Approximate Min-Power Strong Connectivity

G. Calinescu

Abstract

Given a directed simple grapfi = (V, E) and a cost functior: : £ — R, the power
of a vertexu in a directed spanning subgragh is given bypy (u) = max,,cg#) c(uv), and
corresponds to the energy consumption required for wisgledeu to transmit to all nodes with
uv € E(H). Thepowerof H is given byp(H) = >, v pa(u).

Power Assignment seeks to minimizgéH ) while H satisfies some connectivity constraint.
In this paper, we assum® is bidirected (for every directed edgec F, the opposite edge ex-
ists and has the same cost), whileis required to be strongly connected. This is the original
power assignment problem introduced by Chen and Huang i, 188 proved that a bidirected
minimum spanning tree has approximation ratio at most 2 (giight). In Approx 2010, we
introduced a greedy approximation algorithm and claimeatia 0f 1.992. Here we improve the
algorithm’s analysis td .85, combining techniques from Robins-Zelikovsky (2000) faeiSer
Tree, and Caragiannis, Flammini, and Moscardelli (2007}He broadcast version of Power As-
signment, together with a simple idea inspired by Byrka,m@omi, RothvoR3, and Sanita (2010).

The proof also shows that a natural linear programming &giar, introduced by Calinescu
and Qiao in Infocom 2012, has integrality gap at mio86.

1 Introduction

There has been a surge of research in Power Assignment prelsiece 2000 (among the earlier
papers are [17, 21, 12]) This class of problems take as indureated simple grapty = (V, E') and

a cost functionr : £ — R,. Thepowerof a vertexu in a directed spanning simple subgrafihof

G is given bypy (u) = max,.cpm) c(uv), and corresponds to the energy consumption required for
wireless node: to transmit to all nodes with wv € E(H). Thepower(or total powe) of H is given

by p(H) = 3,y pr(u).

The study of the min-power power assignment was started ey @hd Huang [8], which consider,
as we do, the case whdriis bidirected, (that isyv € FE if and only ifvu € E, and if weighted,
the two edge have the same cost; this case was sometimes ‘sgilemetric” or “undirected” in the
literature) while H is required to be strongly connected. We call this probMm-Power Strong
Connectivity We use with the same name both the (bi)directed and theegtdd version ofs. [8]
prove that the bidirected version of a minimum (cost) spaghiee (MST) of the input grap&y’ has

*These results were announcedint p: / / ar xi v. or g/ abs/ 1205. 3397 and in a preliminary version in [4]
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power at most twice the optimum, and therefore the MST allgarihas approximation ratio at most
2. This is known to be tight (see Section 2).

We improve the approximation ratio 85 by combining techniques from Robins-Zelikovsky
[18, 19] for Steiner Tree, Caragiannis, Flammini, and Modebi [6] for the broadcast version of
symmetric Power Assignment (assuming a bidirected (V, E, c¢) and a “root’u € V' is given, H
must contain a directed path fromto every vertex ofy), together with a simple idea inspired by the
journal submission of Byrka, Grandoni, Rothvol3, and Zeftitis idea was not explicit enough in the
conference version [3]).

Very restricted versions of Min-Power Strong Connectiiive been proven NP-Hard [14, 10, 7].
Other than [4], we are not aware of a approximation ratiododttan 2, except for [7], (where :

E — {A B}, for0 < A < B; see also [4]), [2] (where is assumed to be a metric), and the exact
(dynamic programming) algorithms of [14] for the specifiseavhere each vertex 6f maps to a
point on a line, and(uv) is an increasing function of the Euclidean distance betwieerimages of

u andwv. A related version, also NP-Hard, asks fdrto be bidirected (also called “undirected” or
“symmetric” in previous papers). This problem is called Miower Symmetric Connectivity, and
the best known ratio 05/3 + ¢ [1] is obtained with techniques first applied to Steiner Trehen

c: E — {A, B} one gets3/2 with the same method [16]. In fact, many but not all powergssient
algorithms use techniques from Steiner Tree variants oon€imes non-trivial) reductions to Steiner
Tree variants. For example, Caragiannis et al [6] uses tlative greedy heuristic of Zelikovsky
[22]. New interesting techniques were also developed fargg@ssignment problems, as in [15], an
improvement over [13].

