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Abstract

Given a directed simple graphG = (V,E) and a cost functionc : E → R+, the power
of a vertexu in a directed spanning subgraphH is given bypH(u) = maxuv∈E(H) c(uv), and
corresponds to the energy consumption required for wireless nodeu to transmit to all nodesv with
uv ∈ E(H). Thepowerof H is given byp(H) =

∑

u∈V pH(u).
Power Assignment seeks to minimizep(H) while H satisfies some connectivity constraint.

In this paper, we assumeE is bidirected (for every directed edgee ∈ E, the opposite edge ex-
ists and has the same cost), whileH is required to be strongly connected. This is the original
power assignment problem introduced by Chen and Huang in 1989, who proved that a bidirected
minimum spanning tree has approximation ratio at most 2 (this is tight). In Approx 2010, we
introduced a greedy approximation algorithm and claimed a ratio of1.992. Here we improve the
algorithm’s analysis to1.85, combining techniques from Robins-Zelikovsky (2000) for Steiner
Tree, and Caragiannis, Flammini, and Moscardelli (2007) for the broadcast version of Power As-
signment, together with a simple idea inspired by Byrka, Grandoni, Rothvoß, and Sanità (2010).

The proof also shows that a natural linear programming relaxation, introduced by Calinescu
and Qiao in Infocom 2012, has integrality gap at most1.85.

1 Introduction

There has been a surge of research in Power Assignment problems since 2000 (among the earlier
papers are [17, 21, 12]) This class of problems take as input adirected simple graphG = (V,E) and
a cost functionc : E → R+. Thepowerof a vertexu in a directed spanning simple subgraphH of
G is given bypH(u) = maxuv∈E(H) c(uv), and corresponds to the energy consumption required for
wireless nodeu to transmit to all nodesv with uv ∈ E(H). Thepower(or total power) of H is given
by p(H) =

∑

u∈V pH(u).
The study of the min-power power assignment was started by Chen and Huang [8], which consider,

as we do, the case whenE is bidirected, (that is,uv ∈ E if and only if vu ∈ E, and if weighted,
the two edge have the same cost; this case was sometimes called “symmetric” or “undirected” in the
literature) whileH is required to be strongly connected. We call this problemMin-Power Strong
Connectivity. We use with the same name both the (bi)directed and the undirected version ofG. [8]
prove that the bidirected version of a minimum (cost) spanning tree (MST) of the input graphG has
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power at most twice the optimum, and therefore the MST algorithm has approximation ratio at most
2. This is known to be tight (see Section 2).

We improve the approximation ratio to1.85 by combining techniques from Robins-Zelikovsky
[18, 19] for Steiner Tree, Caragiannis, Flammini, and Moscardelli [6] for the broadcast version of
symmetric Power Assignment (assuming a bidirectedG = (V,E, c) and a “root”u ∈ V is given,H
must contain a directed path fromu to every vertex ofG), together with a simple idea inspired by the
journal submission of Byrka, Grandoni, Rothvoß, and Sanit`a (this idea was not explicit enough in the
conference version [3]).

Very restricted versions of Min-Power Strong Connectivityhave been proven NP-Hard [14, 10, 7].
Other than [4], we are not aware of a approximation ratio better than 2, except for [7], (wherec :
E → {A,B}, for 0 ≤ A < B; see also [4]), [2] (wherec is assumed to be a metric), and the exact
(dynamic programming) algorithms of [14] for the specific case where each vertex ofG maps to a
point on a line, andc(uv) is an increasing function of the Euclidean distance betweenthe images of
u andv. A related version, also NP-Hard, asks forH to be bidirected (also called “undirected” or
“symmetric” in previous papers). This problem is called Min-Power Symmetric Connectivity, and
the best known ratio of5/3 + ǫ [1] is obtained with techniques first applied to Steiner Tree; when
c : E → {A,B} one gets3/2 with the same method [16]. In fact, many but not all power assignment
algorithms use techniques from Steiner Tree variants, or (sometimes non-trivial) reductions to Steiner
Tree variants. For example, Caragiannis et al [6] uses the relative greedy heuristic of Zelikovsky
[22]. New interesting techniques were also developed for power assignment problems, as in [15], an
improvement over [13].

