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CHAPTER |
| NTRODUCTI ON

1.1 An Overvi ew

The goal of this research is the design and devel opnent
of an instructional planner that is responsible for
determ ning what to do next at each point during a tutorial
session. The planner is a central conponent of an intelligent
tutoring system (I TS) being devel oped as a joint project of
Rush Medical College and Illinois Institute of Technol ogy.
The goal of this research is to develop an ITS, ClIRCSIM
TUTOR, that assists first year nedical students to |learn the
t he behavior of the cardiovascular reflex system that
stabilizes blood pressure. Since the students have already
attended | ectures about the domain, CIRCSIMTUTOR assunes
prerequi site know edge and assists them to correct their

m sconceptions in the probl em sol ving.

At any tinme in the tutoring session, the planner has to
deci de what subject matter to focus on, howto present it to
the student and when to interrupt the student's problem
solving activity [Dede, 1986; Kearsley, 1987]. For exanpl e,
the planner has to decide whether to ask a question,
i ntroduce a new topic, renmediate a m sconception, etc.,
during the tutoring session. This pedagogi cal decision maki ng
is very conplex and there is no one correct choice due to the

dynam ¢ changes in the student's |earning state. Hence, the



deci si on nust be based on nany different know edge sources;
know edge about the domain, know edge about the student, and

pedagogi cal know edge.

Recent approaches to designing tutoring systens view the
deci si on nmaki ng process as a planning problem [ Peachey and
McCal la, 1986; Macmillan et al., 1988; Brecht et al., 1989;
Murray, 1990]. Adaptive planning techniques in the tutoring
domai n enable the generation of custom zed plans for
i ndi vidualized instruction. Anpbng the recent research
systens, MENO TUTOR [Wbol f, 1984] represents an inportant
attenpt at planning the discourse strategies observed in
human tutors, but it |acks global |esson goals [Mirray,
1988]. This lack of global |lesson goals Iimts the ability of
a system to generate globally coherent and consistent
instruction during the tutoring session. |DE-INTERPRETER
[ Russell, 1988] is another attenpt at planning the |esson
goal s at various |evels of abstraction, but this system|l acks
power at the |ocal diagnostic level. Thus, there is a need to
build an instructional planner that conbines globally

coherent |esson goals with flexible |ocal discourse plans.

In this research, | am building a planner that
i nt egrates opportunistic control with sophisticated planning
nmet hods; conbining capabilities of |esson planning wth
di scourse planning. This planner is a dynam c instructional

pl anner that supports custoni zed, globally coherent planned
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instruction, supports mxed initiative strategy, and has the
capability for replanning. This has required the invention of

multi-Ievel instructional planning.

1.2 Evolution of Conputer-Based Instruction at Rush

Comput er Aided Instruction (CAl) in the cardiovascul ar
domain at Rush Medical College has evolved from HEARTSI M
[ Rovi ck and Brenner, 1983], to CIRCSIM [ Rovick and M chael
1986], to the CIRCSI M TUTOR prototype [Kimet al., 1989] and
finally to C RCSIMTUTOR over the |ast ten years.

HEARTSIM was a Plato program and CIRCSIM is a stand-
al one Basic program The Cl RCSI M TUTOR prototype is a Prol og
prototype of our |ITS designed and inplenmented by Kim|[1989].
Its design is based on major | TS architecture, which includes
an expert nodule, a student nodel, a planner, and a
communi cati on nodul e. However, the prototype system stil
does not possess all of the capabilities needed for an ITS.
It |acks natural |anguage capabilities, it does not analyze
the student's misconceptions, and the instructional planner
is very primtive;, a discourse planner could not be
i npl enented since conplete discourse strategies for all the
primtive actions had not been devel oped, planning know edge
is not explicitly represented as a separate nodule, and there
was no replanning capability so that the system could not

respond to student initiatives.
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Cl RCSI M TUTOR uses the same architecture as Kims
prototype but includes conplete student modelling,
i nstructional planning, and natural |anguage understandi ng
and generation facilities. The role of ny research is to
design and build a sophisticated instructional planner for
Cl RCSI M TUTOR, which can support all of the limtations of

the earlier systens.

The instructional planner in ClIRCSIMTUTOR has sever al

novel features.

First, the planner employs two different Kkinds of
instructional planning nechanisnms: |esson planning and
di scourse planning. Lesson planning is further divided into
goal generation, planning of strategies, and planning of
tactics to refine the goal into subgoals. Discourse planning
is inplemented using a two |evel approach: pedagogical
deci sion naking at the upper level and tactical discourse
st at e-based planning at the |ower |evel. By conbining these
two planning nechanisnms, the planner can provide both
gl obal | y coherent instruction and flexible di scourse response

to the student throughout the tutoring session.

Second, the planner has a dynam c planning capability;
it can generate plans, nonitor the execution of the plans,

and repl an when the student interrupts with a question during



the tutoring session. The planner is dynamc; it generates
new pl ans and repl ans when necessary. By planning instruction
dynam cally based on the inferred student nodel, the planner
can provide nore adaptive instruction than the unpl anned

i nstruction produced by CAl systens.

Third, the pedagogi c know edge is represented explicitly
as a set of rules, which allow the planner to fine tune the
pl ans dynamcally and to nodify the plans easily, rather than
requiring the human author to anticipate the plans. These
rules are used to generate |esson goals, strategies, and
tactics, and di scourse nanagenment. The systeminterprets the
rul es and conmes back with an appropriate response to interact

with the students.

Fourth, the planner plans at different |evels of the
hi erarchy. This hierarchical planning technique reduces the
conplexity of the planning process. This top-down plan
expansi on technique has been inplenmented in several ITS

systens [Miurray, 1990; Russell, 1988].

Fifth, the planner supports a mxed-initiative strategy
by allowi ng student initiatives during the tutoring session.
The pl anner needs to do replanning after it carries out the
student's request. W are currently investigating strategies
for responding to the student's initiative, and inpl enmenting

sonewhat primtive responses.
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Finally, the planner is based on cognitive science
research into transcripts of human tutoring interactions.
Fromthese transcripts, we extracted sone possible strategies
and tactics, which we enploy as heuristics in generating the

content of |esson plans and di scourse strategies.
This thesis describes the inplenentation of the above
features in detail. CIRCSIMTUTOR is witten in Procyon

Common Lisp and runs on a Macintosh Ilci conputer

1.4 O gani zation of the Thesis

This thesis is divided into eight chapters. Chapter |1
descri bes the background of the system The subject area of
Cl RCSI M TUTOR i s cardiovascul ar physiology and the system
assi sts students to understand the behavior of the conplex
negative feedback system Then the chapter explains the
overall organization of the system sonme inmportant

constraints, and the effect of simultaneous student inputs.

Chapter Il1l begins with a brief introduction to ITS: the
general structure and the issues involved in each nodul e of
the ITS. Then | describe each conponent of ClIRCSIM TUTOR

briefly introducing functions and data structures.

Chapter |1V presents a survey of literature related to
the study of Artificial Intelligence planning techni ques and

the application of planning techniques in ITSs. Teaching



strategi es, control nechani snms and chronol ogi cal progress are
the main foci of this discussion. | also review sone wel
known | TSs with their contributions and limtations fromthe

pl anner's point of view

Chapter V presents design issues for building the
pl anner: |evels of planning and tutoring strategies. A short
tutoring session is displayed, which cane froma transcript
of human tutor and student interaction. And then a short
scenario is described to explain how the system works. The
chapter concludes with a discussion of +the overall
organi zation of the planner: |esson planning, discourse

pl anni ng, and pl an nonitoring.

Chapter VI discusses the |lesson planner. It first
di scusses the main features of the planner: goal generation
and plan generation. Each phase uses its own | esson pl anning
rul es: goal generation rules and plan expansion rules. The
results of applying the rules are saved in stacks: a goal
stack and a subgoal stack. This chapter explains the

generation of the content of |esson plans in detail.

Chapter VIl discusses the discourse planner. The
di scourse planner controls the interaction between the tutor
and the student. The structure of the planner is a two |evel
di scourse managenent network, which consists of a set of

states that represent tutorial actions. The control nechani sm
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is separated into default and meta-rule transitions. The

chapter ends with a short trace of discourse transitions.

The thesis concludes in Chapter VIII with a discussion
of the significance of the planner, describes sonme of its

[imtations, and gives suggestions for future research.



CHAPTER 1| |
THE BACKGROUND

2.1 Qualitati ve Reasoni ng

Qualitative reasoning or sinulation [deKl eer and Brown,
1984; Forbus, 1984; Kuipers, 1984] is an approach to probl em
solving that reasons about the causal relationships that
structure our world. Qualitative simulation is a kind of
gualitative reasoning and qualitative reasoning operates on a
gqualitative nodel. Forbus [1984] explains qualitative
reasoning with a steam boiler exanple: If the input
tenmperature is increased, what happens to the output
tenperature? Anderson [1988] argues that qualitative
reasoning is the nost demandi ng approach and essential to
produce a high performance tutoring system He states that
gualitative modelling can maxim ze the pedagogical
ef fectiveness since it is human-1ike reasoning, although the
i npl enentation effort is nmuch larger than that required for

the traditional black box nodels or glass box nodels.

Among the recent research efforts, deKleer and Brown's
approach is interesting because it evolved within the | ast
phase of the SOPHI E project [deKleer and Brown, 1984]. Their
approach is referred to as a conponent centered approach
[ Cohn, 1987], where a system is nodelled by instantiating
conmponents froma library, which are then connected together

explicitly. The relationships between the conponents are
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call ed confluences, and the entire systemis nodel ed by a set
of confl uences; cause and effect relationships or constraints
anong the conponents. For exanple, assunme a system that
consists of a set of conponents, such as a valve, an anount
of water, and a pressure. The systemis originally in an
equilibrium state, and a disturbance is introduced (water
flow), then constraints are propagated until a new

equi libriumis reached.

This causal process may construct reasonable causal
expl anati ons of how the system works. These problens are
simlar to those of CIRCSIMTUTOR, where a perturbation
occurs in a conponent of the system and the qualitative
changes propagate until the system again reaches an
equilibrium state. Another simlarity is in its qualitative
guantity space, where {-, 0, +} are used to represent the
qualitative values (- represents a drop in the paraneter

val ue, 0 no change, + an increase).

2.2 Subject Area

Cl RCSIM TUTOR is an approach to qualitative sinulation
in cardiovascul ar physiology [Mchael et al., 1990]. It is
designed to teach first year nedical students about the
negati ve feedback system that controls the blood pressure.
The cardiovascular system consists of many nutually
interacting conponents, and the student nust understand the

cause and effect rel ationships for each individual conponent
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of the system Figure 1 shows a causal nodel of ClIRCSIM
TUTOR, called the Concept Map, designed by M chael and Rovi ck
[Kim et al., 1989]. Each box in the map represents a
physi ol ogi cal variable, such as SV for Stroke Vol une and RAP
for Right Atrial Pressure. An arrow with "+, -" sign between
two boxes tells the direction of the causal effects and
whet her the causal relationship between the connected
variables is direct or inverse. For exanple, a qualitative
change in one conponent of the system a decrease in RAP
directly causes a decrease in SV. This qualitative change

propagates to other adjacent conponents of the system

according to the propagation rule.

RV qa—| PI T

RAP |@—" | BV |e—T" | BV

+ + +
T N T + + BR- ONS
C HR TPR

Figure 1. The Concept Map
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There are three stages in the hunman body's response to a
perturbation in the systemthat controls blood pressure. The
first stage is the Direct Response (DR) in which a
perturbation in the systemw || physically affect many ot her
paranmeters. The second stage is the Reflex Response (RR), in
whi ch ot her paraneters are affected by the negative feedback
mechanismto stabilize the bl ood pressure. The final stage is
the Steady State (SS), which is achieved as a bal ance between
t he changes directly caused by the initial perturbation and

the further changes induced by negative feedback.

2.3 O gani zati on

Cl RCSI M TUTOR begins with a brief introductory nessage
and then asks the student to choose any procedure fromthe
curriculumlist. The curriculum (Figure 2) is stored as a set
of seven different experinental procedures designed by our
expert human tutors (JAM and AAR). Each procedure begi ns by
descri bing a perturbation of the cardi ovascul ar system and
asking the student to predict how the system variables wll
respond to the perturbation by naking qualitative entries in
the Prediction Table (see Figure 3); using a "+" sign to
represent an increase, a "-" for a decrease, and "0" to
i ndicate no change. The first colum of the table is used to
predict the Direct Response (DR) of each variable to the

perturbation, the second is used for the Reflex Responses

(RR), and the third for the Steady State (SS).
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Li st of Avail abl e Procedures

Decrease Arterial Resistance (Ra) to 50% of Nornal.

Denervat e t he Baroreceptors.

Decrease Ra to 50% of Normal in a Denervated Preparation.
Henorr hage: Renove 1.0 Liter of Bl ood.

Decrease Cardiac Contractility (CC to 50% of Nornmal.

I ncrease Venous Resistance (RV) to 200% of Normal .

Increase Intrathoracic Pressure (PIT) to 2 mrHg.

Qui t.

Figure 2. List of Available Procedures

Par amet er s DR R ss
Cardiac Contractility 0
Right Atrial Pressure -
St roke Vol une -
Heart Rate 0
Car di ac Qut put -
Total Peripheral Resistance 0
Mean Arterial Pressure -

Figure 3. The Prediction Table
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When the student finishes predicting all seven
paraneters in one colum of the table, for exanple the DR
stage, the student's answers are conpared with the correct
answers. |f the student has nmde any errors, a natural
| anguage tutoring session will begin, based on the result of
this evaluation in order to correct the student's

m sconcepti ons.

2.4 System Constraints

There are sonme system variables that need to be
descri bed; the procedure variable is the variable changed by
the perturbation; the primary variable is the first variable
in the Prediction Table affected by the procedure vari abl e,
(in sonme cases the procedure variable is the primry
vari able); the neural variables are the variables directly
under nervous system control. The rest of the variables we
call physical variables. The students are not allowed to
predict the variables in any arbitrary order, since there are
sone constraints that they nust follow For exanple, the

constraints for DR are fairly conpl ex:

Constraint DRl: The student nust predict the primary
variable first, and the val ue nust be correct.

Constraint DR2: The student mnust predict the physical
variables in the correct causal sequence.

Constraint DR3: The student may predict the neural

variables at any time and in any order.
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The student receives a canned error nessage, when either
of the first two constraints is violated, and is told what to
do next. The purpose of forcing the student into the correct
sequence is to nake sure the causal behavior of the systemis
followed correctly. Neural variables can be entered at any
time since neural variables do not change during the DR
peri od except when one is a primary variable. The constraints
for the RR stage are designed to teach the students about the

ef fect of the baroreceptor reflex:

Constraint RRl: The student nust predict either the
neural variables or MAP first.

Constraint RR2: The student must finish predicting al
the neural variables before predicting other
physi cal vari abl es.

Constraint RR3: The student mnust predict the physical

variables in the correct causal sequence.

Finally, when predicting the SS stage, the student is
allowed to enter predictions in any arbitrary order since

there are no specific constraints for this stage.

2.5 Multiple Sinultaneous | nputs

In a mxed-initiative type of ITS, the tutor and the
student share control over what happens next during a
tutoring session. Cenerally, in these systenms the tutor

begi ns by posing a question and the student either responds
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to the question or takes the initiative. Sonmetines this style
of tutoring | eaves students confused and frustrated if they
do not have enough background in the domain know edge, even
t hough there exists some type of tutoring strategy that
prevents students fromgetting too far off the track [Reiser

1989]. Rather than blindly wal king through the domain, it is
much nore effective if the tutor provides a simulated problem
situation in the domain for the student before the actual

interactive tutoring begins.

Cl RCSI M TUTOR begins with a Prediction Table, in which
the student is asked to nmake qualitative predictions about
t he behavi or of the system given a particul ar perturbation.
After the student finishes all the predictions, the tutor
anal yzes the student's answers and shows what errors were
made if any. Based on a careful analysis of these errors, the
tutor can generate a global |esson plan, and interactive
tutoring begins by using a mxed-initiative Socratic strategy
in natural |anguage. Thus, the Prediction Table provides a
gqualitative sinmulation environment for the student by
requiring multiple simultaneous inputs (multiple responses to
different aspects of a problem provided by the student in a
single uninterrupted turn) before interactive tutoring

begi ns.

There are several benefits of adapting this kind of

design strategy. First, the tutor receives enough initial
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knowl edge about the student so that it can narrow the focus
for tutoring. It can also detect sonme comon student
m sconceptions [Mchael et al., 1991] or bugs. Second, the
students can see a sinple nental nodel of the entire donain
at the start, which prevents the students from getting too
far off the track. ElIsom Cook [1988] argues that using
mul ti pl e pedagogi c strategies can provide a very powerful
| earni ng environnent. Cl RCSI M TUTOR begins with a coach-1ike
environment during the Prediction Table entry, and then noves
to Socratic tutoring for the interactive tutoring session
This flexibility in adapting to the student's needs at

di fferent stages provides another benefit.
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CHAPTER I 1|
CRGANI ZATI ON OF C RCSI M TUTOR

The goal of constructing an Intelligent Conputer Aided
Instruction (I CAl) systemor an Intelligent Tutoring System
(ITS) is to develop an adaptive instructional system by
applying Artificial Intelligence principles and techni ques.
Traditionally |1CAl systens have been separated into four
maj or conponents: the domai n know edge base, a collection of
i nstructional strategies and an algorithmfor applying them
a student nodeler, and an interface. Since a major goal of
CIRCSIMTUTOR is to carry on a natural |anguage dial ogue, we
have divided the interface into three pieces, an input
under stander, a text generator, and a screen nmanager. As a

result, C RCSI M TUTOR has seven subnodul es.