The existing lower bound of the optimum, which we use, is & of the minimum spanning tree
of GG. Indeed (argument from [8]), the optimum solutio®T" contains an in-arborescence rooted at
v, for somev € V, and then, for alk € V' \ {v}, popr(u) is at least the cost of the directed edge
connectingu to its parent in this in-arborescence, whose total costlesaat the cost of the minimum
spanning tree ofs.

We also use a relative greedy method as in [22, 18]. The tquaksriof Robins-Zelikovsky [18]
were rarely used, even though this paper has hundreds tbogathe vast majority only citing the
approximation ratio (improved by now in [3]). We use the matstructures of [6] to improve over the
minimum spanning tree: these atars directed trees of height 1. Our second lower bound (imptove
over [4]) comes from “covering” the edges of the a spannieg bry the stars of the optimum solution.
With precise definitions later, we just mention that an edge toee is covered by a star if itis on a
path of the tree between two vertices of the star. A low-a@sttional covering can be easily obtained
from either optimum or the linear programming relaxatianour earlier work [4], we used an integer
cover which was extremely hard to obtain. Using fractiomaders (inspired by the submitted journal
version of [3]) is the only significant difference of this san versus [4]. Also, interestingly, the
submodularity of the covering function is only used impict

2 Preiminaries

In directed graphs, we usec to denote a directed edge. In a directed graplanincoming arbores-
cencerooted atr € V(K) is a spanning subgrapgh of K such that the underlying undirected graph
of T' is a tree and every vertex @f other thanr has exactly one outgoing arcmn

Given an arcry, its undirected versioms the undirected edge with endpointandy. Arcs zy
andyx areantiparallel, and the antiparallel arcs resulting from the undirecteyeed areuv andvu;
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Figure 1: Tight example for the performance ratio of the M&Jodathm. In both cases, the solution
is bidirected and the undirected version of the arcs of thatisa is given by solid edges. For each
vertex, its power in the solution is written next to it. (a)eTMST-based power assignment needs total
power2n. (b) Optimum power assignment has total powér + ¢)> + (n — 1)e> + 1 — n + 1.

if undirected edge:v has cost, then each of the two antiparallel arcs resultmg fundirected edge
uv have this cost. We sometimes identify a spanning Tredth its set of edges.

An alternative definition of our problem (how it was origitygbosed) is: we are given a simple
undirected grapli; = (V, E') and a cost functior : £ — R,. A power assignment is a function
p:V — R,,anditinduces a simple directed graflip) on vertex sel’ given byzy being an arc of
H(p)ifandonlyif{z,y} € Eandp(z) > c({z,y}). The problem is to minimiz&_ _, p(u) subject
to H(p) being strongly connected. To see the equivalence of theitifingiven directed spanning
subgraphi, define for eachu € V' the power assignmeptu) = py(u).

The following known example (see Figure 1) shows that thie i@t2 for the MST algorithm is
tight. Consider2n points located on a single line such that the distance betweersecutive points
alternates between 1 ard< 1, and let the cost function be the square of the Euclidean distance
Then the minimum spanning tree MST connects consecutigdhbers and has powg(MST) = 2n.

On the other hand, the bidirected tfEewith costly arcs connecting each other node (see Figurg 1(b)
has a power equal to(7") = n(1 + €)*> + (n — 1)¢? + 1. Whenn — oo ande — 0, we obtain that
p(MST)/p(T") — 2. On the other hand (this argument of [8] gives their ratio pff@r any input
graph, the power of the bidirected minimum spanning #ras at most

p(T) = max  c(vu) <Z Z u) = 2¢(T) < 2o0pt

ulvue E(T
eV veV ulvue E(T)

whereopt = p(OPT) for an optimum solutiorOPT (the last inequality is the first lower bound from
the introduction).

The example above may give intuition on how Power Assignni@ml even more specifically,
Min-Power Symmetric Connectivity - the variant whéhmust be bidirected mentioned in the in-
troduction) relates to thé-restricted Steiner trees, with stars (trees of height Riptathe place of
restricted components. Another example from [1], (seeféi@uand the following paragraph), shows
how Min-Power Strong Connectivity differs from Min-PoweyrBmetric Connectivity.

