answer was a near miss
introduce a nested method
If student answer was incorrect
if variable is neural then
if this is the first attempt for this variable
try a new method
else {subsequent attempts}
give info and re-elicit
else {non-neural variable}
if first non-neural variable in dialogue
give answer and proceed
else {subsequent variables}
give info and re-elicit
This tree provides an algorithm for updating the tutoring
plan based on the student’s response. It correctly classifies
50 of our 57 cases, yielding an error rate of 12%.

The biggest source of error is that the tree underpredicts
the use of a new method, predicting only three new methods
where seven actually occurred. Trying a new method means,
for example, abandoning #-tutors-via-determinants and
switching to t-shows-contradiction. We hope that adding
more transcripts to our experiment will shed light on this
issue.

Many of the features that we coded were not used by C4.5
in building the final decision tree, most notably the counts of
how many predictions were incorrect. This indicates that the
tutor’s response to a student utterance appears to depend
more on the category of the student utterance than on a
global assessment of the student’s performance.

Choosing an Explicit Acknowledgment

In the next experiment, we explored the style of acknow-
ledgment issued by the tutor. in response to a student
answer. In 62 cases of tutor acknowledgments, we
categorized the observed acknowledgments as follows:

» Positive, e.g. “Correct.”

» Partial, e.g. “Well that’s partly correct, ...”
* Negative, e.g. “No.”

* Nil, no explicit acknowledgment.

The possible features were the same as in the previous

experiment. In this experiment C4.5 found significance in
the number of times the tutor retried the #-elicit to which the
student was responding. The resulting decision tree is quite
messy, with 28 nodes before simplification and 15 nodes
after, and the simplified tree misclassifies more than 20% of
the cases. However we did obtain a few fairly solid rules:

If answer was partially correct
then issue partial ack
If answer was correct
then issue positive or nil ack
If the answer was incorrect
if we are on the first neural or first non-neural vbl
if we are on the first attempt to tutor that variable
then nil ack
else {a subsequent attempt}
negative ack

The distinction between the first attempt (no acknow-
ledgment) and subsequent attempts (negative acknow-
ledgments) appears interesting at first glance. However,
further analysis shows that this result is confounded by the
results of the first experiment, i.e., first attempts and
subsequent attempts generally use consistently different
methods. Thus it is possible that a feature of the second
method is the underlying cause of the rule above.

There is further evidence that tutorial planning features
are not sufficient to explain the use of acknowledgments.
For example, our decision trees offer no explanation as to
why correct answers receive a positive acknowledgment
about three times out of four and no acknowledgment the
rest of the time. We suspect that other features affecting
dialogue coherence, such as the presence or absence of an
initial discourse marker, are related to the decision to use an
explicit acknowledgment. Schiffrin’s (1987) study of
discourse markers lends credence to this theory. For
example, according to Schiffrin’s analysis, the use of well in
the following excerpt indicates that the tutor is contradicting
the student’s wrong answer. This is similar to the purpose a
negative acknowledgment would serve.

T: What to you think will happen to SV?
S: No change.
T: Well, you predicted that RAP would go down and ...

Also, since DLRs already have internal coherence, it is not
surprising to see fewer acknowledgments on student
responses to questions inside a DLR.

Choosing a Realization

The final experiment examined the realization of the topic
t-tutors-dr-info. This topic is always realized by an instance
of the primitive #-informs or t-elicit. Our question was to
determine under what conditions each of these primitives is
chosen by the human tutor.

Although t-informs is usually realized as a declarative
sentence and #-elicits with an interrogative, other alternatives
are possible. For example, t-elicits could be realized as an
imperative: “Please tell me ...” (Sinclair & Coulthard, 1975).
Thus these rules do not directly determine surface structure,
although they do move one level closer to surface structure.

For this experiment we had C4.5 build a decision tree to

classify 16 cases where t-futors-dr-info is realized as
t-informs (9 cases) or t-elicit (7 cases). Since this topic
occurs when an incorrect prediction for a neural variable is
tutored, we chose the following as possible explanatory
features:

» Number of variables predicted incorrectly for the stage

» Number of neural variables predicted incorrectly

* Whether or not the tutor has already tutored the topic
t-tutors-mechanism in the course of remediating the
incorrect prediction. This topic is used to teach the student
that a variable is neural.

The first two features were chosen because they could be
used as part of an assessment of the student’s performance.
Previous work (e.g., Hume et al., 1996) suggests that our
tutors change their tutoring style, especially their use of
hints, based on their assessment of the student.

The following decision tree was obtained from C4.5:

If a ~-tutors-mechanism topic has occurred
then a subsequent £-tutors-dr-info topic will be
realized as t-inform
otherwise it will be realized as #-elicit.

This rule, which uses only the feature -futors-mechanism,
correctly classifies 14 of the 16 cases, giving an error rate of
13%. The other two features were ignored.

It is worth noting that none of the readers of the
transcripts had previously noticed this relationship.

Having discovered this relationship, we built a 2-by-2
contingency table showing the realization of t-tutors-dr-info
vs. the use of #-tutors-mechanism (Table 1). We computed
¥* = 6.3, including the Yates correction for small N, which
shows that the relationship is unlikely to be random (p =
0.02).

Table 1: Contingency Table for Realizing #-tutors-dr-info

Has preceding
t-tutors-mech?
Yes No Total
t-inform 9 0 9
t-elicit 2 5 7
Total 11 5 16

Intrigued by the fact that both components of the student
assessment were ignored, we decided to see what happened
if we eliminated the t-tutors-mechanism factor instead. An
even simpler decision tree was obtained:

If all three neural variables were incorrectly predicted
then use t-elicit
else use t-inform

This tree misclassifies 3 out of the 16 cases, an error rate of
19%. Our tentative understanding of this rule is that when
the student makes the same error repeatedly, the tutor
switches to a schema where the information involved is
specifically probed for.