3.1 Intelligent Tutoring Systens

Comput er Aided Instruction (CAl) systems were first
devel oped by educational researchers and w dely used during
the 1950's and 1960's. Carbonell [1970] defined a second type
of CAl, Intelligent Conmputer Aided Instruction, initiated by
conputer scientists (see Figure 4). It ains to teach the
i ndi vidual student nore effectively and adaptively than
traditional CAl systens, by applying Al principles and
techni ques. Typical |CAl systems consist of four main

conponents. For each conponent of the system various Al
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t echni ques have been applied to inprove the performance of

t he system

Cogni tive Science

Psychol ogy
(Cogni tion)

Conput er
Sci ence (Al)

Educati on
(CAl)

Figure 4. | CAl Donmains (adapted from [ Kearsl ey, 1987] p. 4)

3.1.1 Conponents of an ICAl. In the early form of CAl,

all he conponents were conbined in a single structure. This
conbi ned structure caused a nunber of problens when the
system was nmodified. It was sonetinmes necessary to
restructure the whole system Thus, there was a need to
divide the systeminto separate conponents to represent the
way the tutor and the student act in a |earning situation:
the knowl edge to be taught, the instructional nodule, the
communi cati on nmethod, and a nechanism for nodeling the
student. A nunber of researchers [Carr and Col dstein, 1977,

Sl eeman and Brown, 1982; Barr and Fei genbaum 1982] separated
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the systeminto four different nodul es: the domain expertise
nodul e, the student nodel nodule, the tutoring nodule, and

t he communi cati on nodul e.

As we designed Cl RCSI M TUTOR we adapted these four major
conmponents of an I TS and divided the domain expertise into a
domai n knowl edge base and a probl em sol ver. W al so separat ed
t he conmuni cation nodule into three interface subnodul es, so
that Cl RCSI M TUTOR consi sts of seven major nodul es: a donain
know edge base, a problem solver, a student nodeler, an
instructional planner, an input wunderstander, a text
generator, and a screen manager. Figure 5 shows the overal
architecture of CIRCSI M TUTOR Details of each conponent wl|

be explained in the foll owi ng sections.

3.1.2 Applying Al Techniques in I[CAl. Early efforts to

apply Al techniques in |ICAl systems focused on the
representation of the subject nmatter, which was inplicitly
encoded in the program in early CAl systens. Various
knowl edge representation techniques, such as semantic
networks, rules, and scripts, have been applied. But the nost
i nportant progress is to create an explicit and separate
domain know edge base. This development allows easy
nodi fi cati on of the domain know edge wi thout refornulating

t he whol e system
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Expert's Behavi or
STUDENT MODELLER |« PROBLEM SOLVER
Correct Answers

Ff £

Student's
ANSWer s Cver | ay
KNOW_EDGE BASE
Curricul um
Student's L
Current State

l »| | NSTRUCTI ONAL PLANNER

J
Student's )
| nput D al Ogue
v v v v v
| NPUT UNDERSTANDER TEXT GENERATOR

SCREEN  MANAGER

v

STUDENT

Figure 5. The Structure of our System

Anot her Al technique, natural |anguage generation, plays
a very inportant role in I CAl systens. Users can conmuni cate

with the system by asking a question and answering the



22

guestion in a |l anguage they al ready know. SCHOLAR [ Car bonel |
1970], SOPH E [Brown et al., 1982], and WHY [ Stevens et al.
1982] adapted natural |anguage interaction. In addition, it
can provi de context-dependent tutoring [Wolf and MDonal d,

1984] .

From the md-1970's, |CAl systens focused on the
analysis of the student's learning status. Generally well -
defined expertise does not guarantee an expert teacher.
Wt hout exact know edge about what the student knows and does
not know for a given problem the system cannot provide
adaptive instruction. Hence, Al techniques were used to
eval uate the know edge status of the student [Carr and
Gol dstein, 1977; Brown and Burton, 1978]. This nodel can be
used effectively for deciding the next appropriate tutoring

strategy by the tutoring nodul e.

Finally, Al techniques are applied to represent the
expert's pedagogi cal know edge. In traditional CAl systens,
the tutoring strategy is procedurally hard-coded in the
program It is structured as a branching program if the
student answers A then go to this section, if the student
answers B then nove to the next section. If the system needs
to contain all the possible answers from the student, the
system nmay become very conplex. Hence, the system is
expensive to build and hard to nodify, because the systemis

greatly anticipated by the effort of a human author. Using Al
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t echni ques, such as instructional planning, the tutorial

strategi es can be represented explicitly and automatically.

3.2 Donmi n Expertise

3.2.1 Domai n Knowl edge Base. The builder of a dommin

knowl edge base faces two very inportant issues; what
know edge should it contain and how shoul d that know edge be
encoded [Wenger, 1987]. There are three different categories
of know edge encodi ng [ Anderson, 1988]: the bl ack box nodel,
the gl ass box nodel, and the cognitive nodel. The cognitive
nodel is the approach that CIRCSIM TUTOR is attenpting to
i mpl enment. The domain knowl edge is deconposed into
meani ngful, human-1i ke conponents and a causal reasoning
nmechanismis applied to it, so that the system can teach the
student to solve problens in a human-like manner. For a
detail ed di scussion of this problemsee Welinga and Breuker

[ 1990] .

Domai n know edge can be divided into three different
types of knowl edge to be tutored: declarative know edge,
procedural know edge, and know edge of tutoring heuristics.
Decl arative know edge includes domain concepts and causal
rel ati onshi ps between them Procedural know edge involves the
rules for using the concepts in solving problems. For
exanple, in CCRCSIMTUTOR, a rule that figures out the actual
determ nant of SVis if the primary variable is RAP, then RAP

Is the actual determ nant of SV. Know edge of tutoring
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heuristics nust be extracted from the experience of domain
experts; it involves ways of teaching the student about the

particularly difficult points in the domain.

We have built a small domain know edge base encoded as a
network of franes (see Figure 6). Each frame represents
domai n concepts and how they relate to each other causally.
There are three conceptual levels in the domain know edge;
| evel O consists of the definitions and static facts, level 1
consists of the cause-effect relationships between the
paraneters of the cardi ovascul ar system and |evel 2 contains
a deeper know edge of wunderlying physiology. The level 2
know edge is used when the tutor needs to give a hint to the
student. Currently, the level 2 know edge is under refinenent
and devel opnment. Hence, in the present program the domain
knowl edge base is constructed as a set of components that is
used for both problem solving and causal explanation. This
is the nmost inportant and the basic know edge that

constitutes the domain experti se.

3.2.2 Problem Solver. According to O ancey [1989], the

intelligence of an ITS cones fromits ability to solve the
probl ens. The probl em sol ver sol ves the probl ens presented to
the student or asked by the student. If the problem solver
sol ves the problens but can not explain how it solves them
it may just as well retrieve stored answers. The ability to

solve the problem wusing the expert's problem solving
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behavior, can be used to identify the student's
m sconceptions, to give an explanation, and to provide a

basis for tutoring strategies.

(frame SV

(frame-type vari abl e

var-type physi cal | y- af f ect ed

f rame- nane )Y

cl ass i nst ance

i nst ance- of vari abl e

nane St roke Vol une

definition vol une of bl ood ejected each
heart beat

part - of hear t

anat ony ventricle

causal -relation-in causal - RAP- SV causal - CC- SV

causal -rel ation-out causal - SV-CQ0))

Figure 6. A Frane fromthe Domai n Knowl edge Base

Probl em solving in CIRCSIMTUTOR is carried out by two
probl em sol vers: the main problem solver and the subprobl em
solver. The main problem sol ver solves the problem generates
correct answers, and produces the sane problem sol ving path
as an expert in the domain. This solution path can be used to
noni tor the student's problem solving behavior while the
student is making entries in the predictions table. The
subprobl em sol ver solves current problenms generated by the
pl anner, such as determ nant of X relationship between X and
Y, and al so problens comng fromthe student questions. The

ot her nodul es of the system may consult these probl em sol vers
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to get any information they need. For instance, the student
nodel er needs to consult the problem solver to evaluate the

student's answer.

3.3 I nput Under st ander

The input understander is responsible for understanding
the student's natural |anguage input. It handles not only
wel | -formed but also ill-fornmed student inputs [Lee et al.,
1990; Lee, 1990]. The student input may be either an answer
to the tutor's question, or a question fromthe student. If
the student's answer is The actual determ nant of SV is RAP,
then the planner will pass the sentence to the understander
along with the current |esson topic in logical form (actual-
determ nant SV). Then the input understander parses the
sentence, checks its coherence with the current topic, and
returns the logic form (answer (actual-determ nant SV
(RAP)). Then the planner extracts the student answer, RAP,
and passes it to the student nodel er to di agnose the student

answer .

The input understander nust also understand student
initiatives; whether the student is asking for an
expl anation, or referring to the previous remarks of the
tutor, or wants to stop the session. For exanple, if the
student initiative is | don't understand about SV, then the
i nput understander returns the logical form (question

(explain SV)). Then the planner suspends the current plan and
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carries out the student's request. This process needs to be
studied in detail in order to understand what the student
really wants. We are still investigating it by analyzing
transcripts, and it may require a richer know edge structure,
like that used in the UNI X Consultant [W]Iensky et al.,
1988] .

3.4 Student Model er

The student nodeler is responsible for representing the
student's understandi ng of the subject by building a student
nodel [VanLehn, 1988]. The student nodel is a data structure
that represents the student's current state of know edge;
what the student knows, what the student does not know, and
what m sconceptions he or she nmay have. Based on this
information, the tutor can give individualized instruction to
the student. There are two nmmjor approaches for student
nodel i ng. One approach, the overlay nodel [Carr and
Gol dstein, 1977], is designed to represent the student's
knowl edge state as a subset of an expert's know edge state.
Anot her approach, the buggy nodel [Brown and Burton 1978],
represents the student's m sconceptions not as subsets of the
expert's know edge, but as variants of the expert's
know edge. In ClIRCSI M TUTOR, the student nodel er integrates
overlay and buggy strategies into one [Shim et al., 1991,

Shim 1991].
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In Cl RCSI M TUTOR, the student nodel er begi ns anal yzi ng
the student's entries in the Prediction Table. Based on this
anal ysis, the planner generates a | esson plan and the natura
| anguage tutoring session begins to correct the student's
m sconceptions. During the tutoring session, the planner
sends the student's answer to the nodeler and the nodeler
analyzes it and returns the result. Based on this
information, the planner can decide what to do next.
Currently only the overlay information is used for choosing

the next tutoring strategy.

3.5 Instructional Pl anner

The instructional planner is responsible for determ ning
what to do next at each point during a tutoring session. The
pl anner also performs the system controller function. It
interacts with the input understander, the text generator
the student nodeler, and the screen manager, in order to
carry out tutorial activities. Although the design of the
pl anner may vary dependi ng on the purpose of the ITS, severa
researchers have recently proposed conbining opportunistic
control with a plan-based approach [Derry et al., 1988,;
Murray, 1990; Macmllan et al. 1987]. For instance, Mirray
[ 1990] suggests that the way to provide opportunistic contro
with global Ilesson plans is to inplement a dynamc
i nstructional planner. For CIRCSIMTUTOR, the planner needs
to generate the global I|esson plan and take care of the

di scourse control as well [Wo et al., 1991a]. Since this is
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the main topic of ny research, it will be discussed in detai

in the later chapters.

3.6 Text Cenerator

The text generator is responsible for turning the
tutor's output into a natural |anguage sentence. It receives
necessary information as a logical formfromthe planner and
generates a natural |anguage sentence or sequence of
sentences [Zhang, 1990]. This information includes the
current topic and text styles: question, hint, answer, etc.
For exanple, the text generator is given a logic form from
t he planner, (question (affected-by SV ?)), then it produces
the English sentence, "Wat are the determ nants of SV?" The
text generator can handle this kind of sinple question,
expl anation, or acknow edgenent. But giving a hint my
require nore deep know edge information, either from the
pl anner, student nodel er, know edge base, or from the input
under stander. The current version of the text generator only
recei ves the necessary information fromthe planner, not from
all the other nodules, so that its behavior is sonmewhat

passi ve.

3.7 Screen Manhager

The screen manager takes care of the interaction between

the student and the system The interaction is closely
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controlled by the planner; the planner tells the screen
manager what to display, and the screen manager sends back
the student's input to the planner. Thus, every interaction
passes through the planner. The screen nanager nay display

its own nessages, such as hel p messages or warning nmessages.

First, the screen manager displays system nmessages
t hrough the introductory wi ndows. Then it displays the |ist
of procedures that the student can select. Wen the student
selects the problem it displays the prediction table with
instructions about how to use the mouse and how to make
entries into the table. Then it receives qualitative answers,
(+, -, 0), fromthe prediction table one by one from the
clicking of the nouse and passes themto the planner. Wen
t he student clicks outside the boundary, for exanple, if the
student clicks on the wong colum during Predictions Table
entry, the screen manager displays a warning nessage with a
beep. It also handles two ot her w ndows, the student w ndow
and the tutor wi ndow. From the student w ndow, it receives
the student's natural |anguage input in English sentences. In
the tutor window, it displays natural |anguage sentences

created and passed to it fromthe text generator.

3.8 Sunmary

This chapter began with a description of the basic ITS

conponents; a domain expertise nodule, a student nodeler, a
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tutoring nodule, and a communication nodule. It continued
with a discussion of ways to apply Artificial Intelligence
techni ques to each conponent of the systemto inprove its
performance. Then the chapter introduced the seven subnodul es
of CIRCSI M TUTOR; explained the functions, data structures,
interactions, and the current devel opnment situation for each
subnodul e. During future devel opnment of the system the basic
structure of the system may remain the sane, but the
functions of the each nodul e can be nodified or extended with
di fferent approaches. Figure 5 shows the overall structure of

t he system
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CHAPTER | V
SURVEY OF PLANNI NG I N TUTORI NG SYSTEMS

Pl anning is an approach to problemsolving that creates
a sequence of actions (i.e., a plan) to achieve a goal. If
the input to the planning systemis a problem specified with
its initial state, goal state, and a set of actions, then the
output to the systemis a plan that satisfies the goal
(Figure 7). Early research on planning focused on the
physi cal actions of robots [Fikes and N |sson, 1971; Sussman,
1975; Tate, 1975], in which planning and execution are
separated. Recent planning systens try to extend the earlier
cl assical planning systens, by integrating planning and
execution, so that they can nonitor the execution of a plan

and revise the plan when it is necessary.

The application of planning techniques in the domain of
instruction, instructional planning, becones a major issue in
an | TS [Wol f, 1984; Russell, 1988; Macnmillan et al., 1988].
It functions as a control nechanismthat decides what to do
next by creating a sequence of instructions; determ ning what
topi cs should be introduced, reviewed, explained, etc. This
control nmechanismis the central conponent of the ITS, an
instructional planner, and alternative control strategies are

the basis of different tutorial approaches. By decidi ng what
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to do next, the planner is controlling the systenis

interaction with the student.

Initial State
Speci ficati on —¥

Sequence of

Goal State PLANNER —» Qper at or/ Acti on

Speci ficati on —

Qperator/Action —p

Figure 7. Planning System

4.1 Approaches to Pl anning

4.1.1 dassical Planning. Many real -world probl ens may

be explored by the planning system robot control, automatic
programm ng, experinment design in nmolecular genetics,
aircraft carrier mssion planning, and natural |anguage
generation. The early research on planning focused on the
physi cal actions of robots. In this planning system an
initial plan was generated, criticized, and then patched

before any of the actions were carried out (Figure 8).
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Initial State
Speci fication —®

Sequence )
Planner | p Execution [ —p
Coal State —»
Speci fi cation of Pl an

Qperator/ —p
Action

Figure 8. Oganization of a dassical Planning System

This arbitrary ordering of steps in the plan nmay cause
sone problenms during execution. In the exanple shown in
Figure 9, the initial goal is divided into two actions (i.e.
subgoal s) arbitrarily, before execution. Eventually the
initial ordering of actions will fail in this planning
system because of the protection violation rule for the
first action (i.e., subgoal conflicts). Thus, the planner has
to backtrack, reorder the subgoals, and execute themagain to
achieve a goal. The early planning systens, HACKER [ Sussnhan,
1975], and | NTERPLAN [ Tate, 1975], applied a heuristic called
the |inear assunption, which states that one ordering of
actions is as good as any other and fixes the interactions
when they arise. However, this kind of create and debug
strat egy causes backtracki ng, which can be very expensive.
Successful ordering can involve a conbinatorial explosion if

there is a huge nunber of possible orderings.

The early planning systens are <classified as

nonhi erar chi cal planning systens or |inear planning systens,
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since they assune linearity in solving problens. Hi erarchica

pl anni ng or nonlinear (partial-order) planning systens arose
out of dissatisfaction with these |inear systens.
Hi erarchical systenms do not commit to an arbitrary order

i nstead they postpone the commtnent until the order can be
executed. The difference between hierarchical and
nonhi erarchical planning will be explained in detail in the

next section.