The power of a Min-Power Strong Connectivity optimum salatcan be almost half the power
of a Min-Power Symmetric Connectivity optimum solution fbe same instance: we present a series
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Figure 2: Total power for Min-Power Strong Connectivity danhalf the total power for Min-Power
Symmetric Connectivity. In both cases, the solution is@spnted by solid segments (arrows meaning
not bidirected), and next to each vertex its power is givah Minimum power assignment ensuring
strong connectivity has total power+ n’¢* = n + n?-5 = n + 1. (b) Minimum power assignment
ensuring symmetric connectivity has total pow2t — 2) + (n(n — 1) +2)e* = 2n—1— L + % the
solution is bidirected and the undirected version of the af¢he solution is given by solid segments.

of examples illustrated in Figure 2. Thegn + 1) vertices are embedded in the planewigroups of

n + 1 points each. Each group has two “terminals” (representeligs circles in Figure 2), and the
2n terminals are the corners of a reguargon with sides of length 1. Each group has anotherl
equally spaced points (dashes in Figure 2) on the line segoetween the two terminals. The cost
functionc is the square of the Euclidean distance. It is easy to sea tiatimum power assignment
ensuring strong connectivity assigns a power of 1 to ond tieianinal in each group and a power of
€2 = (1/n)? to all other points in the group - the arcs going clockwisee Tdtal power then equals
n + 1. For symmetric connectivity it is necessary to assign a pa¥é to all but two of the thick
points (a less than optimal solution uses in each of all botdvoups one single vertex to connect to
the two neigboring groups, but then the power of this vetetinostl .52 > 2 for largen) and ofe? to
the remaining points, which results in total powen — 2) + (n(n— 1) +2)e* = 2n—1—1/n+2/n.
Also, keep in mind that the minimum spanning tree solutiom $symmetric solution.

3 TheApproximation Algorithm

This section is dedicated to proving the main result of tliggy:

Theorem 1 There exists a polynomial time algorithm for Min-Power &gaConnectivity with ap-
proximation ratiol.85.

The outline of the proof of Theorem 1, is as follows:
1. In the first subsection, we present the greedy algoritmatguled by necessary notation.
2. Then we establish (Lemma 3) that the algorithm’s outpatrisngly connected.

3. A second subsection gives the analysis. It starts witiméwelower bound, the fractional cover
of tree edges by stars.



4. Finally, Lemma 5 shows how the Greedy method of [18] (agabWith new parameters) com-
bines the two lower bounds (the one above, and the cost of thienoom spanning tree) to
obtain the claimed approximation ratio.

3.1 Thealgorithm

Our algorithm uses a greedy approach similar to [22, 18, 63t Il be the undirected minimum
spanning tree of/. Let opt = p(OPT) for an optimum solutiorOPT'. The fact thaf” has minimum
cost will be not further used, except to naie > ¢(T). Let T be the bidirected version df.

Foru € V andr € {c(uv) | uv € E}, let S(u, r) be the directed star with centercontaining all
the arcsuv with c(uv) < r; note that- is the power of5, also denoted by(S). For a directed stas,
let E(S) be its set of arcs and (S5) be its set of vertices.

For a givenS(u, r), let Q(u, r) be the set of edgesof T" such that there exist, y € V(S(u,r))
with e on the path fromr to y in 7. Let Q(u,r) be the set of arcs of 7" such that there exist
z € V(S(u,r)) with e on the directed path from to z in T; it is easy to verify that the undirected
version ofQ(u, r) is Q(u, r).

For a collectionA of directed starsS(u;, r;), defineQ(A) = U, e @(wi, i) and f(A) =
>ecqa) ¢(e). We sometimes writé)(S) instead ofQ)({S}). As a remark (we do not use this ex-
plictly in the proofs) The functiorf(.A) is known to be monotone and submodular (see an example
in [20], pages 768-769). F&f = S(u, ), f4(S) = f(AU{S}) ~ F(A) = Xocommon <€) =
> eer(s) cle), wherel4(S) is defined to be those arcs @fu, ) for which the undirected version is
notinQ(A).