Related Work

Vander Linden and Di Eugenio (1996a, 1996b) studied rules
for distinguishing the occurrences of warnings in written
instructions, in particular how to choose among phrases such

as never do X, don’t do X, and be sure not to do X. They
coded instances of such expressions in recipes, instructions
for operating equipment, and similar types of written
material. The used three semantic features, such as “writer
believes that reader knows that doing X is dangerous.” They
then used a machine learning algorithm to derive decision
rules which could be integrated into a text generation
application.

Moser and Moore (1995) and Di Eugenio, Moore and
Paolucci (1997) studied the use of cue words such as
because and also in tutorial text. They annotated text
segments with features describing structural (core/
contributor), intentional, informational and syntactic
relations between text segments. They used a decision-tree
generating algorithm to test hypotheses about the occurrence
and placement of the cue words. Unlike the work of Vander
Linden and Di Eugenio, the text segments are coded for a
very large number of features, and part of the experiment is
to determine which features are significant.

Each of these papers studies relationships between words
or syntactic structures in a surface text and semantic or
textual features which have been coded. Although our
methodology is similar, our work is different because we are
relating levels of goal structure to lower-level goals rather
than directly to surface text. Thus our work can be used to
build rules at several levels of a hierarchical planning
process.

Conclusions

We are currently building a dialogue-based intelligent
tutoring system which uses a rule-based global planner. To
better understand the tutoring strategies used by human
tutors, we studied transcripts of expert tutors doing the same
task. We annotated this corpus to show the tutorial goals
from which utterances could be derived. We used the C4.5
rule induction algorithm to derive rules relating some of our
plan operators to the lower-level operators used to
instantiate them. Using a small but significant portion of our
corpus, we obtained some intuitively satisfying rules at
several levels of discourse. Some of these rules are
statistically significant, and some point to ideas for future
work. In one case C4.5 caught a generalization which our
human readers had missed.

We conducted four experiments. The first experiment
revealed a high-level plan for a whole stage of the tutoring
session. A second related the category of the student answer
to a subsequent change in tutorial goals, providing rules for
dynamic modification of the tutoring agenda. A third
experiment showed that explicit acknowledgments of the
student’s utterances may not be fully explainable by the
tutorial goal structure. A final experiment was just above the
level of text realization, finding relationships between
student errors and the decision to express certain tutoring
goals as t-informs or t-elicifs.

This work has shown that rule induction on a natural-
language corpus can produce planning rules which are both
useful and interesting. It is a step on the path toward more
objective methods of corpus analysis for text generation. We
plan to expand our analysis to cover more plan operators

and more examples of each in order to produce the most
realistic text possible in CIRCSIM-Tutor.

References

Di Eugenio, B., Moore, J. D. and Paolucci, M. (1997).
Learning Features that Predict Cue Usage. Proceedings of
the 35th Annual Meeting of the Association for
Computational Linguistics, Madrid. Cmp-1g/9710006.

Sinclair, J. M. and Coulthard, R. M. (1975). Towards an
Analysis of Discourse: The English Used by Teachers and
Pupils. London; Oxford University Press.

Freedman, R. and Evens, M. W. (1996). Generating and
Revising Hierarchical Multi-turn Text Plans in an ITS.
Intelligent Tutoring Systems: Third International
Conference (ITS '96), Montreal (Springer-Verlag Lecture
Notes in Computer Science, 1086). Berlin: Springer.

Hume, G., Michael, J., Rovick, A., and Evens, M. W.
(1996). Student Responses and Follow Up Tutorial
Tactics in an ITS. Proceedings of the Ninth Florida
Artificial Intelligence Research Symposium (Flairs °96),
Key West, FL (pp. 168—172).

Moser, M. G. and Moore, J. D. (1995). Investigating Cue
Selection and Placement in Tutorial Discourse.
Proceedings of the 33rd Annual Meeting of the
Association for Computational Linguistics (pp. 130-135).

Quinlan, J.R. (1993). C4.5: Programs for Machine
Learning. Los Altos, CA: Morgan Kaufmann.

Reiter, E. and Dale, R. (1997). Building Applied Natural
Language Generation Systems. Journal of Natural
Language Engineering, 3, 57-87.

Schiffrin, D. (1987). Discourse Markers.
Cambridge University Press.

Vander Linden, K. and Di Eugenio, B. (1996a). A corpus
study of negative imperatives in Natural Language
instructions. Proceedings of the 17th International
Conference on Computational Linguistics (COLING °96),
Copenhagen. Cmp-1g/9607014.

Vander Linden, K. and Di Eugenio, B. (1996b). Learning
Micro-Planning Rules for Preventative Expressions.
Eighth International Workshop on Natural Language
Generation (INLG '96), Sussex, UK. Cmp-1lg/
9607015.

Cambridge:

Acknowledgments

This work was supported by the Cognitive Science Program,
Office of Naval Research under Grant No. N00014-94—1—
0338, to Illinois Institute of Technology. The content does
not reflect the position or policy of the government and no
official endorsement should be inferred.

In addition to generously sharing with us their knowledge
about both pedagogical and domain issues, Professors Joel
A. Michael and Allen A. Rovick of Rush Medical College
devised the experimental setup for the transcript collection
and served as expert tutors in the tutoring sessions.