Initial Coal: (ACHIEVE (ON A B)) (ACHEVE (ON B Q)

C A
Initial Status: |A B Coal Status: |B
C

ACH EVE (ON A B)
(CLEAR A) 1. |c A B

PUTON (AB) 2. [c] B

ACH EVE (ON B ©)
(CLEAR B) 3. A B C

** Protection violation: REORDER (backtracki ng)

(ACH EVE (ON B C)) (ACH EVE (ON A B))

Figure 9. |INTERPLAN [Tate, 1975] Backtracki ng Probl em

4.1.2 H erarchical vs. Nonhierarchical Planning.

Hi erarchi cal planning canme out of dissatisfaction with
nonhi erarchi cal planning such as that done by STRIPS [ Fikes
and N | sson, 1971] and HACKER [ Sussnan, 1975]. Hi erarchica

pl anning is concerned with the relation between tasks and
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subt asks [Charniak and MDernott, 1986]. The planner can
decide to performa task A and later decide to carry out A
by performng its subtasks. It generates a hierarchical
representation of a plan, in which the highest level is a
simplification or abstraction of the plan and the Iowest is a
detailed plan, sufficient to solve the problem
Nonhi erarchi cal planning has only one representation of a
pl an. A mgjor disadvantage of nonhierarchical planning is
that it does not distinguish between problemsolving actions
that are critical to the success of a plan and those that are
sinply details. Thus, it needs to backtrack when an action
fails. The advantage of a hierarchical planning systemis
that the plan is first devel oped at a higher |evel and the
details are developed later; this prevents devel opnent of

unnecessary plans in advance.

A wel |l -known exanple is the conparison of STRIPS and
ABSTRI PS [ Sacerdoti, 1974] in the same coffee domain by Cohen
and Fei genbaum [ 1982a]; the goal is to drink coffee with two
subgoal actions of buying coffee and naking coffee. In this
exanpl e, ABSTRIPS, an extension of STRIPS, solves the problem
wi th nuch | ess searching and backtracki ng than STRIPS. STRI PS
generated many steps that were not necessary to solve the
probl em on the other hand, ABSTRIPS uses a strategy that
separates the subgoals into levels of priority, with the
abstract and general subgoals being devel oped first and

detail ed | evel s devel oped later. ABSTRIPS finds a solution at
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the nost abstract |evel and does |ess backtracking than
STRIPS. This exanple shows the efficiency of hierarchical

pl anni ng over nonhi erarchical planning.

NOAH [ Sacerdoti, 1977] is a hierarchical planning
system which uses a [east-commtnent strategy that involves
partial -ordering of problemsolving operators by considering
their preconditions. MOLGEN [ Stefik, 1981] and NONLIN [ Tate,
1977] are based on NOAH but use other nethods for deciding

what to post pone.

4.1.3 Recent Planning Systens. Mst of the classical

pl anni ng systens assune that the planner possesses conplete
i nformati on about the problem and the generated plans w |
be carried out successfully (i.e., plan and execution are
separated). But there is no guarantee that the execution wll
al ways be successful. Hence, this approach needs to be
changed when separate execution cannot be guaranteed to
succeed. Recently, a nunber of researchers have been working

on this problem[Hendl er et al., 1990].

More recent planning systens have extended cl assical
pl anni ng approaches by integrating planning and execution
(Figure 10): Opportunistic Planning [Hayes-Roth, 1985],
I ncrenental Planning [Durfee and Lesser, 1986], Repl anning
[WIkins, 1988], and Case-Based Pl anning [Hanmond, 1989].

Most of these ideas were originally discussed on a
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theoretical level, but the concepts can be generalized and
applied to instructional pl anning systens, since
i nstructional planning involves a conplex interleaving of a
plan and its execution. An instructional planner has to be
dynam ¢ because during instruction, the student's cognitive
status changes dynamically. It nust be able to replan because

the plan may need to be revised during instruction.

Pl anner

Changi n
V%r|3 g Partial Plan

Execution |q—

Figure 10. Organi zation of a Dynam c Pl anni ng System

4.1.4 Replanning. In real-world domains, |ike control of

robot actions, things do not always proceed as planned. Thus,
it is necessary to nonitor the results of current plan
execution to the expected results at each step. Plan revision
is necessary when new information invalidates the old plan
[WIkins, 1988; Swartout, 1988]. However, finding an opti nal
plan, in order to revise the old plan, may take time and
effort. Thus, there is always a trade-off between speed and
optimality. If time is crucial, it may be better to replan

than to revise the old plan.
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Plan nonitoring can be done by inserting nonitoring
steps in the plan, which nust have a nodel of what the plan
noni tor can detect. This plan nonitor generates the necessary
monitoring information, and the planner checks this
information after every step. This plan nonitoring step acts

i ke a student nodel in instructional planning.

4.2 Approaches to Instructional Planning

Any | TS nmust have a mechani smfor determ ning what to do
next in the tutoring session. This instructional planning
conmponent deci des what subject material to focus on next, how
to deliver the selected topic, and when to interrupt the
student's problemsol ving. These pedagogi cal decisions were
hard-coded in early CAl systens, which nmade the systens hard
to nodify and hard to adapt to other domains. In this regard,
the ideal system needs to represent this pedagogi cal
knowl edge explicitly as a form of rules or simlar
structures, so that it is expressed declaratively and
interpreted into actual decisions automatically, whenever it

is referenced.

Conceptual |y, these pedagogi cal decisions can be divided
into two different |levels [Wnger, 1987]: a global |evel and
a local level. dobal |evel decisions affect the sequences of
subject matter being taught. Based on the information from
the student nodel, the system is capable of providing

different instructional content to different students
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(adaptive instruction). Know edge about when to interrupt the
student's problem solving, what to say and how to say it,

bel ongs to the | ocal |evel decision naking process.

Maki ng such decisions is very conplex, since the order
of instruction and the method of communicating with the
student may produce different |earning experiences [Cohen and
Fei genbaum 1982b; Wenger, 1987]. Successful |earning nmay
depend on many factors, but the first priority is that it
shoul d not destroy the interest of the student. Thus, it is
inportant to determ ne the degrees of control over the
i nteraction between the system and the student. For exanpl e,
in a mxed-initiative strategy, the system and the student
share the control and in a Coaching system the student is in

full control of the activity.

4.2.1 Teaching Strategies. Mst existing | TSs base their

teaching strategies on a diagnostic nethod, in which the
tutor tries to estinmate the student's know edge by asking
guestions and evaluating his responses. From the tutor's
f eedback (by explanation or answer), the student is expected
to |l earn about his mstakes. BUGGY [Burton and Brown, 1982]

used this nethod.

Anot her method is the Socratic nethod. In the Socratic
nmet hod, as in SCHOLAR [ Carbonell, 1970] and WHY [ Stevens et

al ., 1977], the tutor provides an environnent and encourages
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the students to debug his own m sconceptions (that is, the
tutor does not teach a subject directly, but asks questions
in away that will encourage the student to reason about what
he knows and what he does not know, to find the

contradictions, and thereby to nodify his m sconceptions).

Anot her approach is the Coaching nethod, as in SOPH E
[Brown et al., 1982], WUMPUS [Carr and Col dstein, 1977], and
WEST [Burton and Brown, 1982]. The Coach watches the
student's behavior and does not interfere constantly.
| nst ead, when the student asks for help, the Coach interrupts
the process and gives an inportant |esson. The goal of the
Coaching nethod is to encourage students in skill acquisition
and problemsolving abilities |like a conmputer game. The basic

phi | osophy of the Coaching nmethod is [earning by doing.

The early |ITSs explored the representation of these
tutoring strategies explicitly, which led to the devel opnent
of instructional planning. GUI DON [Clancey, 1982] uses
Production Rules to represent its tutorial strategies. These
early ITSs, WUSOR [d odstein, 1977], VEST [Burton and Brown,
1982], and GQUIDON, are the first to explicitly represent the
di scourse know edge as rules, including rules for introducing
a topic, asking a question, etc. However, the disadvantage is
that if the domain is conplex, a large nunmber of rules are

required. They al so | ack a gl obal context.
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More recent |TSs turned their research toward an
explicit control mechanism such as determ ning what to do
next. Anong a nunber of researchers, Wolf [1984] organized
the discourse procedures of GU DON into a discourse
managenent network in her system (MENO TUTOR). In this system
the control mechanism and hierarchical representation of
tutorial discourse strategies are represented explicitly in

t he net wor k

4.2.2 Plan-Based vs. Opportunistic Control. The |ITS has

goals for the student to achieve. Goals can be achi eved by
pl anning instructional activities (i.e., plan-based control),
or by recognizing diagnostic opportunities from the

interaction with the student (i.e., opportunistic control).

In recent systens the opportunistic control approach has
been dom nant over the plan-based approach. Opportunistic
contr ol uses diagnostic information to recognize
opportunities for intervention, to introduce new naterial or
remedi ate a m sconception during the tutoring session. It is
good for coaching in learning environments or guiding
probl em solving activities (e.g., WEST or GUI DON). The
di sadvantage is that it provides very little control over the
organi zation of tutoring sessions. On the other hand, the
pl an- based approach uses diagnostic information to nonitor
t he progress and appropriateness of the current instructiona

plan. It provides a well-organized hierarchical structure,
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but the student's behavior tends to be |less inportant. For

exanpl e, student requests are ignored or not possible.

Wenger [1987, p. 400] argues that goals are best
achi eved by an appropriate conbination of both control
styles. Also studies of human tutors show a conplex
interleaving of these two styles [Leinhardt and G eeno
1986]. Ideally, the design of the planner conbines the plan-
based and the opportunistic control approaches [Wnger, 1987,

Derry et al., 1988; Mirray, 1990].

4.3 Review of |ITSs

I nstructional planning began fromthe early 1960's as
human- aut hored planning in a CAl system As CAl evolved
toward ITS, instructional planning has been approached in a
nunber of different ways. The traditional CAl systens do not
generate plans at all. Instead they follow a single
conditional plan designed by the author. Although the
deci sions were made dynam cally, plans were prespecified and
fi xed. These systens are well-organi zed and notivating, but
they are inflexible and expensive to build, and the design is

heavi |l y dependent on the skill of the human aut hor.

More recent approaches to instructional planning have
expl ored ways to overcone the limtations, such as the high
cost, the inability to generate plans, the |ack of gl obal

context for planning of the earlier planners. For exanple,
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MENO- TUTOR i s a sophisticated discourse planning systemwth
explicit control nmechanism and di scourse strategies. COACH
[Wnkels et al., 1988] is an intelligent help systemwth the
capability of handling |ocal user needs opportunistically.

TAPS, a pl an-based opportunistic planning system [Derry et
al ., 1988], is the first systemto raise the issue of the
curriculum planning in an |ITS and integrate curriculum
pl anning with the discourse planning paradigm A content
pl anni ng system [Brecht et al., 1989], which is based on the
SCENT system [MCalla et al., 1988], enphasizes the
i mportance of content planning over discourse planning. SIIP
[ Macmi Il an and Sleeman, 1987] is a generic instructiona

pl anning architecture to support a dynam c instructiona

pl anni ng capability. A BBl-based dynam c instructional

pl anni ng system [Murray, 1990] is a first step towards a
dynam c instructional planner that can generate, nonitor, and
revise plans during the instructional sessions. SIIP and a
BB1- based Dynam c Instructional Planner used a bl ackboard
architecture for building their system The system requires
two blackboards: a domain blackboard and a contro

bl ackboard. A donai n bl ackboard contains the | esson plan, and
a control blackboard provides a control nechanism that
deci des how to construct and nodify the lesson plan. It is
capabl e of gl obal context planning; it can plan, replan, and

nodi fy the plan
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In the next section, | will describe three well-known
| TSs with different planning paradigns that | considered in
bui I ding ny planner. The contributions and the limtations

are di scussed.

4.3.1 MENO-TUTOR. MENO TUTOR [Wbol f, 1984] uses a

di scourse nmanagenment network (DWMN) to control a Socratic
guestion and answer dialogue with a student by teachi ng new
information or correcting m sconceptions. Discourse planning
in the DWN uses two nechanisns: a planning nodule and a
| anguage generator. The planni ng nodul e makes deci si ons about
what di scourse actions to nake and what information to convey
or query. The |anguage generator produces natural |anguage
out put using tenplates. My concern is the planning nodul e of

t he system

The planning nodule contains a nulti-Ilevel planner,
tutoring states, and a know edge base. The nulti-Ilevel
pl anner consists of three levels: the pedagogical, strategic,
and tactical l|evels. The pedagogical |evel establishes an
expository style of tutoring, for instance, introduce a new
topic or tutor a msconception. It is further refined into a
strategic level that determ nes the style of discourse, such
as, question the student or describe the concept. The node at
the strategic level is refined down to the tactical |evel to
i mpl ement the strategy. The tactical states determ ne the

form and content of the utterance. The control nechani sm of
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MENO- TUTOR consi sts of two phases: a default transition and
neta-rule transitions. The default transitions are preplanned

and are overridden by nmeta-rule transitions.

A. Contributions. First, MENO TUTOR is an attenpt

at a generic tutor; it has been applied to reasoni ng about
rai nfall and about | ooping constructs in the PASCAL | anguage.
Second, it attenpts to capture the discourse strategies
observed in human tutors. Finally, this system supports
Cont ext - Dependent tutoring; output is different in different

cont exts.

B. Limtations. MENO TUTOR | acks a | esson pl anni ng

ability, so that it cannot generate custom zed, and gl obally
coherent instruction. It is only concerned with planning the
delivery of an already chosen topic. And there is no explicit

nmechani smto sel ect the topic.

4.3.2 | DE- | NTERPRETER. | DE- | NTERPRETER [ Russel |, 1988]

is a planner-based adaptive tutoring system that allows
explicit representation of strategy, and shows the
consequences of the strategy by synthesizing and delivering
instruction accordingly. |DE-INTERPRETER delivers instruction
for IDE [Russell et al., 1988]. The planner interprets a set
of rules to expand instructional goals into subgoals. The
pl anni ng approach is top-down plan expansion, in such a way

that explicit plan representation is increnentally refined by
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applying rules. During each cycle of execution, it selects
and executes an instructional wunit (11U as a primtive
action. Student interaction with the IU is recorded and
anal yzed to update the student nodel. Then the planner uses
t he student nodel to nodify the plan, constantly updating its

pl ans to achi eve the goal s.

A. Tutoring Rules. There are three sets of rules,

strategic, pedagogic, and tactical rules. Each of the rules
represents tutoring know edge. A strategic rule represents
shifting instructional strategy, nerging simlar goals into
one, controlling when and how to renedi ate. Pedagogic rul es
represent domain-specific tutorial information, for exanple,
to teach definitions, first define the process, then the
conmponents. Tactical rules represent nethods of presenting
particular material (e.g., choose an IU that hasn't been used

bef ore).

B. Contributions. First, an explicit plan

representation is refined by the rules, which enables
custom zed instruction. The plan is represented as a tree
that is refined top-down. Second, the use of rules, explicit
pl an representation, and an agenda control provides a dynamc
instructional planning environnent. Finally, it supports
incremental planning since it does not select an IU before it

begi ns executi on.
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C. Limtations. |DE-INTERPRETER enphasi zes | esson

pl anni ng over discourse planning since discourse actions are
procedurally encoded in the IU and not reasoned by the
planner, with the result that it cannot handle student
requests between goals; it cannot nmke adjustnents even if

the student's performance is too | ow

4.3.3 UNL X CONSULTANT (UC). UN X CONSULTANT [ W I ensky et

al., 1988] is an intelligent, natural |anguage interface that
hel ps naive users to |earn about the UNI X system It consists
of the follow ng conponents: a | anguage anal yzer (ALANA), a
goal analyzer (PAGAN), a domain planner (KIP), an expression
mechani sm (UCExpress), a |anguage production nechanism
(UCgen), a user's know edge nodel (KNOME), a know edge
acqui sition mechanism (UCTeacher), and a know edge
representation system (KODIAK). M interest is in the

pl anni ng conponent (KIP) of the system

KIP is a domain planner. It is given a task from a
controller (UCEgo) and determ nes how to acconplish the
user's goal based on know edge of the user and know edge of
UNI X. It returns a plan, represented in KODI AK. Anot her
pl anner, UCEgo, reacts to the user's request by form ng goals
and acting on them It also acts as a controller for the

whol e system The followi ng are exanpl es generated by UC
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A. Sinple Exanples. The first student is diagnosed

as a novice user, so UC provides an answer with an exanple.
The second student is a sophisticated user, so the UC answers

wi t hout an exanpl e.

Student 1: How can | delete a file ?

UC. Use rm For exanple, to delete the file
naned foo, type 'rmfoo

Student 2: How can | find out the inode of a file?

uc. Use Is -i.

B. More Conpl ex Exanples. Underlying goals are not

addressed by a short answer. UC attenpts to answer them using

an ext ended answer.

Student: |Is rn used to renane files?

uc. No, rnis used to read news. To renane a file
to another file, use nv. For exanple, to renane
file named foo to the file naned fool,

type 'nv foo fool'.

C. Contributions. UC addresses nany Al research

i ssues in planning, reasoning, natural |anguage processing,
and know edge representation. It is an attenpt to sinulate a
human consultant. And it has a very rich know edge

representation system ( KODI AK) .
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D. Limtations. For efficiency, UC s control

structure is overly sinplistic; the planner does not do nuch
wor k. The planner sinply ends up retrieving the stored pl an,
maki ng an instance of it, and passing it on. Since UCis a
help facility, it is not capable of handling every task put
to it to serve a useful function; it nmay discourage the

student when UC cannot process a request correctly.