The algorithm starts wit/ = T as the set of arcs, and adds directed stars to the colledtion
(initially empty) replacing some arcs frod¥ to reduce the sum of costs of the arcshihplus the
sum of the powers of the stars . For intuition, we mention that this sum is our upper bound on
the power of the algorithm’s output. To simplify later prepthe algorithm makes changes (adding
directed stars and removing arcs fraif) even if our sum stays the same. Assume belowifat= 1.

To be precise:

Algorithm Greedy:
A0, M« T
While (f(A) < ¢(T") ) do
(u,7) - argmax,, ., fa(S(u',r")) /7
M < M\ 14(S(u,r))
A— AU{S(u,r)}
OutputJg 4 E(S) UM

Each of the figures 3 and 4 shows two iterations of the algorith-or intuition, we mention
that this algorithm “covers” undirected edges of the mimmspanning tree by “stars” and when
implemented, it is a variant of Chvatal’s [9] greedy algamitfor Set Cover.

Fact 2 Note that, unlesg(A) = ¢(T'), a starS(u, r) always exists for whiclf 4(S(u,r)) > 0 and
fa(S(u,r))/r > 1. Indeed, as long as a pair of antiparallel aresande” are in M, we can pick as
next starS(u, r) the one given by being the tail ofe’ andr = ¢(¢’).
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Figure 3: Costs are not relevant here. (a) Inifial (b) Solid arcs give J, , £(5) U M after adding

to A the starS; (with thick solid arcs) centered at The arcs removed from/ are dashed. (c)
Solid arcs give J,. 4 E(S) U M after adding taA the starS, (with thick solid arcs) centered gt
The arcs removed fromi/ are dashed. Note that the algorithm does not remove@ar©nce an arc
from a pair of antiparallel arcs &f is removed, the algorithm keeps the other arc, since there ar
cases (as in Figure 4) when not all arcs{;tﬁh, r) can be removed while keeping strong connectivity,
and benefiting from removing arcs whose antiparallel arcai@sady been removed froffi (when
possible) destroys the submodularity implictly neededhengroof of the approximation ratio.

Thus, as written, the algorithm can have iterations that alochange the output, i.e. the star
S(u,r) above could have just the edgeand be added tal while ¢’ is removed from\/.

Lemma 3 The output of5reedy is a spanning strongly connected subgrapld-of

Proof. We prove the following invariantX :=  J_ , £(S5) UM gives a spanning strongly connected
subgraph whenever thehile condition is checked by the algorithm. Moreover, supposeaemgove
from T all edges for which both antiparallel arcs appeabinsplitting’l” in components with vertex
setsT;, for some range af. We prove that for everyand every:, y € T;, there exists a directed path
P from x to y using only vertices of ; and arcs from¥X.

Proving that the invariant holds is done as always by induactin the number of iterations. The
invariant is true before the first iteration, when ed¢hhas just one vertex, so consider the moment
when a starS = S(u,r) is added taA. Figure 5 may provide intuition. We add the arcs for
z € V(S) \ {u}, while removing fromM/ (and from.X) the arcsry for whichyz € M and there is
somez such thatey is on the directed simple path froato = in 7. The same effect is obtained if we
do this change for eache V(S) \ {u} one after the other, instead of all sucht the same time.

Let P be the simple path ifi" from u to z, and letx;y;, for 1 < i < k, be, in order, the arcs
of M on P such that alsq;z; € M. Thus the change t& consists of adding the ancz and
removing all the arcs;y;; note that ift = 0 no arc is removed and our induction step is complete.
Let M/ = M\ {z1y1, ..., xpypt @nd X' = X \ {z1y1, ..., zryx} U {uz}. We need to show that’
and M’ satisfy the conditions from the induction hypothesis.

Let us splitT into components by removing all the undirected edgesvith both antiparallel
arcszy andyzx in M (in particular all the undirected edgesy;, for 1 < i < k), resulting in the
componentq;.