The existing lower bound of the optimum, which we use, is the cost of the minimum spanning tree
of G. Indeed (argument from [8]), the optimum solutionOPT contains an in-arborescence rooted at
v, for somev ∈ V , and then, for allu ∈ V \ {v}, pOPT (u) is at least the cost of the directed edge
connectingu to its parent in this in-arborescence, whose total cost is atleast the cost of the minimum
spanning tree ofG.

We also use a relative greedy method as in [22, 18]. The techniques of Robins-Zelikovsky [18]
were rarely used, even though this paper has hundreds of citations, the vast majority only citing the
approximation ratio (improved by now in [3]). We use the natural structures of [6] to improve over the
minimum spanning tree: these arestars, directed trees of height 1. Our second lower bound (improved
over [4]) comes from “covering” the edges of the a spanning tree by the stars of the optimum solution.
With precise definitions later, we just mention that an edge of a tree is covered by a star if it is on a
path of the tree between two vertices of the star. A low-cost fractional covering can be easily obtained
from either optimum or the linear programming relaxation. In our earlier work [4], we used an integer
cover which was extremely hard to obtain. Using fractional covers (inspired by the submitted journal
version of [3]) is the only significant difference of this version versus [4]. Also, interestingly, the
submodularity of the covering function is only used implictly.

2 Preliminaries

In directed graphs, we usearc to denote a directed edge. In a directed graphK, anincoming arbores-
cencerooted atx ∈ V (K) is a spanning subgraphT of K such that the underlying undirected graph
of T is a tree and every vertex ofT other thanx has exactly one outgoing arc inT .

Given an arcxy, its undirected versionis the undirected edge with endpointsx andy. Arcs xy
andyx areantiparallel, and the antiparallel arcs resulting from the undirected edgeuv areuv andvu;
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Figure 1: Tight example for the performance ratio of the MST algorithm. In both cases, the solution
is bidirected and the undirected version of the arcs of the solution is given by solid edges. For each
vertex, its power in the solution is written next to it. (a) The MST-based power assignment needs total
power2n. (b) Optimum power assignment has total powern(1 + ǫ)2 + (n− 1)ǫ2 + 1→ n + 1.

if undirected edgeuv has cost, then each of the two antiparallel arcs resulting from undirected edge
uv have this cost. We sometimes identify a spanning treeT with its set of edges.

An alternative definition of our problem (how it was originally posed) is: we are given a simple
undirected graphG = (V,E) and a cost functionc : E → R+. A power assignment is a function
p : V → R+, and it induces a simple directed graphH(p) on vertex setV given byxy being an arc of
H(p) if and only if {x, y} ∈ E andp(x) ≥ c({x, y}). The problem is to minimize

∑

u∈V p(u) subject
to H(p) being strongly connected. To see the equivalence of the definition, given directed spanning
subgraphH, define for eachu ∈ V the power assignmentp(u) = pH(u).

The following known example (see Figure 1) shows that the ratio of 2 for the MST algorithm is
tight. Consider2n points located on a single line such that the distance between consecutive points
alternates between 1 andǫ < 1, and let the cost functionc be the square of the Euclidean distance
Then the minimum spanning tree MST connects consecutive neighbors and has powerp(MST ) = 2n.
On the other hand, the bidirected treeT ′ with costly arcs connecting each other node (see Figure 1(b))
has a power equal top(T ′) = n(1 + ǫ)2 + (n − 1)ǫ2 + 1. Whenn → ∞ andǫ → 0, we obtain that
p(MST )/p(T ′) → 2. On the other hand (this argument of [8] gives their ratio of 2), for any input
graph, the power of the bidirected minimum spanning treeT is at most

p(T ) =
∑

v∈V

max
u|vu∈E(T )

c(vu) ≤
∑

v∈V

∑

u|vu∈E(T )

c(vu) = 2c(T ) ≤ 2opt

whereopt = p(OPT ) for an optimum solutionOPT (the last inequality is the first lower bound from
the introduction).

