
AAAI 1998 Spring Symposium on Applying Machine Learning to Discourse Processing

1

SGML-Based Markup as a Step toward Improving
Knowledge Acquisition for Text Generation

Reva Freedman
�
, Yujian Zhou, Jung Hee Kim,

Michael Glass and Martha W. Evens

Department of CSAM

Illinois Institute of Technology

10 W. 31st Street 236�SB

Chicago, IL 60616

freedrk+@pitt.edu, zhouyuj@charlie.cns.iit.edu, janice@steve.csam.iit.edu,

glass@charlie.cns.iit.edu, csevens@minna.cns.iit.edu

Abstract

We are investigating computer-assisted methods for
identifying plan operators at both the conversational
strategy and surface generation levels. We are using
standard-conforming SGML markup on our corpus in order
to be able to process it mechanically. We are using C4.5 to
identify rules of the form �when is goal x implemented with
plan y?�. We are currently testing these methods in the
knowledge acquisition process for the text generation
component of CIRCSIM-Tutor v. 3, a natural-language
based intelligent tutoring system.

Introduction

CIRCSIM-Tutor is a conversational intelligent tutoring

system (ITS) which uses natural language for both input

and output. The text generation component of CIRCSIM-

Tutor v. 3, which we are currently implementing, uses a

two-phase architecture consonant with the consensus

architecture described by Reiter (1994).

A global, top-down tutorial planner chooses and

instantiates a logic form for the system to say based on

available information The tutorial planner starts from a

single top-level goal, �generate a conversation resulting in

the student knowing <concepts>,� and produces a set of

primitive goals including typical speech act goals such as

elicit and inform.

The turn planner is a paragraph planner which accepts a

set of these goals and turns them into a coherent turn of one

or more sentences, including the lexical insertion and

surface generation phases. Using the two-level model

This work was supported by the Cognitive Science Program,
Office of Naval Research under Grant No. N00014�94�1�0338
to Illinois Institute of Technology. The content does not reflect
the position or policy of the government and no official endorse-
ment should be inferred.

�Reva Freedman is now at the Learning Research and Develop-
ment Center of the University of Pittsburgh.

suggested by Robin (1994) and others, the turn planner

converts the tutorial planner primitives to one or more

semantic forms representing the concepts the tutor wants to

convey. These semantic forms are then realized as surface

text. (For further details about the CIRCSIM-Tutor planner

see Freedman, 1996.)

The basic knowledge representation for the tutorial

planner is a sophisticated form of schema which allows

static and dynamic preconditions, recursion and full

unification. Although neither our planner nor our markup

formalism requires it, we have attempted where possible to

maintain consistency in the type of action performed at

each level of the hierarchy. The most common pattern

encompasses the following levels:

� Tutoring strategy

� Speech act

� Linguistic realization of the speech act

If the student answers a question incorrectly, CIRCSIM-

Tutor can backtrack at each of these levels: As a result, the

transcripts often contain only partial schemata because the

tutor changed schemata in mid-stream in response to a

student utterance.

The knowledge for both the tutorial planner and the turn

planner is stored in operator libraries independent of the

planning algorithms employed. In order to create these

operator libraries, we must determine how each planner

goal is realized at the next level, i.e. under what conditions

goal t-xxx might be realized as t-yyy or the sequence of

t-yyy followed by t-zzz.

Potential criteria for any of these decisions,

i.e. prerequisites for the plan operators, may include

information from any of the following sources:

� Dialogue history, e.g. is this the first time we have tried

to explain this concept. The dialogue history also includes

the student�s response and our categorization of it.

� Student model, e.g. whether we are conversing with a



2

strong or a weak student. We use the student�s initial

solution of the problem as well as later responses during

the conversation to maintain a static and a dynamic

evaluation of the student.

� Domain knowledge base.

The idea of using machine learning, specifically the use

of rule induction, to help identify reasonable rules from

transcripts was suggested to us by a series of recent papers

connecting text generation goals with textual phenomena

(Moser and Moore, 1995; Vander Linden and Di Eugenio

1996a, 1996b; Di Eugenio, Moore and Paolucci, 1997).