By induction, X contains the following directed path#; from x; to u, P, from x5 to y, ...,
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Figure 4: Costs are not relevant here. (a) Initial (b) . 4 £(S) U M after adding to4 the starS;
(with thick solid arcs) centered at and removing arcs from/. (c) Solid arcs give Jo. 4, E(S) UM
after adding taA the starS, (with thick solid arcs) centered gt The arcs removed from/ are
dashed. Note that the algorithm cannot remove:areven thoughuv € Q(Sg), sinceu and v
become disconnected.

Py, from x; to y,._1, and P, ; from z to y;, and each of these paths stays in the same comp@hent
of the split (done in the previous paragraph)ioby M. Thus none of these paths uses; or y;z;.
Putting together these paths, the ayges, for 1 < i < k, and the ara.z, we have a directed cyclé
containing none of the aresy;, for 1 < ¢ < k. Any arc removed can be replaced, when discussing
connectivity, with a path around the cyalg and soV, X”) is strongly connected, as required.

We now splitT" into components by removing all the undirected edggsvith both xy andyx
in M’, obtaining components;. Note that none of,, 1 < i < k + 1, from above, has an arc with
endpoints in two distinct componerit$ (asZ; is the union of severdl}). As all the edges on the
path fromu to z in T" do not have anymore both antiparallel arcs\ith, all the vertices on this path
includingu, z and allz;, y; are in the same componeént of the split of 7" by M. Thus all the arcs of
C have their endpoints in the same component of the split by 1/'.

We prove that for every and everyr,y € T7, there exists a directed patif from x to y using
only vertices off} and arcs fromX’. First, let us describe a pathfrom z to y using only arcs ofX:
find the path from toy in 7', and letz;w;, for 1 < i < ¢, be, in order, the arcs dff on P such that
alsoz;w; € M. Wheng = 0, z,y € T for somej (same component of the split @fby 1/) and by
induction, a pathP from x to y exists inX using only vertices insid&;. We pick”" = P, and indeed
P’ only uses arcs oK’ since the arcs oK \ X' (same set a8/ \ M’) cross from one component to
another of the split of" by M. Assume now; > 0. Notice that all unordered paitsw; belong in
the set of unordered pairsy, on the simple path from to v mentioned earlier, or else we cannot
have thatr andy belong to the sam@ of the split of7" by M’. Also, by induction,X contains the
following directed pathsP; from z to z;, P, from w; t0 2y, ..., P, from w,_, to z,, andP,,; from
w, to y, and each of these paths stays in the same component of thefsplby A/. Thus none of
these paths usesw; or w;z;. Next, obtainP’ by replacing inP, if necessary, arcs of \ X’ (same
set asM \ M’) by arcs ofC', staying, as shown in the previous paragraph, in the samp@oant of
T split by M’. Note thatP’ indeed uses only vertices @f. This completes the induction stepm



Figure 5: Rounded rectangles show the componénptdashed beforé' is added taA (the split of

T by M) and solid afterward (the split &f by M’). Arcs of M crossing from one component to
another are given by thin arcs, by the four thick arcs:z;, uzs, uz3, uz4, and the dashed arcs are
those removed from/ whensS is added.

3.2 Approximation ratio analysis

For a collectionA of directed stars(u;, r;), definep(A) = >4, ,.)ca 7> the total power used by
the stars inA4.

Lemma4 Let B be an arbitrary collection of stars, and be an arbitrary spanning tree. There
exist non-negative coefficients; (over the collection of all possible starS(u,r)) such that
Mg s fs(S) > e(T) — f(B) andY g x5 p(S) < (1/2)opt.

Proof. We assume that(T") — f(B) > 0, or elsezs = 0 for all S will do. Assignzs = (1/2) for
every star ofOPT, andzgs = 0 otherwise. Therefor® x5 p(S) = (1/2)opt.

Recall thatQ(B) = U, e5 @ui, i) and lete € T\ Q(B). If we removee from T', we
create two subtreés, andT,,, whereu andv are the endpoints ef OPT, being strongly connected,
has at least one sta&k, with the center inl/(7,,) and one of its other vertices W (7,). Thene €
Q(BU{S,}). Similarly, OPT has at least one st&f, with the center in/(7,) and one of its other
vertices inV (T,). Thene € Q(B U {S,}). Note thatS, # S, (the two centers are in two disjoint
vertex sets).