4.4 Sunnmary

This chapter began with brief introduction to Al
pl anning systenms, including both classical and recent
approaches. It continued with a discussion of the application
of planning techniques in the domain of instruction,
instructional planning, which is a control nechanism that
decides what to do next by creating a sequence of
instructions. Then the chapter discussed sone design issues
for building the instructional planner, and concluded with a
review of well-known ITSs with different planning paradi gns,

contributions and limtations of the systens.
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CHAPTER V
PLANNI NG | NSTRUCTI ON

The instructional planner is the central conponent of
the ITS, it is responsible for selecting or generating
instructional goals, deciding how to teach the selected
goals, monitoring and critiquing the student's behavior, and
determ ning what to do next at each point during a tutoring
session. That is, the planner makes two different types of
i nportant decisions during the tutoring session, decisions
about the content of the |esson and decisions about its
presentation strategy. Although the early 1TSs |argely
focused on the delivery strategy of the planner, sonme recent
pl anni ng research shows the integration of both aspects in
buil ding the planner [Macmllan et al., 1988; Derry et al.,
1988; Murray, 1990].

The pl anni ng conponent of ClIRCSI M TUTOR nust carry out
both functions, since it needs to provide a global |esson
plan, and it needs to carry on a natural |anguage exchange
with the student. For this reason, | devel oped the planner in
two parts: a lesson planner and a discourse planner. This
chapter discusses general design issues of the planner with
the goal of providing nost effective instruction to the
student, a sanple dial ogue extracted fromthe transcript of

an actual human tutor-student interaction and a scenario



52

i npl enenting that dial ogue, and a description of the overal

organi zation of the planner.

5.1 Design |ssues

5.1.1 Capabilities of the Planner. Mst machine planning

systens, |ike STRIPS, HACKER, and NOAH, deal with the
observabl e physical world, whereas instructional planning
systems deal w th unpredictable dynam c changes in the
student's know edge. The student's current |earning status
can never be observed directly. It can be only guessed; the
results of this guesswork are stored in the form of the
student nodel [VanLehn, 1988]. Thus, the instructional
pl anner nust possess unique capabilities for handling

unpredi ctabl e situations as an expert human tutor does.

The planner must plan at different |evels of the
hi erarchy; a hierarchical planning technique can reduce the
conplexity of the planning process. The plan is first
devel oped at a higher level and the details are devel oped
later; this technique prevents devel opnent of unnecessary
pl ans in advance. The planner nust plan at a g/ obal |evel;
when the planner generates the next instruction, it nust
consi der the past plan and the student's responses to provide
continuity of instruction. The planner nust repl/an when the
current plan fails or a request is made by the student. The

pl anner should be able to nonitor the plan to identify the
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need for replanning. The planner of ClRCSIM TUTOR provides

all these capabilities.

5.1.2 Levels of Planning. Research by Leinhardt and

Greeno [1986, cited in Derry et al., 1988] has shown that
experi enced teachers employ levels of planning in
acconplishing their goals; planning instructional goals
occurs at the nmost global I|evel, planning actions and
deci si on-maki ng occur at a less global level. Inspired by
this research, Derry et al. [1988] designed their TAPS system
with three levels of instructional activity: curriculum
planning (the agenda), |esson planning (instructional
actions), and on-line tutorial intervention. Mirray [1988]
al so distinguished three levels of instructional planning;
curriculum pl anni ng (planning a sequence of |essons), |esson
pl anni ng (determ ning the subject nmatter in a single | esson),
and discourse planning (planning comrunicative actions
between the tutor and the student). He argues that at | east
two |evels of planning, |esson planning and discourse
pl anni ng, nmust exist in an TS to deliver nore effective and
flexible instruction, although these three |evels cannot be
cl eanly separated and often the curriculum planning and the
| esson planning interwine, as well as the |Iesson planning and

t he di scourse pl anni ng.

Cl RCSI M TUTOR is capable of both |esson planning and

di scourse planning. It can be set up so that the student can
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select a problemfroma |ist of seven experinmental procedures
or it can do conplex curriculum planning. The nunber and
types of procedures will be extended further in future

versions of the system

5.1.3 M xed-initiative Strategy. Carbonell [1970]

presented a m xed-initiative paradigmin SCHOLAR, where both
the tutor and the student can initiate conversation by asking
guestions. This strategy best fits conceptual or procedural
| earni ng tasks [Kearsley, 1987]. SOPH E [Brown et al., 1982]
is an another systemthat used this strategy. The foll ow ng
di al ogue shows a part of an interaction in SCHOLAR that

illustrates a mxed-initiative form

Tutor> What is the | anguage of Argentina?

St udent > Probably Spani sh

Tutor>  Very good. Approximately what is the area of
Argentina?

St udent > Tel | ne sonet hi ng about Peru.

Fromthe last line of the dialogue, we can see that the
student is taking the initiative, rather than answering the
guestion to the tutor. Human tutors allow the student to ask
a question during the tutoring session, but responding to
student initiatives increases systemconplexity a great deal
because it is hard to satisfy unexpected student questions

and decide what to do in all circunstances. Cl RCSI M TUTOR i s
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aimng to adapt this mxed-initiative strategy. At the
present, we are analyzing student initiatives in transcripts
of human tutoring sessions and inplenenting responses to a

coupl e of sinple and frequent types of student initiative.

5.2 Scenario

5.2.1 A Sanple Tutoring Session. W have recorded a

nunmber of tutoring sessions with our experts, Joel M chael
and Allen Rovick, who are Professors of Physiology at Rush
Medi cal College, and sone of their first year nedical
students. After careful studies of the recorded transcripts,
we extracted some possible tutorial strategies and tactics
that provided us with the framework for building the
i nstructional planner and the overall system It is assuned
t hat students have already |earned nuch of the donmain
knowl edge, hence the systemw |l nainly assist the students
to correct their msconceptions and to solve problens. Qur

current system can handl e di al ogues |ike the foll ow ng.

Exanpl e 1:

Tutor> Wiat are the determ nants of SV?

Student> SV is determ ned by RAP and CO

Tutor> RAP is correct, but COis not a determ nant of
SV. Renenber. SV is the anmount of bl ood punped

per beat. What is the other determ nant of SV?
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One inportant point about the above tutor-student
interaction is the content of the questions posed by the
tutor. For exanple, on the first line of the excerpt, the
tutor is asking the student about the determ nants of stroke
vol unme. Asking a question about determ nants is the first
part of the plan that the tutor is using to teach the student
about the causal rel ationshi ps between two variabl es, RAP and
SV. Thus the content of the question has to be generated by
the | esson planner before the tutoring begins. Another
i nportant aspect is howto present the selected topic. From
t he above short excerpt, we can see four different kinds of
delivery nodes: a direct question (line 1), positive and
negative acknow edgenents (line 3), hints (line 4), and
foll ow up questions after hints (line 5). Thus, the planner
(di scourse planner) needs to plan how to present the sel ected

content to the student effectively.

Exanpl e 2:

Tutor> By what nmechanismis TPR controll ed?

St udent > Nervous System

Tutor> Correct, TPR is controlled by the nervous
system Then what is the correct prediction of
TPR?

St udent > No change.

Exanple 2 is an another tutoring situation that focusses

on one of the neurally controlled variables, TPR The tutor
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first asks the student about its control mechanismin line 1.
This control nechanismis the first strategy to teach the
student about the neurally controlled variables. Since the
student answered correctly, the tutor gives a positive
acknow edgenent and then uses its second strategy, asking for
a prediction, in line 4. W have extracted this kind of
tutoring strategy fromthe transcripts and designed explicit

| esson pl anni ng rul es.

From t he above exanples of tutor-student interaction,
we can distinguish between the subject matter and its
presentation formats. Ohlsson [1986, p. 217] argues that an
effective ITS should be able to generate different
presentations of each piece of subject matter in order to
provi de adaptive instruction to the student. The content of
t he questions posed by the tutor and its delivery nodes | ead
to the devel opnment of two different kinds of instructiona
pl anni ng, | esson planning and di scourse planni ng, because the
subject to be taught has to be generated adaptively, and al so

its presentation formcan vary according to the situation

5.2.2 Inplenentation of the Scenario. | am building an

i nstructional planner based on observations of expert human
tutors like those shown above. For exanple, assune that the
current lesson goal is to tutor the causal relationships
bet ween two paraneters, RAP and SV. This goal gets refined

into a set of hierarchical subgoals by using strategic and
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tactical rules. The subgoal s generated at the tactical |evel
such as determ nants, actual determ nant, relation, and
val ue, are kept in a stack, which is used by the discourse

pl anner to pick the next topic.

The foll owi ng scenari o descri bes what each conponent of
t he system does, what kind of information it needs, and what
is the result after each step. The steps are nunbered to show
the execution sequence. This tutorial interaction begins
after the lesson planning is done. So that the discourse
pl anner begins with the first topic in the stack, the
determ nants, and when that topic is conpleted, continues

with the next topic, the actual determ nant, and so on

1. Planner: Picks the current topic fromthe stack,
sel ects the discourse tactic, and passes it to the

text generator as an internal |ogical form

current topic: (determ nant SV),
di scourse tactic: question.

call Text Generator: (question (determ nant SV))

2. Text Cenerator: Cenerates a sentence,

"What are the determ nants of SVv?"

3. Screen Manager: Displays the sentence in the w ndow.

4. STUDENT: "SVis determned by RAP and CO "
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5. Planner: Passes the student's input with the current

| esson topic to the input understander.

(question (determ nant SV)

(SV is determ ned by RAP and CO)

6. I nput Understander: Parses the student's answer,
checks its coherence with the dialog history, and

returns the answer to the planner in logic form

call planner: (answer ((determ nant SV)(RAP CO)))

7. Planner: Passes the current topic and student answer

to the the student nodeler in logic form

current topic: (determ nant SV)
student answer: (RAP, O,
call Student Modeler: ((determnant SV) (RAP, CO)

8. Student Modeler: Calls the problemsolver, gets the
correct answer: (RAP, CC), conpares the correct
answer with the student answer, and updates the

st udent nodel .

In step 1, the discourse planner picks the topic,
determ nant SV fromthe subgoal stack, selects the discourse

tactic, question, binds these two together into a | ogical
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form (question (determ nant SV)), which is passed to the text
generator to generate a natural |anguage sentence. After
receiving the logical form from the planner, the text
generator generates a sentence like the one in step 2. In step
3, the screen manager displays the sentence on the student
wi ndow, and the student responds with the answer in step 4. So

the current dial ogue is:

Tut or > What are the determ nants of SV?

St udent > RAP and CO

In step 5, the planner passes the student's input along
with the current topic. The input understander has to
recogni ze the student's answer; parse the answer, check its
coherence with the dial ogue history, and return the answer to
the planner in its logical form Then the planner sends the
current topic with the student's answer to the student
nodel er in step 7. Finally, the student nodel er anal yzes the
student's answer, and records the result in the student
nodel . The next step will start with the planner checking the
student nodel, and then deciding what to do. Since one of the
student's answers is wong, the planner consults its tutoring

rul es and deci des to give sone acknow edgenent first:

Tutor> RAP is correct, but COis not a determ nant of

SV.
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At this point the tutor has two choices, either give a
hint or just give an answer and continue with the next topic.
Since this is the first trial, the tutor decides to "give a
hint" and then ask a question to conplete the previous

answer. So a possi bl e response woul d be:

Tut or> Renenber. SV is the anmount of bl ood punped per

beat. What is the other determ nant of SV?

A different tutoring rule will be applied if the student
again nakes an error after receiving a hint; the student wll
be given a direct answer for the second question. Qur current
tutoring rules vary according to the topic and the student's
responses (i.e., the tutor gives different responses in
different situations). The question nay be about neura
vari abl es or causal relationships; in each case the tutoring
rules are different. Also we have different rules for each

stage, DR, RR and SS.

5.3 O gani zation of the Instructional Planner

The instructional planner of CIRCSIM TUTOR consists of
two parts (Figure 11); the |esson planner and the discourse
pl anner. The plan controller nonitors the execution of the
current plan. The planner can be thought of as a small expert
system which consists of two main parts: a know edge base
and an inference engi ne [Harnon, 1987]. Thus, | designed the

| esson planner to consist of three sets of |esson planning
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rules, and an inference engine. Also the discourse planner
consists of four sets of discourse planning rules and an
inference mechanism (discourse network). This section
i ntroduces the organi zation and the main features of the

i nstructional planner briefly.

5.3.1 Lesson Planning. Lesson planning determ nes the
content and sequence of the subject natter to be taught in a
single lesson [Murray, 1988; Brecht, 1989; Russell, 1988].
The | esson planning in Cl RCSI M TUTOR consi sts of two phases:
goal generation and plan generation. The generation of the
| esson goals is guided by a set of explicit domai n-dependent
heuristics (goal generation rules), and the | esson plans are
determ ned by applying two set of rules, rules for selecting
strategies and rules for selecting tactics. As a result the
| esson planner does hierarchical |esson planning with its
three sets of rules; at the topnost level it generates |esson
goals, and then it expands one of the goals into a set of

subgoal s (a plan) at the next |evel.

The generated goals will be saved in the goal stack and
t he subgoals in the subgoal stack. The |esson planner nust
update the goals dynamically as the student nodel changes.
The details of the | esson planning process will be expl ai ned

in Chapter 6.
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5.3.2 Discourse Planning. D scourse planning is a

mechani sm for planning conmmunicative actions between the
tutor and the student within a | esson [Wol f, 1984; Wnkel et
al., 1988]. CIRCSI M TUTOR comuni cates with the student in
natural |anguage. Thus, the discourse planner nust interact
with the student nodeler, the screen manager, the input
under stander, and the text generator using a flexible control
mechani sm This control nechanismresides in its discourse

net wor k.

The network consists of two |levels; the top |level of the
networ k specifies pedagogi c decisions and the |ower |evel
consi sts of a set of discourse tactical states, the
execution of which causes text generation, student nodel
updates, and noves to the other states. It represents the
di scourse planning rules and the control mechanism in
explicit form The rules include all the necessary
information to carry out the discourse with the student, and
the control nmechanismis also specified within the rules; two
sets of default rules nanage the fixed control flow, and two
sets of neta rules handle dynam c control flow The discourse

planning will be explained in detail in Chapter 7.

5.3.3 Plan Monitoring. Al research on planning

enphasi zes that execution of a plan requires sone nonitoring
[ Charni ak and McDernott, 1986]. In the recent robot planning
systens [WI kins, 1988; Swartout, 1988], the plan nonitoring
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can be done by inserting nonitoring steps in the plan, which
behaves |ike a student nodel in instructional planning. In an
| TS, since the student's learning status is unpredictable,
the planner also needs to nonitor the execution of the plan
and revise the plan if necessary. As a result, plan
nmoni toring should occur whenever there is a change in the
student nodel. Plan revision may occur when the current plan

is conpleted or when the student takes the initiative.

For the current version of CIRCSIMTUTOR, the planner
nmonitors the student problemsolving in tw different places.
First, when the student enters predictions in the prediction
table, the planner nobnitors the student's entries in the
table and interrupts with sonme warning nessages if the
student violates the system constraints. The nessages are
designed by the experts, to help the students in their
problem solving. The system gives different nessages
dependi ng on the procedure, the variables, and the stages.
Second, the planner nonitors the student answer at each step
during the tutoring session, by referring to the student
nodel , and then decides what to say next; give a hint, give
an answer, or continue with the next topic, etc. Wen the
student takes control by asking a question during the
tutoring session, the planner suspends the current plan,
carries out the student's request and then sinply resunes the

suspended pl an by asking the previous question again.
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5.4 Sunnary

This chapter first discussed the design issues for
buil ding an instructional planner, the capabilities, the
| evel s of planning, and the m xed-initiative strategy. Then
it displayed a sanple dialogue extracted fromthe transcri pt
of actual tutoring session, and described a scenario, which
is an inportant tool for building the planner and the other
conponents of the system The chapter concludes wth a brief
introduction to the planner. The overall architecture of the
pl anner and its main nmechani sns, |esson planning, discourse
pl anning, and plan nonitoring, are introduced. Figure 11
shows the five levels of the planning process; the three
|l evels of the |esson planner and the two levels of the

di scour se pl anner.
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CHAPTER VI
THE LESSON PLANNER

The | esson planner decides on the contents of a |esson,
based on the student's current know edge about the donain.
The pl anner has to generate | esson goals, sequence the goal s,
and select the appropriate planning strategies to create a
plan for the current |esson goal. Figure 12 shows the
architecture of the |lesson planner including the necessary
pl anni ng steps, student nodel, and | esson planning rules. The
result of the lesson planning is a set of subgoals (a plan),
each of which will be the topic for a dialogue with the
student. This chapter describes the |esson planner:
i nmpl ementation goals, an architecture, two nain mechanisnms
(i.e., goal generation and plan generation), an exanple and

an algorithmfor |esson planning.

LESSON PLANNER

, Pl an Generati on
Goal Generation

L » Strate St udent Mbdel
Goal Generation ¥ & .
Rul es Goal L W Strategi c Rul es

St udent Model Tacti cs «4-Tactical Rules

v

Lesson Pl an

Figure 12. Structure of the Lesson Pl anner
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6.1 I nplenmentati on Goal s

Cl RCSI M TUTOR begi ns by asking the student to fill in
the Prediction Table and uses the analysis of this
information stored in the student nodel, to generate gl obal
| esson plans. In order to generate the plans, the |esson
pl anner nust have sone capabilities: hierarchical planning,

dynam c pl anning, and rul e-based tutoring know edge.