Annotating the Corpus

We have accumulated over 5000 turns of transcripts of

human tutoring sessions, conducted by typing over a

modem. We originally started annotating them in order to

manually collect information for text generation. The large

size of the corpus and the wide variety of phenomena

involved made manual analysis a slow process.

To achieve more accurate and comprehensive results, we

decided to formalize our markup. We chose to use fully

conformant SGML with the hope that we could use existing

software for a large portion of our analysis. With this

detailed markup available, many questions about tutorial

strategies become more practical to ask.

The following is an example from our corpus. The

numbers in parentheses are the turn number and sentence

number from the original corpus. For simplicity both in

writing and reading the markup, when an argument is

relevant to many levels of goals, we only put it on the

uppermost level to which it applies. We use a mechanical

process to copy the arguments to lower levels. The t-ack

and s-answer forms are derived from a process which

responds to student utterances; they are part of the corpus

and the output of CIRCSIM-Tutor, but they are not part of

the goal hierarchy of the tutorial planner.

<T-does-neural-DLR>

<T-tutors-mechanism>

<T-elicits-mechanism>

(29.4) Can you tell me how TPR is

controlled?

<S-answer catg=correct>

(30.1) Autonomic nervous system.

</S-answer>

<T-ack type=positive>

(31.1) Yes.

</T-ack>

</T-elicits-mechanism>

</T-tutors-mechanism>

<T-tutors-DR-info>

<T-informs-DR-info>

(31.2) And the predictions that you are

making are for the period before any neural

changes take place.

</T-informs-DR-info>

</T-tutors-DR-info>

<T-tutors-value>

<T-elicits-value>

(31.3) So what about TPR?

...

<S-ans catg=correct>

(38.4) I would like to change my response re

TPR to zero change.

</S-ans>

<T-ack type=positive>

(39.1) Good.

</T-ack>

</T-elicits-value>

</T-tutors-value>

</T-does-neural-DLR>

In our tutoring sessions, the students are presented with a

hypothetical medical problem which would affect blood

pressure, such as a hemorrhage or a pacemaker which runs

too fast. The focus of the lesson is on the baroreceptor

reflex, the negative feedback loop by which the autonomic

nervous system adjusts blood pressure back toward normal.

Students are required to predict the qualitative change,

increase or decrease, in seven physiological variables, such

as cardiac output and central venous pressure, at each of

three stages. The DR stage, referred to below, contains the

changes that occur directly after the problem has occurred

but before the reflex has acted. In our current protocol, the

student predicts all seven variables for one stage, the tutor

teaches until the mistakes are corrected, and they proceed

to the next stage. Among the seven variables, three have

some degree of neural (reflex) control. Understanding these

is key to understanding how the reflex regulates blood

pressure.

When analyzing a tutoring dialogue, each stage is

realized as a separate goal. Each stage usually contains

goals for remediating each incorrectly predicted variable.

The example above shows a successful attempt to

remediate the neural variable TPR in the DR stage. We

divide each attempt into three levels: method, topic, and

primitive. A method describes how a tutor teaches

something. For example, the method picked in this case

was t-does-neural-dlr. A DLR, or directed line of

reasoning, is a pre-planned series of questions designed to

make a particular point. In this example, t-does-neural-dlr

is realized as a sequence of three topics: t-tutors-

mechanism (for the fact that TPR is neural), t-tutors-dr-

info (for basic information about the DR stage), and

t-tutors-value (for the corrected value of TPR). Each of

these three topics can be realized as an instance of the

primitive t-inform (conveying the information to the



3

student) or t-elicit (eliciting the information).

The transcripts have also been annotated with

information about which variables the student answered

incorrectly during the initial solution of the problem.

First Experiment

We have used the annotated corpus to perform several

experiments using Quinlan�s (1993) C4.5 learning

algorithm. Here we report on two of them.