We have:

dousfs(S) = Djas Y, o)
s s

e€Q(BU{SH\Q(B)

= Z c(e) Z Tg

eeT S| ecQ(BU{SH\Q(B)

= Z c(e) Z Tg

e€T\Q(B) S| e€Q(S)

Y ce)=c(T) - [(B),

e€T\Q(B)

v
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where the inequation is given by the two distinct stdysand S, described above for every edge
e € T'\ Q(B). This completes the proofs

The example from Figure 1 shows that a constant better (s#fian1/2 is not possible in the
statement of Lemma 4: witB being empty, we have that7") andopt are circan, and for each star
S of optimum,p(S) is circal and f(.S) circa?2.

Now we need the following lemma, whose proof is obtained fRwobins-Zelikovsky as presented
in [11] by changing what quantities represent and some patens) together with a “fractional cover”
idea from the submitted journal version of [3].

Lemmab5 Assuming that for the minimum spanning tiigeconstant) < « < 1, and for any collec-
tion of starsB, there exist non-negative coefficiefits) such that) " x5 fz(S) > ¢(T") — f(B) and
Y s s p(S) < aopt, whereopt is the power of the optimum solution, the Greedy algorithougput
has power at mostopt wheres =1+ a + aln(1/a).

Proof. First, if ¢(T") < aopt, then before any improvement we have a solution of cost at Paogt
and2a < . Thus in the following we assum®t > ¢(T') > «opt > 0 (the first inequality is due to
T being a minimum spanning tree).

Note that at the end of the algorithi, contains exactly one of the two antiparallel arcs for each
edge ofT". Then, for the final collection of star4, the outputH satisfies

p(H) < (T) + p(A) (1)

as it follows by summation over € V' from

pr(u) = maxegc(uv) < Z c(uv) + Zp(S),

wweM SeA

which holds for every vertex (recall thatt(H) = (Jg. 4 E(S) U M).

Let Sy, Sy, ..., S, be the stars picked by our algorithm andJgt for 1 < i < ¢, be the collection
of the firsti stars; also let for conveniencé, be the empty collection. Fdr< i < g, letp;, = p(S;),
and letf; = f4,_,(S;). Note then that for all, sincef4, ,(S;) = f(A;) — f(Ai_1), we have
A =35, i

If f; =0, thenp; = 0 and Equation 2 below holds. Otherwise, the greedy choickeéllgorithm
and the assumptions of the theorem o= A;_; give:

aopt
(T) =0 f

Define the functiory : [0..c(T)] — [0..1] by g(z) = aopt/(c(T) — x) for x < ¢(T) — copt, and
g(x) = 1forz > ¢(T) — aopt. Then from Equation 2 and Fact 2 (that< f;), we obtain:

2;21 I3
P < / . g(x)dx.
Py

pi < fi (2
c

Therefore (see Figure 6):
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Figure 6: The functiory(z) is given by the solid curve)_! | p; is the shaded area, in rectangles

of width f; and heightﬁ%. In this particular pictureqopt = (2/3)c¢(T') and therefore the

integral is circad.94¢(T).

q c(T) c(T)—aopt aopt c(T)
pi < / g(x)dx = / ———dx + / 1dx
; 0 0 oT)—= c

(T)—copt

= (a0t (e(r) ~ ) | """ 4 (o(T) — (e(7) — aop)
— (~a0pt) (n(e(T) = ((T) — aopt)) ~ ne(7) + aopt = aopt (141 ).

Using this and:(T) < opt and Equation 1 (recall tha{.A) = >"7 | p;), we obtain that the power
of the output is at most

2@) < opt(1+a+aln(l/a))

c(T) + aopt (1 +1In

finishing the proof. m

Based on Lemmas 3 and 4, Theorem 1 follows immediately fraefdht thate = 1/2 makes
f < 1.85. Note also thaty < 1 implies5 < 2, which follows froma(1 + In(1/a)) < 1, which is
equivalenttdn(1/a) < 1/a — 1, a fact that holds for allk < 1. Our earlier work [4] hadv = 7/8.