For exanple, the planner generates the instructional
goals at the top level of abstraction, and then expands one
of the goals into a set of snmaller subgoals at the next
I evel. So the planner expands the | esson plan hierarchically
in a top-down manner, as in |IDE-|I NTERPRETER [ Russel |, 1988].
Second, the planner can generate different |esson plans for
different students, by referring to the student nodel. In
this way, the planner generates plans dynamcally and
adaptively. Third, the planner nust replan when it is
necessary. Finally, the planning know edge is expressed as a
set of explicit rules, and a rule interpreter interprets the
rules and selects an appropriate one. This gives a

flexibility to the nodification of the rules.

The | esson planning nechanismis an essential conponent
of the instructional planner, since the system nust generate
gl obal Iy coherent and consistent instruction for the student
[Macmi I lan et al., 1988; Mirray, 1990], in such a way that

the topics are logically connected with each other, and
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sequenced and presented in a manner sensitive to the tutorial
goals and the student's needs. These are the main

i npl enent ati on goals of the | esson planner.

6.2 Lesson Pl anni ng Rul es

The contents of the tutoring strategies are extracted
from the transcripts of the human tutor and student
interaction, and we need to encode them explicitly in the
program as rules. The prototype tutor was witten in Prol og
which has a built-in inference capability, but in our Lisp
impl enentation | had to design an interpreter to understand
rules. | designed this part as a production system which
consists of a rule interpreter and a set of rules. This is
t he nost comon approach used in expert systens [Hasenmer and
Dom nque, 1989]. In this section, |I will describe in detai
how | designed the rule formal, and then inplenmented the rule

interpreter to parse the rules.

6.2.2 The Rule Interpreter. The rule interpreter

consists of three nmain parts: its main loop, its working
menory, and its pattern matcher. The working menory is
crucial to the operation of the rule interpreter, because the
wor ki ng menory holds an initial representation of the problem
that the systemis trying to solve. Each tinme around the
| oop, the contents of the working nenory will be conpared to
t he antecedent of the rules, and then will fire only one rule

if it matches. |If an antecedent matches with the working
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menory, the consequent will be executed, and the content of
the working nenmory will be changed for the next inference.
The matching cycle will continue until no rules nmatch. At

this point the interpreter halts, and the content of the

working menmory is the desired result for the given problem

The interpreter is built using LISP macro functions,
whi ch understand and interpret the rules for the system As a
result the rules can be witten, not as Lisp code, but in any
free format as long as the rule interpreter can understand
them 1 designed the rules with three parts: the nane part of
the rule, the antecedent part, and the consequent part. For
exampl e, (Rule_nane: (antecedent) => (consequent)). W
notivation was to nake the systemefficient in witing source
code, and also nake it possible for our expert tutors to read
the rules and make nodifications easily. If we want to change
the format of the rules, then we need to change the
interpreter to recognize that specific form The next

subsection will describe howto actually encode the rules.

6.2.2 How t Encode the Lesson Pl anni ng Rul es. The

| esson pl anner uses three sets of |esson planning rules (goal
generation rules, strategy rules, and tactical rules). |
designed the rules in an if then format, in a separate file
to avoid hard coding themin the program Therefore, it is
easy to add, delete, and nodify rules w thout restructuring

t he whol e program The general formin which the rules are
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wittenis if Xthen Y. Here X is the antecedent or |eft-hand
side of the rule and Y the consequent part or right-hand side
of the rule. Both the antecedent and the consequent nmay

contain one or nore terns.

For exanple, assune that the student made an error in
predicting the variable TPR One of the goal generation rules
applies; if the student does not know TPR, then build the
| esson goal, tutor TPR about the neural control. This rule
can be expressed as (G Rulel: ((do-not-know TPR) => (neural -
control TPR))). |If the current |esson goal is teach the
causal rel ationship bet ween RAP and SV, and the student does
not know the direction, then this rule can be witten as
(S Rulel: ((causal-relation)(do-not-know direction)) =>
(tutor-causality))). This is the strategy rule for dealing
Wi th non-neural variables. Assune that if the strategy rule
is tutor-causality, then the corresponding tactical rule is
to teach determ nants, actual-determ nant, relation, and
val ue. This rule can be witten as (T_Rulel: ((tutor-

causality) => (determ nants) (actual -determ nant) (rel ation)

(value))).

Currently, there are about 50 goal generation rules, 20
strategy rules, and 20 tactical rules that handle DR, RR and
SS phases, and for procedures 4, 6 and 7. The rul es may need

to be extended to handl e the ot her procedures.
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6.3 Lesson Pl anni ng

| nstructional planning centers around instructional
goals. There are two kinds of goals in the system | esson
goal s and di scourse goals. The | esson planning generates the
| esson goals, the know edge that the system intends the
student to acquire through the tutoring session. This section
descri bes how to generate the |esson goals, and how to
devel op a | esson plan for the each of the goals. The two nmain
mechani snms of the | esson planning process, goal generation

and pl an generation, are explained bel ow

6.3.1 Goal Generation. CIRCSIM TUTOR generates

instructional goals based on the student's know edge
demonstrated as entries in the Prediction Table. The
generation of the goals is guided by a set of explicit goal
generation rules designed by our experts (Joel M chael and
Allen Rovick), which ensures that the npst serious
m sconception is selected and tutored first. For exanple,
suppose the student nade wong predictions in the table for
the variables, TPR and SV. The student nodeler has
determned, fromits analysis, that the student is confused
about the nmechanism controlling TPR and the causal
rel ati onshi ps between RAP and SV and SV and CO So the | esson
pl anner retrieves the information from the student nodel

applies the goal generation rules (see Figure 13), and
generates the | esson goals dynamcally. The result is a set

of lesson goals in the goal stack (see Figure 14).



73

CGoal Generation Rul es

1. IF CQurrent Primary Variable is CC and
Student Answer is not NOCHANGE for TPR
Then Build Lesson Goal (NEURAL- CONTRCL (TPR))

2. IF Current Primary Variable is RAP and
St udent does not know t he CAUSAL- RELATI ONSH P
bet ween RAP and SV
Then Buil d Lesson Goal (CAUSAL-RELATION (RAP, SV))

3. IF CQurrent Primary Variable is RAP and
St udent does not know t he CAUSAL- RELATI ONSHI P
bet ween SV and CO
Then Build Lesson CGoal (CAUSAL-RELATION (SV, CO)

Figure 13. Goal Ceneration Rules

O der Lesson Goal s
1. NEURAL- CONTROL  ( TPR)

2. | CAUSAL- RELATI ON ( RAP, SV)
3. | CAUSAL- RELATION (SV, CO

Figure 14. Cenerated Lesson Goals in the Goal stack

The goal generation is significant in many ways; the
goal s are generated dynam cally and adaptively; the goals are

sequenced in the order that the experts tutors this material;
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the goal s provide a gl obal context that remains coherent and
consi stent throughout the tutoring session, unless the goals
are revised. New goal s can al so be generated, which tutor the
student about a common nmisconception (a bug), if the student
nodel er detects such a m sconception. The goals remain in
force until they are changed by the planner dynamcally

(because of changes in the student nodel).

6.3.2 Plan Generation. The second stage of the |esson

pl anning is the plan generation nmechanism which creates the
instructional plan by applying two sets of rules, rules for
selecting tutorial strategies to achieve the sel ected goal
and rules for selecting pedagogic tactics to execute those
strategies. Strategy rules (Figure 15) describe the tutorial
approach from a donmai n-i ndependent point of view These
include tutoring prerequisites before the material they
underlie, rem nding the student about relations between two
paranmeters, explaining the definition before tutoring about
it, and so on. Tactical rules (Figure 16) also represent a
domai n-i ndependent tutorial approach; they involve asking

about concepts and rel ati ons between the concepts.

For instance, if the goal is teach the causal
rel ati onship between the two paraneters, then the fired
strategy rule is tutor the causality, and this then fires the
pedagogic tactical rule: ask about: determ nants, actual

determ nant, rel ationship, and correct value. The result is a
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hi erarchical goal tree (Figure 17). Thus the current goal is
ultimately refined into four subgoals by two-step goal
transformations. In order to solve the current goal, all the
subgoal s nust be solved. This is the well-known Al problem
reduction technique, which transforns a goal into a set of
i mredi at e subprobl ens by a sequence of transformations [Barr
and Fei genbaum 1982]. The four subgoals generated at the
tactical level are the current plan for the goal. These are
kept in a subgoal stack (Figure 18), which is used by the

di scourse planner to pick the next topic.

Strategic Rule

1. | f the Goal = CAUSAL- RELATION and
St udent does not know and
direction is incorrect

Then Strategy = TUTOR CAUSALI TY

2. I f the Coal = CAUSAL- RELATION and
St udent does not know and
direction is correct

Then Strategy = REM ND- RELATI ON

3. I f the Goal = NEURAL-CONTROL and
this is the first procedure
Then Strategy = DEFI NE- TUTOR- NEURAL

Figure 15. The Strategy Rul es



Tactical Rule

1. |If Strategy TUTOR- CAUSALI TY

Then Tactic = DETERM NANTS,
ACTUAL- DETERM NANT,
RELATI ONSHI P,
VALUE

2. If Strategy = TUTOR- NEURAL- CONTRCL
Then Tactic = MECHAN SM
VALUE
3. If Strategy = TUTOR SS-PHYSI CAL- VAR ABLE

Then Tactic = VALUE-DR
VALUE- RR,
VALUE- SS

Figure 16. The Tactical Rules
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Goal : CAUSAL- RELATI ON (RAP, SV)
Strat egy: Tutor Causality
1 2 4
Tacti c: Det er mi nant s Act ual Rel ationship Val ue

Det er m nant

Figure 17. Cenerated Plan for "causal _rel ati on(RAP, SV)"
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O der Subgoal s
1. Det erm nant s
2. Act ual - det er m nant
3. Rel ation
4. Val ue

Figure 18. The Subgoal Stack

6.4 An Exanpl e

This section presents one |esson planning cycle as an
example. It gives a top level algorithmalong with its pseudo
code, in order to clarify the functioning of the |esson
pl anner. Figure 19 shows an exanple of the |esson planning
process for the causal-rel ationship bet wen RAP and SV. From
the top of the Figure, the goal generation step is described
with its other information: student nodel, rules used, goal
stack, and current goal. Then the plan generation step is
described in two steps, the strategic and the tactical steps.
Since the lesson plan is carried by the discourse planner
t he | esson pl anner suspends after generating a plan. It waits
for the discourse planner to be activated and to interact
with the student. Wen the plan controller sends a wake-up
signal, then the |esson planner gets reactivated and
continues with the next goal in the goal stack, if there is
any. Plan nonitoring begins when the discourse planner starts

to plan the topic for the student.
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Goal CGeneration

Rul es Used:

St udent Model : do-not - know ( SV) DR G Rul e8
Coal Stack: Causal-relation (RAP, SV)

Causal -relation (Sv, QO
Current Goal: Causal-relation (RAP, SV)
Pl an CGeneration

Rul es Used:

Strategy: Tutor-causality DR S Rulel
Tactics: (determ nants) DR T Rul e6

(act ual - det er mi nant)
(rel ation)(val ue)

Subgoal St ack: (det erm nants)
(actual -det erm nant)
(Pl an) (rel ation)(val ue)

D scourse Pl anner

executes "determ nants of SV’

Plan Monitoring: Wits for the student response

Figure 19. An Exanpl e of Lesson Pl anning
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The | esson planning cycle can be summarized as the
following top level algorithm (Figure 20 contains the Lisp
pseudo code for the algorithm. In this algorithm the
function Main calls the screen manager, which displays sone
i ntroductory nmessages first, and then draws the Prediction
Table, the tutor wi ndow and the student w ndow. Then, Main
calls the controller which repeats the problem solving and
t he student evaluation cycle, until all the phases are done
(DRFRR/'SS). If the the student answers to a given phase are
all correct, then it continues with the next phase. |If not,
then it calls the lesson planner to begin the tutoring
session. The |esson planner generates the goals first, and
then repeats the planning cycle until there are no nore goals
in the stack. Step 3.2.3 is carried out by the discourse
pl anner, and it wll be explained in detail in the next

chapter.

Top Level Al gorithm

1. Main:
1.1 Call the screen nmanager to set up environments.
1.2 Call the controller
2. Controller:
2.1 Repeat until all phases are conplete (DRI RR/'SS).
2.1.1 Ask the problem solver to solve the probl em
2.1.2 Get the student inputs fromthe Prediction
Tabl e.
2.1.3 Check the student nodel.



2.1.4 1f there is any error, go to step 3.
End- Repeat .
3. Lesson pl anner:
3.1 Cenerate | esson goal s.
3.2 Repeat until no nore goals in the stack.
3.2.1 Take one goal and build I esson plan.

3.2.2 Call the discourse planner.

3.2.3 Renove the current goal fromthe stack

End- Repeat .
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(defun main ()

(screen- manager set-up-environnents)
(controller))

(defun controller ()

(repeat-until-all-phases-done ; DRIRR/ SS
(probl em sol ver procedure-nunber 'stage)
(get-student-input-fromprediction-table)
(check- st udent - nodel )

(if (any-error) |esson-planner)))

(defun | esson-pl anner ()
(gener at e- goal s)
(check-1esson-goal s))
(defun check-1esson-goals ()
(bui | d-1 esson-pl an (car *| esson-goal s*))

(cal | -di scourse-pl anner *subgoal s*)
(check-1esson-goals (cdr *lesson-goal s*)))

Fi gure 20. Pseudo Code for Lesson Pl anning
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6.5 Summary

This chapter has discussed the inplenentation goals of
the |esson planner that provides globally coherent and
adaptive instruction to the student. The design of the rule
interpreter and its usage is described with an exanple. The
three levels of the | esson planning process are explained in
detail with the rules and tutorial strategies. Finally, the
top |l evel lesson planning algorithmis explained along with
its Lisp pseudo code to clarify the functioning of the | esson

pl anner .

The system can run in two different npdes: a tutor
version and a student version. The tutor version displays
necessary information about the current |esson planning
situation on the screen: the current goal, subgoals,
strategies, tactics, and rules used. The display of this
internal process may be useful in order to understand the

| esson pl anni ng nechani sm better.
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CHAPTER VI |
THE DI SCOURSE PLANNER

The discourse planner is responsible for controlling
interactions between the tutor and the student. It needs to
deci de how the tutor should respond to a student with a given
probl em [ Wol f, 1984; Wnkels et al., 1988]. This discourse
strategy mnmust be planned explicitly by the di scourse pl anner,
so that the system can enter into flexible and coherent
interactions. GU DON [Cl ancey, 1982] and MENO TUTOR [ Wol f,
1984] provi de sophisticated dial ogue managenent by sel ecti ng
pre-stored di scourse plans, but they lack globally controlled

pl ans and cannot allow student initiatives.

In Cl RCSI M TUTOR, the discourse planner is conbined with
the | esson planner, so that the discourse planner receives a
gl obal lesson plan from the |esson planner. The plan
controller nonitors the execution of the plan and forces the
di scourse planner to suspend or resune the current plan when
the student takes control. The planner consists of sets of
di scourse planning rules and a two | evel discourse network,
which is simlar to MENOTUTOR in its control structures, but

with nmore functional differentiation (see section 7.2.2).

7.1 I npl enentati on Goal s

The main function of the discourse planner is to receive

a lesson plan from the |esson planner and decide how to
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present it to the student using its discourse strategy rules.
How to present the generated |esson plan requires
sophi sticated di scourse managenent and fl exible interactions
with the other conmponents of the system The followi ng are

the main goal s of building the discourse planner.

First, one of the main functions of the planner is to
decide how to present the selected |lesson to the student
usi ng natural |anguage. Thus it needs to interact with other
conponents of the system the student nodeler, the text
generator, the input understander, and the screen manager
Second, the system nust correct the student's m sconceptions
about the given problem Thus, it nust give imediate
feedback on all the student's answers throughout the tutoring
session, although it can be argued that sonetines alternative
responses should be given instead of conplete feedback
[Gal des et al., 1991]. Third, if the student fails to give a
correct answer to the tutor, the planner nust provide an
alternative learning path to the student, such as a hint. So
the planner needs to decide what to do next at each point
during the tutoring session. Fourth, the discourse strategies
need to be explicitly expressed, rather than procedurally
encoded in the program such as in |DE-|I NTERPRETER [ Russel |,
1988], which procedurally encodes nost discourse actions in
its instructional units. The explicit representation provides
an easy way of nodifying the strategies. In ClIRCSIM TUTOR

t hese strategies are expressed as explicit discourse planning
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rules. Fifth, the planner should accept the student's
guestions and comrents, and respond with an appropriate
answer. CIRCSI M TUTOR can respond to some kinds of student

initiative at the nonent.

7.2 Architecture of the D scourse Pl anner

The discourse planner interfaces with many other
conponents of the systemto control the question and answer
di al ogue. For instance, the input understander passes the
student input to the planner, then the planner deci des what
to do next according to its tutoring strategy, and returns a
response through the text generator in natural |anguage.
Therefore, the planner needs sone know edge of how to tutor
the student at each point of tutoring sessions. In ClRCSIM
TUTOR this tutoring know edge is expressed as the discourse
pl anning rul es, which has been extracted from the experts.
The rules are organized as a two |evel discourse network.
This section explains how | designed the rules and the

overall structure of the network in detail.