The first experiment examined the realization of the

topic t-tutors-dr-info. This topic is always realized by an

instance of the primitive t-informs or t-elicit. Our question

was to determine under what conditions each of these

primitives is chosen by the human tutor.

For this experiment we had C4.5 build a decision tree to

classify 16 cases where t-tutors-dr-info is realized as

t-informs (9 cases) or t-elicit (7 cases). Since this topic

occurs when an incorrect prediction for a neural variable is

tutored, we chose the following as possible explanatory

features:

� The total number of variables predicted incorrectly1

� The number of neural variables predicted incorrectly

� Whether or not the tutor has already tutored the topic

t-tutors-mechanism in the course of remediating the

incorrect prediction. This topic is used to teach the

student that a variable is neural.

The first two features were chosen because they could be

used as part of an assessment of the student�s performance,

which might affect whether the tutor gives information to

the student (inform) or requests it from the student (elicit).

In previous work, Hume et al. (1996) have stated that our

tutors change their tutoring style, specifically their use of

hints, based on their assessment of the student.

The following decision tree was obtained from C4.5:

If a t-tutors-mechanism topic has occurred

then a subsequent t-tutors-dr-info topic will be

realized as t-inform

otherwise it will be realized as t-elicit.

This rule, which uses only the feature t-tutors-mechanism,

correctly classifies 14 of the 16 cases, giving an error rate

of 13%. The other two features were ignored.

It is worth noting that none of the readers of the

transcripts had previously noticed this relationship.

Having discovered this relationship, we built a 2-by-2

contingency table showing the realization of t-tutors-dr-

info vs. the use of t-tutors-mechanism (Table 1). We

computed χ2 = 6.3, including the Yates correction for small

N, which shows that the relationship is unlikely to be

random (p = 0.02).

1 All of these numbers refer to the DR stage of the problem.

Has preceding

t-tutors-mech?

Yes No Total

t-inform 9 0 9

t-elicit 2 5 7

Total 11 5 16

Table 1: Contingency Table for Realizing t-tutors-dr-info

Intrigued by the fact that both components of the student

assessment were ignored, we decided to see what happened

if we eliminated the t-tutors-mechanism factor also. An

even simpler decision tree was obtained:

If all three neural variables were incorrectly predicted

then use t-elicit

else use t-inform

This tree misclassifies 3 out of the 16 cases, an error rate of

19%. We have coded approximately half of the transcripts

where t-tutors-dr-info occurs. We intend to run the

analysis again when we have coded the rest of the data, but

we do not expect any significant changes. Our tentative

understanding of this rule is that when the student makes

the same error repeatedly, the tutor switches to a schema

where the information involved is specifically probed for.

Second Experiment

The second experiment explored how tutoring operators

are chosen at the method level. Each case represented one

attempt to tutor one variable. The features we picked were:

� The total number of variables predicted incorrectly

� The number of neural variables predicted incorrectly

� Whether the variable is neural or non-neural

� Sequence of the variable within its category (neural or

non-neural). (The tutors usually tutor all the neural

variables first, followed by the others.)

� How many previous attempts had been made to tutor this

variable

In our sample, five different tutoring methods were

attested:

� t-does-neural-dlr, tutoring using a guided series of

questions exploring the behavior of a neural variable

� t-shows-contradiction, tutoring using an inconsistency in

the predicted values of the variables

� t-tutors-via-determinants, tutoring using the set of

variables which have an effect on the variable which was

incorrect

� t-moves-forward, tutoring using causal reasoning from a

known-correct variable to the incorrect one

� t-tutors-via-deeper-concepts, tutoring using other

concepts and more particular physiological parameters

In this experiment we had 23 cases, each with 5 features.



4

There were 5 possible outcomes. The original tree

produced by C4.5 is too specific to be useful. C4.5

produced the following simplified tree:

If variable is neural

if first variable in category, use t-does-neural-dlr

if second, use t-shows-contradiction

else /* variable is not neural */

if first vbl in catg, use t-tutors-via-determinants

if second, use t-moves-forward

This tree misclassifies 3 of the 23 cases, for an error rate of

13%. Of the three which are misclassified, two involve

second and subsequent attempts to tutor the same variable.