4 Linear Programming Relaxation

While not improving the approximation ratio of Greedy, thaay allow for further LP-based algo-
rithm. The following natural Integer Linear Program is edllP2 as in [5]. We adapted the notation,
and have variablegs for every statS = S(u, ). The idea is thays being 1 represents thétis a star
of the optimum solution. We say that a sfar= S(u,r) € 6~ (X),for X CV,0 A X AV iff u ¢ X
andV(S) N X # 0.

minimize » ~ ys p(S) subject to
S

10



Y oys>1 VXCVAXAV 3)
Ses—(X)

ys >0 V.S (4)

ys € 7 v S (5)

LP2is the linear relaxation of IP2, that is, the linear prograneg by exactly the same constraints
except the last one. LP2 has exponentially many “cut” camnsis, but using standard methods they
can be replaced them by “flow” constraints, Indeed, [5] shthesdetails and obtain@(mn?) non-
zero entries in the linear programming matrix. Thus LP2 aasdived in polynomial-time.

Let opt* be the optimum of the linear program LP2 for a given instaii¢en clearlyopt* < opt
and [5] proves thabpt < 2o0pt*. We do better here. First, Lemma 4 has a straightforwardtatiap:

Lemma6 Let B be an arbitrary collection of stars, and be an arbitrary spanning tree. There

exist non-negative coefficients; (over the collection of all possible starS(u,r)) such that

>ssfa(S) = o(T) — f(B) and}_ g zs p(5) < (1/2)opt”.

Proof. We assume thai{T") — f(B) > 0, or elserg = 0 for all S will do. Let yg (forall S = S(u,r))

be a an optimum solution of LP2. Assigp = (1/2)ys for all S; therefored x5 p(S) = (1/2)opt*.
Recall that)(B) = Us,, .,y @(ui, ;) and lete € T'\ Q(B). If we removee from 7', we create

two subtreed’, andT,, whereu andv are the endpoints af Constraints 3 give:

Yo as>1/2

Sed—(V(Tw))

> wg>1/2

Sed—(V(Tv))

Note thaty— (V' (T,,)) andd—(V (7,,)) are disjoint sets since a star in the first set has its cenié(1h),
while a star in the second set has its centér ). Moreover, any stas € 6~ (V(7,,))Udé—(V(T,))

hase € Q(5). Thus

S| e€Q(S)

and

From now on we coppied from the previous proof:

Z:csfg(S) = Z:cs Z c(e)

e€Q(BU{SH\Q(B)

= Z c(e) Z Ts

eeT S | ecQ(BU{SH\Q(B)

= Z c(e) Z Ts

e€T\Q(B) S| eeQ(S)

> 3 cle) = o) - £(B).

e€T\Q(B)

where the inequation is from Inequality (6). This complétesproof. m
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The example from Figure 1 again shows that a constant sntiadlet /2 is not possible in Lemma
6: with B being empty, we that for each starwith f(S) > ¢, p(S) > (1/2)f(S). Thus, if
Ss s f(S) 2 o(T), thenY g s p(S) > (1/2)(e(T) — ne?) > (1/2)(1 —y)opt > (1/2 —~)opt*,
where we used that the example can be made to bgié — ) < (¢(T) — ne?), for anyy > 0, by
first makingn large and them very small. Asy can be made arbitraly small, we can see that indeed
a constant smaller thalry2 is not possible.

It is also proven in Section Il of [5] (see also below) th@f) < opt*; then Lemma 5 goes through
with opt* instead ofopt. Therefore we conclude that the output of Greedy is at m&stpt*.

We include for completeness:
Lemma7 LetT be a minimum spanning tree (d. Thenc(T') < opt*.
Proof. The dual of LP2, denoted HyP2, has a variablerx for everyX c V with ) # X # V.

maximizez ax subject to
X

S ax<p(S) ¥ )
X:5e€6—(X)

Pick an arbitraryr € V' as a root, and considé? C £ (F is treated as a directed set of edges
from now until the end of the proof) a minimum-castooted incoming arborescence(ivi, E£); note
thatc(F') = ¢(T).