7.2.1 Flow Chart Approach. Meta know edge is know edge

about know edge [Davis and Buchanan, 1987]; what you know and
don't know (operational meta know edge), and how you do
things (control neta know edge). The operational neta
know edge is needed to recognhize a question outside the
limts of the system It can be ignored in the discourse

pl anner, since the input wunderstander receives such a
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guestion or answer and responds with [/ don't understand,
pl ease rephrase. The control meta know edge controls how t he
system interacts with the student; it is based on our
observations about how the human expert tutors the student.
The integration of this knowl edge into the system ensures

that it appears to ask questions in a |ogical order.

The basic representation of the control neta know edge
in CCRCSIMTUTOR is the flow chart. This is a nodel of what
the expert does and when he does it. For our system Allen
Rovi ck desi gned several flow charts (see Figure 21), each of
which is used for tutoring the student in a different
situation. We need different tutoring strategies for handling
neural variables, causal relationships, the regulated
vari able, logical relationships, and so on. The strategies
dealing with the neural variables are different in all three
phases (DR/RR/SS), as are those for the other variables.
Figure 21 is the one that tutors the non-neural variables in
DR. The content of the questions is determ ned by the | esson
pl anner and passed on to the discourse planner, which nust
t hen deci de how to express this content, determ ning whether
to ask a question, give an answer, and so on. After the chart
was created, 1, the know edge engineer, encoded this
information as discourse planning rules. The next step was to
create a sophisticated inference nechanismthat can utilize

t hese rul es.
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Tut ori ng DR Non-Neural Variabl es

N —p Gve hint fromley

(1 determ nant)

2nd N — G ve answer

What are the

el 2

l

det er m nant s <4—

Yes

, 1Y, 1IN answer—pGve hint from —
(2 det @rm nants) | evel 2

2N answers ——p-G ve answer

v

<—
N I f no equation, give hint
—®»fromlevel 2
Y v
Wiat is . -4 I
rel ationshi N—— —pIf equation, state in words
Yes 2nd N—pG ve rel ati onshi p—
-

Predi ct again

‘\\AN_pGi ve entire level 2—

Yes

Still N—psend to textbook

Next error

Figure 21. The Flow Chart for Tutoring Non-Neural Variables

in DR
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7.2.2 Discourse Network. The network is the nmain

know edge structure of the discourse planner. It consists of
states, links, and arcs (see Figure 22). The states represent
tutorial actions, the arcs inply state transitions, and the
links indicate hierarchical dependencies; a state at the
tactical level represents the refinenents of the | evel above.
Three inportant nechani sns need to be discussed: |evels of
pl anni ng, representation of the tutorial states, and control
structures. The network cannot be considered w thout the
control structure, since it integrates the other two

mechani sns.

Begi n Fi ni sh
l A

I NTRODUCE COVPLETE

Rem nd G ve_H nt Conpl et e_Topi ¢

G ve_Ans

Expl anati on

Ask Question

A ve_Correct _Ack

\

G ve_Incorrect Ack

Requesti on

Eval uat e_I nput

G ve _Half _Correct Ack

Figure 22. The D scourse Network
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A. Levels of Planning. The discourse planner is

divided into two planning | evels: pedagogical and tactical.
The pedagogical |evel makes decisions about the style of
tutoring; introduces a topic, renmediates the student's
m sconcepti ons, and conpletes a topic. The discourse action
begins with the pedagogical |evel, introduce state, and then
it traverses the network and finishes one topic as it reaches
the conplete state. The tactical |evel chooses an expository
style to inplenent the pedagogy; question the student, give
acknowl edgenent, or give an answer. The states at this |evel

are refinenments of the states at the pedagogic |evel.

B. Representation of Discourse Strategies. The

second inportant nmechanism is the representation of the
tutorial strategies in the form of states. The discourse
strategies were then extracted from the flow chart and
expressed as discourse rules. The rules are witten as a
frame-like structure using Lisp macro functions, which
represent the states in the network (see Figure 23, Figure
24, Figure 25, Figure 26). The states are divided into
default states and meta states, and each state is further
divided into pedagogic and tactical states. Each state
consists of a state nanme and slots. The slots contain
necessary information to performtext generation or explicit
control mechanisms; the slots in the neta states contain
preconditions and indicate the next state to nove to, and the

default tactical states contain text style and content to
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generate a natural |anguage sentence. In Figure 25, the
execution of Ask Question state will cause the text generator
to generate a question, and then nove on to the next default
state, Eval _Input. The slots also contain a register to keep
track of the conpletion of the topic, and a flag to update

t he student nodel .

Pedagogi c Default Rule

(Pedagogi c_def aul t *i nt roduce*

(subgoal current-task
updat e t opi c-conpl et ed
next-state *tutor*))

(Pedagogi c_def aul t *tutor*

(subgoal current-task
updat e t opi c- conpl et ed
next-state *conpl ete*))

Fi gure 23. The Pedagogi c Default Rule

Pedagogi ¢ Meta Rul e
(Pedagogi c_net a *mtutor?*
(precondition t opi c-conpl et ed
prior-state *tutor*
next-state *introduce*))
(Pedagogi c_net a *m _conpl et e*
(precondition no- nor e-t opi cs
prior-state (*introduce* *conpl ete*)
next-state *stop*))

Figure 24. Sone Pedagogi cal Meta Rul es
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Tactical Default Rule
(Tactical _default *ask_question*
(text-style guestion
cont ent current -task
updat e ni |
next -state *eval -1 nput *))
(Tacti cal default *gi ve_answer *
(text-style gi ve- answer
cont ent (current-task correct-answer)
updat e st udent - node
next-state *conpl et e-topic*))

Figure 25. Tactical Default Rules

Tactical Meta Rule

(Tactical _neta *m correct*
(precondition correct-response
prior-state *eval - i nput *
next-state *correct-ack*))

(Tactical _neta *m.incorrect*
(precondition i ncorrect-response
prior-state *eval -i nput *
next-state *incorrect-ack*))

Figure 26. Tactical Meta Rules

C. Control Structure. The di scourse control in the

network can be divided into a default control structure and a
meta control structure. The default control is specified in

the default states, so that the tutor noves fromone state to
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anot her according to a pre-determ ned path. The neta control
abandons the default path and noves to the state that is
specified in the nmeta-rule. The system checks the neta-rules
first and if none of the meta-rules fire, then the contro
flow will follow the default path. This control path is
hi dden in Figure 22, because the exceptional behavior by the
net a-rul es can not be predicted in advance. For exanple, the
Eval I nput state will be selected right after the
Ask Question state as a default path, but the next state is
unpredi ctabl e, since the student answer could be correct,
wrong, or partially correct. This mechani sm enables the

dynam ¢ behavi or of the di scourse pl anner.

The main di sadvantage of earlier discourse managenent
networ ks [Wool f, 1984; d ancey, 1982] is that they needed to
be coupled with some other control nmechanism such as an
agenda and an external menory to provide a topic. In C RCSIM
TUTOR, since the | esson planner provides a globally coherent
| esson plan, the network itself can function solely for
delivery purposes while keeping all the advantages of the
di scourse managenent network, such as flexible discourse

control and explicit representation of discourse strategies.

7.3 D scourse Pl anning

Di scourse planning in CIRCSIMTUTOR is managed by a
sinmple algorithm It iterates through the states until a

topi ¢ becones conplete. Either the student responds with a
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correct answer or the tutor gives the answer. This section
descri bes inportant features of the discourse planning: the
di scourse goals, a discourse planning algorithm an exanple

of text generation, and an exanple of a student initiative.

7.3.1 The Di scourse Goal. The discourse planner needs a

goal to tutor the student. This goal can be found in the
subgoal stack, which the |esson planner has produced. In
Figure 18, the subgoals are sequenced by number, so that the
di scourse planner can carry themout in that order. Wen the
pl anner finishes carrying out one of the subgoals, it will be
removed from the stack, and the planner picks the next one.
This cycle continues until the stack is enpty, or is
suspended by the plan controller in favor of a student

initiative.

7.3.2 The Discourse Planning Algorithm The discourse

pl anning algorithm is a sinple iteration. It receives a
subgoal stack from the |esson planner, picks one of the
subgoal s, and iterates through the states in the network
until the goal is conpleted. The cycle is repeated with each
subgoal in turn until the stack is enpty. The nobst inportant
feature of the algorithmis flexible transition between the
two | evel planning process; if the current level is a default
or neta strategy then process the upper |evel function, else
process the lower level function; if the next state is not

specified in a tactical state then pop up to the upper |evel
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and check meta rules, and so on. The following is the top
| evel discourse planning algorithm and Figure 27 shows the

pseudo code for the discourse planning algorithm

The Top Level D scourse Planning Al gorithm

1. Repeat until the subgoal stack is enpty.
Pi ck one subgoal and call execute-one-subgoal
End- Repeat .
2. Execut e-one- subgoal :
Repeat until topic conpleted
if strategy then process-upper-|evel
if tactical then process-|ower-|evel

End- Repeat .

7.3.3 Generating Natural Language Sentence. The

tactical default states have slots containing infornmation for
the text generator. When the planner processes the states,
the text-style and content slots will be extracted fromthe
current state. For exanple, assune that the planner is
processing the *ask question* state (Figure 25), while the
text-style slot contains question and the content sl ot
contains the current-task, such as determ nant (SV). Binding
these two slot values provides us with a logic form
(question (determnant (SV))), which will be passed to the

text generator, which generates the sentence, Wat are the
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det erm nants of SV? Then the screen manager will display the

sentence in the tutor w ndow.

The logic form may need to be extended to generate
richer sentences, since this kind of the logic form only
contains information about a particular task or the solution
of a problem The text generator may need to collect nore
information from nmany other sources, the domain know edge

base, the student nodel, the dialog history, and so on.

(defun di scourse-pl anner ()
(repeat until no-nore-subgoals
(execut e-one-subgoal )))

(def un execut e- one-subgoal ()
(repeat-until (STOP)
(case (get-level (level))

((strategy) (process-upper-1evel))
((neta-strategy) (process-upper-I|evel))
((tactical) (process-1ower-1level))
((nmeta-tactical) (process-lower-level)))))

(defun process-upper-level ()
(check-start)
(cond ((current-state = neta-strategy)
(get-next-state))
((topic-conpleted) (STOP)
(get-next-state)

(defun process-|ower-1level ()
(cond ((current-state = neta-tactical)
(get-next-state)
((topic-conpl eted) (get-next-state)
(cal | -text-gen) (get-next-state)))
(if (next-state = nil) (pop-Ievel-up)))

Fi gure 27. The Pseudo Code for D scourse Planning
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7.3.4 How to Recogni ze a Student lnitiative. ClRCSI M

TUTOR al l ows student initiatives during the tutoring session.
So the planner nust understand whet her the student response
is a question or an answer by checking the input |ogic form
which is being passed from the input understander. For
exanple, if the input understander passes a logic form
(answer (determ nant SV)(RAP CQO)), the first item of the
list, answer, indicates that this is an answer. The second
itemof the list, (determnant SV), is the current topic, and
the third item (RAP CO, is the student answer. Let's assune
that the tutor asks the question, Wat are the determ nants
of SV? and the student responds with / don't know about SV.
Then the input understander recognizes this as an inplicit
question and returns a logic form (question (do-not-know)
(SV)). The planner receives the logic form and recognizes
that this is a student initiative, so it suspends the current
pl an and carries out the student request; asks the problem
solver to get the definition of SV fromthe know edge base,

and then asks the screen nmanager to display it.

Student initiatives can involve a broad range of
questions. It requires efforts from many conponents of the
systemto give hel pful responses; the input understander nust
understand the question, the problem solver nust get an
answer, and the planner nust keep track of the current plan

and carry out the student request.
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7.4 Trace of Discourse Transition

Figure 28 shows a short trace of a sequence of discourse
transitions. The short arrows represent the pedagogic |evel
transitions; the long arrows represent the tactical |evel
transitions; and the double arrows represent the neta | evel
transitions. The left side of the figure shows the processing
of states, and the right side of the figure shows the

di scourse actions resulting fromvisiting the states.

The tutor begins by asking a question, then it npbves to
the evaluate state by the default control rule. At this tine,
the student responds with a half correct answer, which is
recogni zed by the neta tactical rule3, which forces a nove to
the half-correct state. This state produces an
acknowl edgenment and then another neta rule fires, which
recognizes that this is the first try. So the neta rule
forces a nove to the give-hint state, which produces a hint.
Since there is no default and a nmeta rule applies, the
control pops up to the upper |level and checks whether the
topi c has been conpleted. If not, then control goes back to
the introduce state again, and noves down to the tactical
level. This tinme the requestion state is selected, since this

is the second try on the sane topic.

One of the default paths is ask-question then eval -
I nput. This can be considered as a partial discourse plan,

because this plan will be overriden by the neta rules. Thus
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the overall discourse planning mxes fixed partial planning

with dynam c neta pl anning.

Current Topic: Determnants of SV

->, => Pedagogi ¢ Level
-->, ==>! Tactical Level ( -> Default , => Meta )
D scourse States D scourse Action

-> | NTRODUCE

==> Meta-tactic3
(I'ncorrect-one)
not a determ nant of SV.

==> Meta-tacticb

=> et a- pedagogi c
(Not - conpl et ed)

-> | NTRODUCE

--> Requestion Tutor: Wiat is the other
det erm nant of SV?

--> Ask-question Tutor: Wat are the determ nants
of SV?
--> Eval -i nput Student: RAP and CO

--> Hal f-Correct Tutor: RAP is correct, but COis

(First-try)
--> @ ve-hint Tutor: Renenber. SV is the anount
of bl ood punped per beat.
-> TUTOR

Figure 28. Trace of the D scourse Transition Process

7.5 Sumary
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Thi s chapter began by introducing the discourse rules
and the di scourse network. The discourse rules originated in
the flow chart as a tutorial strategy, and | have transforned
theminto rules and expressed them as franme-|li ke structures
using Lisp macro functions. The rules include all the
necessary information to generate a natural |anguage
sentence, and the control mechanismis also specified within

t he rul es.

The network consists of two |evels: the pedagogy | evel
and the tactical |evel. The pedagogy |evel makes deci sions
about the style of tutoring and the tactical |evel decides on
the expository style to inplenent the pedagogy. The execution
of the tactical states causes text to be generated, updates
t he student nodel, and noves to the other states. The states
represent explicit discourse planning rules and an explicit

control nechani sm

Sonme of the inportant discourse planning features are
introduced in the third section; discourse goals, the
di scourse planning algorithm communication with the text
generator, recognizing the student initiative. A short trace
of exanple discourse state transitions is displayed in the

fourth section.

The system provides two different running nodes: a tutor

version and a student version. The tutor version displays the
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subgoal stack, the current topic, and the discourse
transition. As the dial ogue proceeds, the subgoal stack gets
updated, and displays all the states that have been visited

i ncluding the current one.
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CHAPTER VI |
CONCLUSI ON

8.1 Significance of this Research

This thesis describes the design and devel opnent of an
i nstructional planner for a Physiology ITS, ClRCSIMTUTOR

The pl anner has several significant features.

First, the planner conbines two different instructional
pl anni ng approaches: [esson planni ng and di scourse pl anni ng.
Lesson pl anni ng produces gl obal |esson plans, which will be
carried out during the discourse planning stage. This
approach provides us wth many advantages over other
i nstructional planning systens, such as MENO TUTOR [ Wool f,
1984] and | DE- | NTERPRETER [ Russel |, 1988].

Second, the planner plans dynam cally based on the
inferred student nodel; it generates plans, nonitors the
execution of the plans, and replans when the student
interrupts with a question during the tutoring session. This
approach provi des adaptive instruction, so that it is better
suited for tutoring individual students than CAl systens

whi ch produce fixed instruction.

Third, the pedagogi cal know edge is extracted fromthe
experts and represented explicitly as rules, |esson planning

rul es and di scourse planning rules, in separate files. This
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way it is possible to add, delete, and nodify the rules
easily without restructuring the whole system The rules are
used to generate |lesson plans and to control discourse
strategies. The systeminterprets the rules and builds the

| esson plans or returns an appropriate di scourse action.

Fourth, the planner plans at different |evels of the
hi erarchy; the higher level is a sinplification or
abstraction of the plan (lesson goals) and the lower is a
detailed plan (subgoals), sufficient to solve the problem
Thi s pl anni ng techni que prevents devel opnent of unnecessary
pl ans in advance and has been inplenented successfully in

several |ITS systens [Murray, 1988; Russell, 1988].

Fifth, the planner allows student initiatives during the
tutoring session. |If the student asks a question the planner
suspends the current plan, carries out the student request,
and then resunmes the suspended plan. This is another
advant age of ClI RCSI M TUTOR over earlier dial ogue managenent
systens, such as MENO TUTOR [Wool f, 1984], which does not

al | ow student questions during the tutoring session.

Finally, the planner acts as a controller for the
system so that it controls all the other conponents of the
system Since one of the main goals of CIRCSIMTUIOR is to
provide a natural |anguage interface, the discourse planner

is designed not only to provide sophisticated discourse
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control, but also to create the internal logic fornms for the
text generator to generate the sentence. A short tutoring
scenario is introduced, which canme froma transcript of human
tutor and student interaction, to explain the internal

process of the system

8.2 Future Research

Since the student nodel er was not fully inplenmented by
its designer (only DR in procedure 4), | had to inplenent a
tenmporary student nodel for the planner. This nodel is
limted to the overlay strategy, so the planner can support
tutoring on the overlay errors only, not the bugs. The
tutoring strategy for the bug |ibrary has not been devel oped
yet, so the system cannot tutor the student about bugs at the

nmonent .