These attempts tend to employ the less common tutoring

methods. Although we have coded about half of the

transcripts involving these tutoring methods, we have

coded only about 10% of the total corpus. We hope that

completing the annotation of the corpus will produce

decision trees which cover other phenomena of interest to

us, including criteria for invoking the lesser-used tutoring

methods, tutoring of third incorrect variables, and multiple

attempts to tutor the same incorrect prediction.

Within each group of variables, neural and non-neural,

C4.5 noticed an interesting rhetorical pattern. The second

variable to be tutored in each group uses a method which

builds on knowledge taught in the first variable. For

example, a common rhetorical pattern for tutoring two non-

neural variables v1 and v2 is to tutor v1 via determinants,

then move forward to v2 as follows:

<t-corrects-variable variable=v1>

<t-tutors-via-determinants>

What variables in the prediction table determine v1?

(v1 is tutored, based on its determinants)

</t-corrects-variable>

<t-corrects-variable variable=v2>

<t-moves forward>

And what effect would v1 have on v2?

(v2 is tutored by moving forward from v1)

</t-corrects-variable>

The pattern for neural variables is similar.

Conclusions

We have used C4.5 to derive rules relating some of our

plan operators to the lower-level operators used to

instantiate them. Using a small but significant portion of

our corpus, we obtained some simple rules which made

intuitive sense to us. In one case C4.5 caught a

generalization which our human readers had missed. Using

SGML to annotate the corpus made this project more

feasible by allowing us to automate more of the steps. We

plan to expand our analysis to cover more plan operators

and more criteria for choosing among them, in order to

produce the most realistic text possible in CIRCSIM-Tutor

v. 3.

References

Di Eugenio, B., Moore, J. D. and Paolucci, M. 1997.

Learning Features that Predict Cue Usage. Proceedings of

the 35th Annual Meeting of the Association for

Computational Linguistics, Madrid. Cmp-lg/9710006.

Freedman, R. 1996. Interaction of Discourse Planning,

Instructional Planning and Dialogue Management in an

Interactive Tutoring System. Ph.D. diss., Dept. of EECS,

Northwestern Univ.

Hume, G., Michael, J., Rovick, A., and Evens, M. W.

1996. Student Responses and Follow Up Tutorial Tactics

in an ITS. In Proceedings of the Ninth Florida Artificial

Intelligence Research Symposium, Key West, FL, pp. 168�

172.

Moser, M. G. and Moore, J. D. 1995. Investigating Cue

Selection and Placement in Tutorial Discourse.

Proceedings of the 33rd Annual Meeting of the Association

for Computational Linguistics, pp. 130�135.

Quinlan, J. R. 1993. C4.5: Programs for Machine Learning.

Morgan Kaufmann.

Reiter, E. 1994. Has a Consensus NL Generation

Architecture Appeared, and is it Psycholinguistically

Plausible? In Proceedings of the Seventh International

Workshop on Natural Language Generation, Kenne-

bunkport, ME, pp. 163�170. Cmp-lg/9411032.

Robin, J. 1994. Revision-Based Generation of Natural

Language Summaries Providing Historical Background:

Corpus-based Analysis, Design, Implementation and

Evaluation. Ph.D. diss., Columbia University.

Vander Linden, K. and Di Eugenio, B. 1996a. A corpus

study of negative imperatives in Natural Language

instructions. Proceedings of the 17th International

Conference on Computational Linguistics (COLING �96),

Copenhagen. Cmp-lg/9607014.

Vander Linden, K. and Di Eugenio, B. 1996b. Learning

Micro-Planning Rules for Preventative Expressions. 8th

International Workshop on Natural Language Generation,

INLG �96, Sussex, UK. Cmp-lg/9607015.

Acknowledgments

In addition to generously sharing with us their knowledge

about both pedagogical and domain issues, Professors Joel

A. Michael and Allen A. Rovick of Rush Medical College

devised the experimental setup for the transcript collection

and served as expert tutors in the tutoring sessions.