From Edmonds’ minimum-cost arborescence algorithm, wainlthatc( F') equals the optimum
of the linear progranbP3, given below. DP3 has a variabls for every X C V withr € X and
X #V.

maximizez Bx
X
subject to Z Bx <c(vu) VoueFE (9)
X:wued— (X)
Bx >0 VX (10)

Moreover, it is known [20] (Subsection 52.4a in page 899, @edisely the statement 52.14) that
there is a DP3 optimum solution such that the family oftsetith 3, > 0 is laminar (in the linear
programs of [20], the sets not containing- give the variables of the DP3 equivalent). By definition,
in a laminar family of sets, any two sets are disjoint, or eam¢d one in the other. For us, this laminar
property implies that, for any € V' \ {r}, the family of thoseX with v ¢ X andfx > 0 is achain
family, meaning that for all suck’, X, eitherX c X’ or X’ C X. If a DP3 feasible solution is such
that for allv € V' \ r, the family of setsX with v ¢ X andgx > 0 is a chain family, we calb achain
solution

Claim 8 For any instance, a feasible chain DP3 solution gives risa teasible DP2 solution by
settingay = fx if r € X, andax = 0 otherwise.
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Proof. We only need to check that Constraints (7) are satisfied. &icarbitrary stas = S(v,r)
and consider the sefs with ax > 0 andS € 6~ (X). Using the chain property far, among these
X, there is one, say, that is included in all. Note that € Y, and also there is an € V/(.S) with
z €Y (z = ris possible). Then € X for all the setsX with ay > 0 andS € 6~ (X). We have

Z ax = Z Bx

X:Se€6—(X) X:reXASed—(X)

= > Bx

X:{r,z}CXAS€d—(X)
< ) Bx= ). Bx
X:zeXNvgX X:wzed—(X)
< elvz) <y

with the last inequality following fromx € V'(.S) and the previous inequality from Constraints (8.
Thusopt(DP2) > opt(DP3). We conclude the proof of Lemma 7:
opt* = opt(LP2) = opt(DP2) > opt(DP3) = c¢(F) = ¢(T),
with the two middle equalities given by linear programmingality and Edmonds’ primal-dual algo-
rithm for constructing arborescencea
We also include a series of examples showing that the intgggap of LP2 is at leas8/7.
See Figure 7. We have + 1 verticessy, s1, . . ., s,, and anothe#n vertices:t, ..., t,, uy,..., Uy,

v1,...,Un, @ndzy,. .., z,. We have3n edges cost: t;u;, u;v;, andv;t;. Another6n edges have cost
1:forall1 <i<n,edges;s;_1, u;S;_1, U;z;, V;Z, t;s;, andv;s;.

So t S1 23 Sa

21 22

Figure 7:
An example for the lower bound on the integrality gap. With= 2, we use solid segments to
represent the edges of cdstand dotted segments to represent the edges oficost

An integral solution has cost+ 4n, assigning power to eachs; and each;, as well as, for each
1 <i < n, two of the three vertices, u;, v; (indeed, if only one of;, u;, v; has powen, then either
s;_1 Or s; Or z; is not reachable frony).

A fractional solution assigns coefficienjs = 1 for all S with power0, or for S having powerl
and centes; or z;, for all i. Also, if S = S(¢;,1),0rS = S(u;, 1), 0rS = S(v;, 1), ys = 1/2. One
can easily check this fractional solution is feasible, amés objectiv@n+1+3n(1/2) = (7/2)n+1.
Lettingn — oo, we obtain an integrality gap of at least7.
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5 Conclusions

This work greatly simplifies and at the same time improveseaulier work [4]. Instead of Greedy
we could have used the the iterative randomized roundingydtdet. al [3] for Steiner Tree, with
the same approximation ratio. However, we do not see funth@rovements coming from using their
full range of techniques, since we do not see the equivafeheaconcept of “loss” used explicitly by
[18] and implicitly by [3].

As part of the simplification of proofs, the submodularitytbé “covering” functionf(.A) is
not used explicitly in the proofs (it is implicitly proved drused in Lemma 4). However, it should
be noted that the relative greedy method of Zelikovsky [2%ies on the more general concept of
submodularity (plus the lower bounds) and may have widelicplity.
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