Anot her very inportant tutoring strategy is giving a
level 2 (nore detailed know edge) hint during the tutoring
session. Gving a hint generally involves many different
know edge sources. In CIRCSI MTUTOR, the domain know edge
base needs to but does not contain all the know edge at the
detailed | evel. The input understander and the text generator
need to expand their lexicon and logic forns to contain all
the variables at the detailed |level. The probl em sol ver needs
to be able to access the know edge base and extract a hint,

and the planner needs to have a general strategy for deciding
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the content of the hint for every situation during the

tutoring session.

We are currently analyzing student initiatives in
transcripts of human tutoring sessions and starting with a
coupl e of sinple exanples, such as | don't know, and | don't
under stand about X The planner needs to develop its tutoring
strategy to support nore sophisticated student initiatives.
Also the input understander needs to recognize student
initiatives, and the problem sol ver nust provide a correct

answer .

Cl RCSI M TUTOR supports seven pre-determ ned problens as
a curriculum so that it does not really require curriculum
pl anning. QOur expert tutors are developing many nore
procedures for the system which nmay require sophisticated

curriculumplanning in future versions of the system
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APPENDI X A
TUTORI NG RULES | N ENGLI SH AND I N LI SP CODE
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Tutoring rules in CIRCSIMTUTOR consists of [|esson
pl anning rules and discourse planning rules. The |esson
pl anning rules are further divided into the three kinds of
rul es: goal generation rules, strategic rules, and tactical
rules. The discourse planning rules are divided into
pedagogic rules and tactical rules. In this section, the
conplete rules are displayed in both English and Lisp source

code.

LESSON PLANNI NG RULES

1.1 Goal Ceneration Rules in English

DR Goal Ceneration Rules

(SYMBAL: X, Y --> Z; X and Y are determnants of Z
X ==>Y; Xis the determnant of Y
X=Y* Z equation)

1. If primary variable is neural variable
and all other neural variables are not zero
Then tutor other neural variables are zero in DR

2. If primary variable is not neural variable
and all neural variables are not zero
Then tutor neural variables are zero in DR

3. If RAis primary variable and MAP /= RA
Then tutor TPR, CO --> MAP and MAP = TPR * CO
and TPR ==> NAP

4. If RAis primary variable and COis wong
Then tutor HR, SV --> COand CO= HR * SV
and HR is zero (neural variable), so CO can change
only if SV changes

5. If RAis primary variable and SV is wong
Then tutor CC, RAP --> SV and CC is zero (neural
variable), so QO can change only if SV changes

6. If RAis primary variable and RAP is wong
Then tutor CO --> RAP and 1/ CO ==> RAP



10.

11.

12.

13.

14.

15.

16.

17.

3

and CO=0, RAP =0

If CCis primary variable and SV /= CC

Then tutor CC,

RAP --> SV and CC ==> SV

If HRis primary variable and CO /= HR

Then tutor HR
HR ==> CO

SV -->C0and CO=HR * SV and

If HRis primary variable and RAP /= 1/ CO
Then tutor 1/ CO ==> RAP

If HRis primary variable and RAP = 1/CO and COis

wr ong
Then rem nd_upd

If (RAP is primary variable or if CCis not primry

vari abl e)
Then tutor RAP,

If HR and RA is
Then tutor SV,
SV ==> QO

If HR and TPRis not primary variables and CO = SV

and SV is wong
Then rem nd_upd

If RAis not pr
Then tutor CO
and CO ==> MAP

If RAis not pr
wr ong
Then rem nd_upd

ate (RAP = 1/0C0, CO, RAP)

CC --> SV and RAP ==> SV

not primary variables and CO /= SV

HR --> COand CO = SV * HR and

ate (CO = SV, SV, CO

imary variable MAP /= CO
TPR --> MAP and MAP = CO * TPR

imary variable and MAP = CO and COis

ate (MAP = CO, CO, MAP)

If CCis primary variable and RAP /= 1/ CO

Then tutor CO -

If CCis primary variable and RAP = 1/CO and COis

wr ong
Then rem nd_upd

Goal Generation

-> RAP and CO ==> 1/ RAP

ate (RAP = 1/ 00, CO, RAP)

Rul es

| f baroreceptor
and all entries
Then tutor all

al ready denervat ed
in RR are not zero
variables in RRis zero
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11.

12.

| f procedure /= denervate baroreceptors
and neural variables /= 1/ MAP in DR

Then tutor neural vari abl es

and neural variables in RR = 1/MAP in DR

| f procedure = denervate baroreceptors

and neural variable(s) /= increase

Then tutor baroreceptor denervation decreases
afferent input to CNS

and denervation is equivalent to decreased VAP
and denervation causes RR which increases neural
vari abl es

| f procedure /= denervate baroreceptors

and CO /= 1/NMAP in DR

Then tutor CO= HR * SV and HR and CC in RR equal s
1/MAP in DRand HR ==> COin RR

| f procedure = denervate baroreceptors

and CO /= increase

Then tutor CO = HR * SV

and HR and CC = increase and HR ==> CO in RR

If RAP /= 1/ CO
Then tutor CO = 1/ RAP

If COis wong and RAP = 1/ CO
Then rem nd_update (RAP = 1/CO, CO RAP)

I f SV /=RAP
Then tutor RAP, CC --> SV
and RAP ==> CO

If RAP is wong and SV
Then rem nd_update (SV

RAP
RAP, RAP, SV)

| f procedure /= denervate baroreceptor
and MAP in RR/= MAP in DR

Then tutor effects of reflexes in general
and VAP = TPR * CO

and TPR, HR and CCin RR = 1/MAP in DR

| f procedure /= denervate baroreceptor
and MAP in RR = 1/MAP in DR and COis wong
Then rem nd_update (MAP = CO * TPR, CO, NAP)

| f procedure = denervate baroreceptor and MAP /=
i ncrease then tutor

denervation --> increase HR CC --> increase CO
and i ncrease TPR and MAP = CO * TPR

107



108

SS Goal Ceneration Rules

1. If procedure = denervate baroreceptors
and variable in SS /= variable in RR
Then tutor all variables in DR=20
and variable in SS = variable in RR

2. |f baroreceptor already denervated
and variable in SS /= variable in DR
Then tutor all variables in RR=20
and variable in SS = variable in DR

3. If MMAPin SS /= MAP in DR
Then tutor effects of reflexes on regul ated vari abl e

4. |f variable in DR/=0
and variable in SS /= variable in DR
Then tutor reflex only partially reverses direct
effects of procedure

5 If variable in DR =10
and variable in SS /= variable in RR
Then tutor variables that are unaffected i n DR have
same value in SS as in RR

1.2 Strategic Rules in English

1. If the goal = tutor causal-relationship
and direction is incorrect
Then strategy = tutor causality

2. If the goal = tutor causal-relationship
and direction is correct
Then strategy = remnd relation

3. If the goal = tutor causal-relationship
bet ween CO and RAP
Then strategy = tutor causality for one determ nant

4. |If the goa

= tutor neural control
Then strategy =t

utor neural control

5. If the goal = tutor neural variable and this is
the first procedure
Then strategy = rem nd neural variable

6. If the goa

= tutor MAP in RR
Then strategy = d

efine MAP in RR
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7. If the goal = tutor neural variables in RR
The strategy = define neural variables

8. If the goa

= tutor reflex in RR
Then strategy =t

utor effect of reflex

9. If the goa

= tutor logic relation in SS
Then strategy =t

utor logic relation

10. If the goal = tutor neural variable in SS
Then strategy = define neural variable in SS

11. If the goal = tutor reflex in SS
Then strategy = tutor reflex in SS

12. If the goal = tutor MAP in SS
Then strategy = tutor conpensate

1.3 Tactical Rules in English

1. If the strategy = tutor causality
Then tactic = ask (determ nants, actual -determ nant,
rel ation, val ue)

2. If the strategy = tutor causality for one determ nant
Then tactic = ask (determ nants, relation, val ue)

3. If the strategy = remind-relation
Then tactic = rem nd-rel ation

4. |If the strategy = tutor neural control
Then tactic = ask (mechani sm val ue)

5. If the strategy = remind neural variable
Then tactic = redefine DR

tutor effect of reflex
ask (baroreceptor-reflex, value)

6. If the strategy
Then the tactic

tutor neural variable in RR
ask (reflex, val ue)

7. 1If the strategy
Then the tactic

tutor conpensate in SS
ask (conpensate, val ue)

8. If the strategy
Then the tactic

tutor logic relation
ask (follow, value)

9. If the strategy
Then the tactic

tutor neural variable in SS
ask (val ue-dr, value-rr, val ue-ss)

10. If the strategy
Then the tactic
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Ceneration Rules in Lisp Code

DR Goal

= N =

10.

11.

12.

13.

Ceneration Rul es

(G.ruleD1

(G_rul eD2

(G.rul eD3

(G.rul et

(G.rul eD5

(G.rul eD6

(G_rul eD7

(G_rul eD8

(G.rul eD9

(G_rul eD10

(G_rul eD11

(G.rul eD12

(G_rul eD13

*cc*)))
*hr*)))
*tpr*)))

(cc-sm
(hr-sm

(tpr-sm=> ((neural -control

=> ((neural -control

=> ((neural -control

(cc-smtpr-sm =>
((redefine-dr)(neural -control
(give-dr-neural)(neural -contro

*CC*)
*tprx)))
(hr-smtpr-sm =>

((redefine-dr)(neural -control
(give-dr-neural)(neural -contro

*hr*)
*tpr*)))
(cc-smhr-sm =>

((redefine-dr)(neural -control
(give-dr-neural)(neural -contro

*CC*)

*hr=)))

(cc-smhr-smtpr-sm =>
((redefine-dr)(neural -control
(give-dr-neural)(neural -contro
(neural -control *tpr)))

(sv-smrap-sv sv-co) =>
((causal -relation (*rap* *sv*))
(causal -relation (*sv* *co*))))

*CC*)
*hr*)

(sv-smcc-sv sv-co) =>
((causal -relation (*cc* *sv*))
(causal -relation (*sv* *co*))))

(rap-smco-rap rap-sv) =>
((causal -relation (*co* *rap*))
(causal -rel ation (*sv* *co*))))

(co-smsv-co co-rap co-nmap) =>
((causal -relation (*sv* *co*))
(causal -rel ation (*co* *rap*))
(causal -rel ation (*co* *map*))))

(co-smsv-co co-nap) =>
((causal -relation (*sv*
(causal -rel ation (*co*

*co*))
*map*))))

(map-sm co-nmap) =>

((causal -relation (*co* *map*))))
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15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

(G_rul eD14
=>

(G_rul eD15
=>

(G_rul eD16
=>

(G_rul eD17

=>

(G_rul eD18
=>

(G_rul eD19
=>

(G_rul eD20
=>

(G_rul eD21
=>

(G_rul eD22
=>

(G_rul eD23
=>

(G_rul ebD24
=>
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(sv-sm co-sm cc-SV SV-CO CO-Nnap Co-rap)

((causal -relation (*cc* *sv*))
(causal -relation (*sv* *co*))
(causal -rel ation (*co* *nmap*))
(causal -relation (*co* *rap*))))

(sv-sm co-smrap-sv Sv-cO CO-map)
((causal -rel ation (*rap* *sv*))
(remnd (*sv* *co*))

(causal -relation (*sv* *co*))
(causal -relation (*co* *map*))))

(sv-sm co-sm cc-sv co-nap Cco-rap)
((causal -relation (*cc* *sv*))
(remnd (*sv* *co*))
(causal -rel ation (*co* *nmap*))
(causal -relation (*co* *rap*))))

(sv-sm co-smrap-sv co-map)
((causal -rel ation (*rap* *sv*))
(causal -relation (*co* *map*))))

(co-sm map-sm sv-co CcOo-map Cco-rap)
((causal -relation (*sv* *co*))
(causal -rel ation (*co* *nmap*))
(causal -relation (*co* *rap*))))

(co-sm map-sm sv-co co- map)
((causal -rel ation (*sv* *co*))
(causal -relation (*co* *map*))))

(co-sm map- sm co- map)
((causal -relation (*sv* *co*))))
(remnd (*co* *map*))

(co-sm map-sm sv-co co-rap)
((causal -rel ation (*sv* *co*))
(causal -rel ation (*co* *rap*))
(remnd (*co* *map*))))

(sv-sm map-sm cc-Sv SvV-CcO CO- map)
((causal -relation (*cc* *sv*))
(causal -rel ation (*sv* *co*))
(causal -relation (*co* *map*))))

(sv-sm map-smrap-sv Sv-Cco CO-hap)
((causal -rel ation (*rap* *sv*))
(causal -relation (*sv* *co*))
(causal -relation (*co* *map*))))

(sv-sm co-sm cc-sv co-nap co-rap)
((causal -relation (*cc* *sv*))
(causal -rel ation (*co* *nmap*))
(causal -relation (*co* *rap*))))
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25. (GruleD25 (sv-smco-sSm map-sm cc-SV SV-CO CO-nap
co-rap)
= ((causal -relation (*cc* *sv*))
(causal -relation (*sv* *co*))
(causal -rel ation (*co* *nmap*))
(causal -relation (*co* *rap*))))

26. (GruleD26 (sv-smco-sm map-smrap-sv co-map)
= ((causal -rel ation (*rap* *sv*))
(remnd (*sv* *co*))
(causal -relation (*co* *map*))))

27. (GruleD27 (sv-smco-sSm map-sm cc-SVv CO-nap Co-rap)
= ((causal -relation (*cc* *sv*))
(remnd (*sv* *co*))
(causal -rel ation (*co* *nmap*))
(causal -relation (*co* *rap*))))

28. (GruleD28 (sv-smco-sm map-smrap-sv Sv-cCo)
= ((causal -rel ation (*rap* *sv*))
(causal -rel ation (*sv* *co*))
(remnd (*co* *map*))))

29. (GruleD29 (sv-smco-sSm map-sm cc-SV SV-CO CO-rap)
= ((causal -relation (*cc* *sv*))
(causal -rel ation (*sv* *co*))
(causal -relation (*co* *rap*))
(remnd (*co* *map*))))

30. (GruleD30 (sv-smco-sm map-smrap-sv)
= ((causal -rel ation (*rap* *sv*))
(remnd (*sv* *co*))
(remnd (*co* *map*))))

31. (GruleD31 (sv-smco-sm map-sm cc-SV cO-rap)
= ((causal -relation (*cc* *sv*))
(remnd (*sv* *co*))
(causal -rel ation (*co* *rap*))
(remnd (*co* *map*))))

RR Goal Ceneration Rules

(GrulerRl (map-sn

I
\

(rr-reflex *map*))

(GruleR2 (cc-sm

I
\

(neural -rr *cc*))

I
\

1

2

3. (GruleR3 (hr-sm (neural-rr *hr*))
4

I
\

(Gruler4 (tpr-sm (neural -rr *tpr¥*))
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5. (GruleR5 (co-smrap-smsv-sm =>
((causal -relation (*hr* *co*))
(causal -rel ati on-one (*co* *rap*))
(causal -relation (*rap* *sv*))))
6. (GruleR6 (rap-smsv-sm =>
((causal -rel ati on-one (*co* *rap*))
(causal -relation (*rap* *sv*))))
7. (G.rul eR7 (co-smrap-sm =>
((causal -relation (*hr* *co*))
(causal -rel ati on-one (*co* *rap*))))
8. (GruleR8 (rap =
((c ausal-relatlon-one (*rap* *sv*))))
9. (GruleR9 (co-sm =>
((causal -relation (*hr* *co*))
(causal -rel ati on-one (*co* *rap*))))
SS Goal Ceneration Rul es
1. (GruleSl (map-sm => ((gi ve-ssnap)
(ss-reflex (*map*)))
2. (Grules2 (cc-sm => ((give-ssneural)
(neural -ss (*cc*)))
3. (GruleS3 (hr-sm => (neural-ss (*hr*)))
4. (Grule+ (tpr-snm) => (neural-ss (*tpr*)))
5. (GruleSh (rap-sn) => (logic-relation (*rap*)))
6. (G ruleS6 (sv-sm => (logic-relation (*sv*)))
7. (GruleS7 (co-sm => (logic-relation (*co*)))

2.2 Strateqy Rules in Lisp Code

1.

2.

3.

(S_ruleD1

(S_rul eD2

(S_rul eD3

(causal -relation direction-correct) =>
(tutor-causality))

(causal -relation direction-incorrect) =>
(rem nd-relation))

(neural -control) =>
(tutor-neural control))
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(redefine-dr first-procedure) =>

(neural -rr) => (tutor-neural-rr))

(causal -rel ati on-one) =>
(tutor-causality-one))

(rr-reflex) => (tutor-effect-reflex))

(logic-relation) =>
(tutor-logic-relation))

(ss-reflex) => (tutor-ss-reflex))
(neural -ss) => (tutor-neural-ss))
(gi ve-ss-map) => (defi ne-ssnap))

(give-ss-neural) => (define-ss-neural))

=> (rem nd-rel ation))
=> (remnd-dr))

(tutor-neural -control)=>
(mechani sm (val ue))

(tutor-causality) => (determ nants)
(actual -determnant) (relation) (value))

(tutor-effect-reflex) =>
(baroreceptor-reflex)(val ue))

=> (reflex)(val ue))

(tutor-causality-one) =>
(determ nants)(rel ation)(val ue))

(tutor-logic-relation) =>
(rem nd-nv) (fol | ow (val ue))

(tutor-neural -ss) =>
(val ue-dr) (val ue-rr)(val ue-ss))

4. (S ruled
(tutor-rem nd))
5. (S_ruleRl
6. (S_ruleR3
7. (S_ruler4
8. (S rulesl
9. (S ruleS2
10. (S_rul eS3
11. (S_rule+A
12. (S_rul eSb5
2.3 Tactical Rules in Lisp Code
1. (T_ruleDl (rem nd-rel ation)
2. (T_ruleD2 (tutor-rem nd)
3. (T_ruleD3
4. (T_rul eDo6
5. (T_rulerRl
6. (T_ruleR2 (tutor-neural-rr)
7. (T_ruleR3
8. (T_rulesSl
9. (T_rules2
10. (T_rul eS3

(tutor-ss-reflex) =>
(refl ex-change) (val ue))
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D SCOURSE PLANNI NG RULES

1.1 Pedagogic Rules in English

Pedagogi c Def ault Rul es

1.

If the current state i s introduce
Then select tactical state or nove to tutor.

If the current state is tutor
Then check the topic is conpleted and nove to either
I ntroduce or conplete state

If the current state is conplete
Then check the subgoal stack for the next topic
and nove to introduce state

Pedagogi ¢ Meta Rul es

1.

If the prior state is tutor and topic is
not conpl et ed
Then nove to introduce state

If the prior state is either introduce or conplete
state and there is no nore topic in the stack
Then exit fromthe di scourse planning

1.2 Tactical Rules in English

Tactical Default Rul es

1.

If the current state is remnd-relation

Then di scourse strategy is rem nd,

content is current task, update student nodel
and nove to conpete-topic state

If the current state is explain

Then di scourse strategy is expl anation,
content is current task, update student nodel
and nove to conplete-topic state

If the current state is ask-question
Then di scourse strategy is question
content is current task,

and nove to eval -i nput state



10.

11.
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If the current state is requestion
Then di scourse strategy is requestion
content is current task,

and nove to eval -i nput state

If the current state is give-answer

Then di scourse strategy is give answer

content is (current task and correct answer),
and updat e student nodel, nove to conpl ete-topic

If the current state is correct-ack

Then di scourse strategy is positive-ack
content is (current task and student answer),
updat e student nodel, nove to conpl ete-topic

If the current state is incorrect-ack

Then di scourse strategy i s negative-ack
content is (current task and student answer),
updat e student nodel

If the current state is incorrect-ack-one

Then di scourse strategy is negative-ack-one

content is (current task and correct student answer,
i ncorrect student answer), update student nodel.

If the current state is incorrect-ack-one

Then di scourse strategy is negative-ack-one

content is (current task and incorrect student
answers), update student nodel, nove to give-answer

If the current state is give-hint
Then di scourse strategy is hint
content is current task, update student nodel.

If the current state is conplete-topic

Then di scourse strategy is conplete-topic
content is current task, update student nodel,
updat e topi c-conpl et ed.

Tactical Meta Rul es

1.

If the prior state is eval-input, and
student response is correct
Then npbve to correct-ack state

If the prior state is eval-input, and
student response is incorrect
Then nove to incorrect-ack state

If the prior state is eval-input, and
student response is half correct and first try,
Then nove to incorrect-one-ack state
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4. |If the prior state is eval-input, and
student response is both wong, and first try
Then nmove to incorrect-both-ack state

5. If the prior state is incorrect-ack and topic is
neural control,
Then nmove to give-answer state

6. If the prior state is
(i ncorrect-ack, incorrect-one-ack), topic
is causal -relation, and first try,
Then nove to give-hint state

7. If the prior state is incorrect-ack,

topic is causal-relation, and second try,
Then nove to give-answer state

2.1 Pedagogic Rules in Lisp Code

Pedagogi ¢ Default Rul es

1. (Pedagogi c_defaul t *introduce*
(subgoal *current _task*
updat e *t opi c- conpl et ed*
next state *tutor*))
2. (Pedagogi c_def aul t *tutor*
(subgoal *current _task*
updat e *t opi c- conpl et ed*
next state *conpl et e*))
3. (Pedagogi c_def aul t *conpl et e*
(subgoal *current _task*
updat e *one_t opi c*
next state *i ntroduce*))

Pedagogi ¢ Meta Rul es

1. (Pedagogi c_neta *mtutor*
(prior-state *tutor®*
precondi tion *t opi c- conpl et ed*
next _state *introduce*))

2. (Pedagogic_neta *m _conpl et e*
(prior-state (*introduce* *conpl et e*)
precondi tion *Nno_nore_topi c*

next _state *stop*))
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2.2 Tactical Rules in Lisp Code

Tactical Default Rul es

1. (Tactical _default *rem nd-rel ati on*
(text-style rem nd
cont ent *current _task*
updat e *smf
next state *conpl ete_topic*))
2. (Tactical _default *expl ai n*
(text-style expl anati on
cont ent *current _task*
updat e *smf
next state *conpl ete_topic*))
3. (Tactical _default *ask_questi on*
(text-style questi on
cont ent *current _task*
updat e *smf
next _state *eval -1 nput *))
4. (Tactical default *requesti on*
(text-style requestion
cont ent *current _task*
updat e *smr
next _state *eval -1 nput *))
5. (Tactical _default *eval -i nput *
(text-style ni
cont ent ni
updat e *smr
next _state nil))
6. (Tactical default *gi ve- answer *
(text-style gi ve- answer
cont ent (*current _task* *correct_ans*)
updat e *smf
next state *conpl ete_topic*))
7. (Tactical _default *correct-ack*
(text-style posi ti ve-ack
cont ent (*current _task* *student ans*)
updat e (*sn¥, *topic-conpl eted*)
next state *conpl ete_topic*))
8. (Tactical default *incorrect-ack*
(text-style negati ve- ack
cont ent (*current task* *student-ans*)
updat e *smf

next _state nil))



9. (Tactical default
(text-style
cont ent

updat e
next _state

10. (Tactical _default
(text-style
cont ent
updat e
next _state

11. (Tactical _default
(text-style
cont ent
updat e
next _state

Tactical Meta Rul es

1. (Tactical _neta
(precondition
prior-state
next -state

2. (Tactical _neta
(precondition
prior-state
next -state

3. (Tactical _neta
(precondition
prior-state
next -state

4. (Tactical _neta
(precondition
prior-state
next -state

5. (Tactical _neta
(precondition
prior-state

next-state

6. (Tactical _neta
(precondition
prior-state
next - state
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*i ncorrect-ack-one*
negati ve- ack- one

(*current _task*
*correct-one* *w ong-one*)
*snf

nil))

*give-hint*

hi nt

*current _task*
*snf

nil))

*conpl et e-t opi c*

conpl ete-topic

*current task*

(*snt¥ *topic-conpl et ed*)
nil))

*m.correct*
response-i s-correct
*eval -i nput *
*correct-ack*))

*m.incorrect*
response_i s_incorrect
*eval -i nput *
*incorrect-ack*))

*m.i ncorrect_one*
response_i s_incorrect
*eval -i nput *

*i ncorrect-ack-one*))

*m_i ncorrect _bot h*
response_i s_incorrect
*eval -i nput *

*i ncorrect-bot h-ack*))

*mfirst*

(causal first-try)
(*incorrect-ack*

*i ncorrect-ack-one*)
*give-hint*))

*m second*

(causal second-try)
*incorrect-ack*

*gi ve-answer *))
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APPENDI X B
TRACE OF A TUTORI NG SESSI ON
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This section displays a short exanple of the systemin
operation that describes what each conponent of the system
does, what kind of information it needs, and what is the
result after each step during the tutoring session. This
tutorial interaction begins after the |esson planning is
done, so that there are already |esson goals in the
goal st ack. The di scourse planner begins with the first topic
in the stack and when that topic is conpleted, continues with
the next topic. Let us assume that the current goal stack

contains the | esson goal, "CAUSAL-RELATION (RAP, SV)."

The | esson planner picks the goal and expand it into a

set of subgoals: "determ nants, actual-determ nant, relation

val ue." Then the discourse planner picks the first subgoal,

"determ nants,"” and the tutoring session begins as foll ows.

Pl anner: Picks first discourse plan, (ask: determ nants)
text-style = question, topic = (determ nants SV)
Calls text-gen: (question (determ nants SV))

Text- Gen. Cenerates a natural |anguage sentence,
"Wiat are the determ nants of Stroke Vol une?"
and returns it to the Planner.

Pl anner : Calls Screen Manager to display the sentence.
Screen Manager: Displays the sentence in the TUTOR wi ndow.
Pl anner: Passes the current topic to the I|nput-Understander,

"(question (determ nants SV)"
STUDENT: "HR, RAP'
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Screen Manager: Passes the student's answer to | nput

Under st ander .

I nput - Under st ander :

Pl anner :

Eval uates the student's answer, (HR RAP).

| f the answer is inconsistent with the question,
then it replies to the student "Pl ease rephrase,”
otherwi se return the answer to the planner in |ogic
form "(answer (determnants SV (HR RAP)))"

Passes the current topic with student's answer to

t he Student Mbdel |l er,
"((determnants SV) (HR_ RAP))"

St udent Mbdel | er:

Pl anner :

Text - Gen:

Pl anner :

Cal I s probl em sol ver, get correct_ans,
(RAP, CC), conpares (correct_ans wth student_ans),
updat es student nodel .

Checks student nodel, picks the discourse plan,
"(give: Positive-ack, Negative-ack)"

text-style = Positive-ack,

topic = (determinants SV (RAP))

text-style = Negati ve-ack,

topic = (determinants SV (HR))

Cal I s Text GCen:

"((Positive-ack (determ nants SV (RAP)),

Negati ve-ack (determnants SV (HR)))"

Cenerates a sentence,
"Right Atrial Pressure is the correct answer. Heart
Rate is not the correct answer."

Call's Screen Manager to display the sentence.

Screen Manager: Displays the sentence in the TUTOR wi ndow.
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Pl anner:  Picks the next discourse plan, "(give: hint)"
text-style = hint, topic = (definition SV)
Call's the Text_Gen: "(hint (definition SV))"

Text - Gen. Cenerates a sentence, "Renenber. Stroke volune is
t he anount of bl ood punped per beat."
and return it to the planner.

Pl anner : Calls Screen Manager to display the sentence.

Screen Manager: Displays the sentence in the TUTOR wi ndow.
Pl anner:  Picks the next discourse plan, "(ask: determnant)"
text _style = requestion, topic = (determ nant SV)
Call s the Text - Gen:

"(requestion (determ nants SV))"

Text - Gen: (Generates a sentence,
"Wiat i s the ot her determ nant of Stroke Vol une?"

Screen Manager: Displays the sentence in the TUTOR wi ndow.

Pl anner: passes the current topic to the I|nput-Understander,
"(requestion (determ nant SV)"

STUDENT. "Cardiac CQutput”

Screen Manager: Passes the student's answer to | nput
Under st ander .

I nput - Under st ander :
Eval uates the student's answer, (CO.
return the answer to the planner in logic form
"(answer (determnant SV (CO)"
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Pl anner: Passes the current topic with student's answer to
the Student Modeller: "((determnant SV) (CO)"

St udent Mbdel | er:
Cal I s probl em sol ver, get correct_ans:
conpares (correct_ans with student _ans),
updat es student nodel .

Pl anner:  Checks student nodel,
pi cks the next discourse plan,
"(give: Negative-ack)"
text-style = Negati ve-ack,
topic = (determnant SV (CO),
calls Text Cen:
"(Negative-ack (determnant SV (CQ))"

Text - Gen: (CGenerates a sentence,
“CQardiac Qutput is the wong answver."

Screen Manager: Displays the sentence in the TUTOR wi ndow.

Pl anner:  Picks the next discourse plan, "(give: answer)"
text-style = answer, topic = (determ nants SV)
Cal | Text Gen: "(answer (determnants SV))"

Text - Gen: Cenerates a sentence,
"Stroke Volune is deternmined by R ght Atrial
Pressure and Cardi ac Contractility."

Screen Manager: Displays the sentence in the TUTOR wi ndow.

* The next step for the discourse planner is to pick the next
subgoal , "actual -determ nant”, and process as above. A real
di al ogue produced by the system can be found in the Appendi x

C
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APPENDI X C
D ALOGUE PRODUCED BY THE SYSTEM
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This section shows an extended sanple of real dial ogue
produced by ClI RCSI M TUTOR. Two exanples will be displayed for
each stage (DR RR, and SS).

Exanple 1 for DR The |esson goal of the follow ng

di alogue is to tutor the student about the "causal
rel ati onship between Right Atrial Pressure and Stroke

Vol ume, " which is the sane exanple as in Appendi x B.

TUTOR> Wiat are the determ nants of Stroke Vol une?
STUDENT> RAP and HR
TUTOR> Right atrial pressure is the correct answer. Heart
rate is not the correct answer.
Renenber. Stroke Vol unme is the anount of bl ood
punped per beat.
Wiat is the other determ nant of Stroke Vol une?
STUDENT> Cardi ac CQut put
TUTOR> Cardiac Qutput is the wong answer.
Stroke Volune is determned by the Right Atrial
Pressure and the Cardiac Contractility.
Wiat is the actual determinant in this case?
STUDENT> CC
TUTOR> Wong, the actual determ nant of Stroke Volune in
this case is not the Cardiac Contractility.
The actual determ nant of Stroke Volune in this

case is Right Atrial Pressure.



STUDENT>
TUTOR>

STUDENT>
TUTOR>

STUDENT>
TUTOR>
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What is the relationship between Right Atrial
Pressure and Stroke Vol une?

negati ve

Wong, Stroke Volunme is not inversely proportiona
to Rght Atrial Pressure. Stroke Volune is directly
proportional to Right Atrial Pressure.

What is the correct value of Stroke Vol une?

i ncr ease

Wong, the value of Stroke Volune is not increased.
Consi der the value of Right Atrial Pressure.

What is the correct value of Stroke Vol une?

decr eased

Correct, the value of Stroke Volune is decreased.

Exanple 2 for DR The |esson goal of the follow ng

di al ogue is to tutor the student about the "neural control

vari able” in the DR stage.

TUTOR>

STUDENT>
TUTOR>

STUDENT>

Renenber the direct response occurs inmmediately and
produces physical changes in the system before any
reflex is activated.

By what nechanismis Heart Rate controll ed?

neur al

Correct, Heart Rate is controlled by the nervous
system What is the correct value of Heart Rate?

decr eased
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TUTOR> Wong, the value of Heart Rate is not decreased.
Remenber. Heart Rate is neurally controll ed.
Wiat is the correct value of Heart Rate?

STUDENT> nochange.

TUTOR> Correct, the value of Heart Rate i s unchanged.

Exanple 1 for RR: The |esson goal of the follow ng

di al ogue is to tutor the student about the "regul ated

vari able (Mean Arterial Pressure)” in the RR stage.

TUTOR> Renmenber the reflex corrects the regul ated
variable. What variable is regulated by the
bar oreceptor reflex?

STUDENT> Heart Rate

TUTOR> Wong, Heart Rate is not the regul ated vari abl e.
How i s the baroreceptor measured?

Agai n, what variable is regulated by the
bar oreceptor reflex?

STUDENT> NAP

TUTOR> Correct, the baroreceptor reflex regul ates Mean
Arterial Pressure.
What is the correct value of Mean Arteri al
Pressure?

STUDENT> decreased

TUTOR> Wong, the value of nean arterial pressure is not

decr eased.



129

Consi der the value of Mean Arterial Pressure in DR
What is the correct value of Mean Arteri al
Pressure?

STUDENT> i ncreased

TUTOR> Correct, the value of Mean Arterial Pressure is

i ncr eased.

Exanple 2 for RR The | esson goal of the follow ng

di al ogue is to tutor the student about the "neural control

vari abl e" in the RR stage.

TUTOR> Renenber that the refl ex changes the value of all
neurally controlled variables first, in order to
correct the change in arterial pressure.

Whi ch vari abl es are changed by the refl ex?

STUDENT> CC, HR and TPR

TUTOR> Correct, Cardiac Contractility, Heart Rate, and
Total Peripheral Resistance are changed by the
refl ex.

Wiat is the correct value of Heart Rate?

STUDENT> decreased

TUTOR> Wong, the value of Heart Rate is not decreased.

The value of Heart Rate is increased.
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Example 1 for SS: The |esson goal of the follow ng

dialogue is to tutor the student about the "logic rel ation”

in the SS stage.

TUTOR> The val ue of a neural variable is SSis the sane as
its value in RR because neural variables do not
change in DR except when one is a prinmary vari abl e.
What is the correct value of Heart Rate in DR?

STUDENT> nochange

TUTOR> Correct, the value of Heart Rate is unchanged in
DR Wiat is the correct value of Heart Rate in RR?

STUDENT> i ncreased

TUTOR> Correct, the value of Heart Rate is increased in
RR Wiat is the correct value of Heart Rate in SS?

STUDENT> i ncreased

TUTOR> Correct, the value of Heart Rate is increased in
SS.

Example 2 for SS: The |esson goal of the follow ng

dialogue is to tutor the student about the "physical

vari able" in the SS stage.

TUTOR> Renenber cardiac output decreased in DR it
increased in RR
What nust the value of Cardiac Qutput followin SS?
STUDENT> rr



TUTOR>

STUDENT>
TUTOR>
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Wong, the value of Cardiac Qutput doesn't follow
the value of Cardiac Qutput in RR The val ue of
Cardi ac Qutput nust follow the value of Cardiac
Qut put in DR

What is the correct value of Cardiac Qutput?

decr eased

Correct, the value of Cardiac Qutput is decreased.
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