The example above may give intuition on how Power Assignment(and even more specifically,
Min-Power Symmetric Connectivity - the variant whenH must be bidirected mentioned in the in-
troduction) relates to thek-restricted Steiner trees, with stars (trees of height 1) taking the place of
restricted components. Another example from [1], (see Figure 2, and the following paragraph), shows
how Min-Power Strong Connectivity differs from Min-Power Symmetric Connectivity.

The power of a Min-Power Strong Connectivity optimum solution can be almost half the power
of a Min-Power Symmetric Connectivity optimum solution forthe same instance: we present a series
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Figure 2: Total power for Min-Power Strong Connectivity canbe half the total power for Min-Power
Symmetric Connectivity. In both cases, the solution is represented by solid segments (arrows meaning
not bidirected), and next to each vertex its power is given. (a) Minimum power assignment ensuring
strong connectivity has total powern + n2ǫ2 = n + n2 1

n2 = n + 1. (b) Minimum power assignment
ensuring symmetric connectivity has total power(2n− 2)+ (n(n− 1)+2)ǫ2 = 2n− 1− 1

n
+ 2

n2 , the
solution is bidirected and the undirected version of the arcs of the solution is given by solid segments.

of examples illustrated in Figure 2. Then(n + 1) vertices are embedded in the plane inn groups of
n + 1 points each. Each group has two “terminals” (represented asthick circles in Figure 2), and the
2n terminals are the corners of a regular2n-gon with sides of length 1. Each group has anothern− 1
equally spaced points (dashes in Figure 2) on the line segment between the two terminals. The cost
functionc is the square of the Euclidean distance. It is easy to see thata minimum power assignment
ensuring strong connectivity assigns a power of 1 to one thick terminal in each group and a power of
ǫ2 = (1/n)2 to all other points in the group - the arcs going clockwise. The total power then equals
n + 1. For symmetric connectivity it is necessary to assign a power of 1 to all but two of the thick
points (a less than optimal solution uses in each of all but two groups one single vertex to connect to
the two neigboring groups, but then the power of this vertex is almost1.52 > 2 for largen) and ofǫ2 to
the remaining points, which results in total power(2n−2)+(n(n−1)+2)ǫ2 = 2n−1−1/n+2/n2.
Also, keep in mind that the minimum spanning tree solution isa symmetric solution.

3 The Approximation Algorithm

This section is dedicated to proving the main result of this paper:

Theorem 1 There exists a polynomial time algorithm for Min-Power Strong Connectivity with ap-
proximation ratio1.85.

The outline of the proof of Theorem 1, is as follows:

1. In the first subsection, we present the greedy algorithm, preceded by necessary notation.

2. Then we establish (Lemma 3) that the algorithm’s output isstrongly connected.

3. A second subsection gives the analysis. It starts with thenew lower bound, the fractional cover
of tree edges by stars.
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4. Finally, Lemma 5 shows how the Greedy method of [18] (applied with new parameters) com-
bines the two lower bounds (the one above, and the cost of the minimum spanning tree) to
obtain the claimed approximation ratio.

3.1 The algorithm

Our algorithm uses a greedy approach similar to [22, 18, 6]. Let T be the undirected minimum
spanning tree ofG. Let opt = p(OPT ) for an optimum solutionOPT . The fact thatT has minimum
cost will be not further used, except to noteopt ≥ c(T ). Let T̃ be the bidirected version ofT .

Foru ∈ V andr ∈ {c(uv) | uv ∈ E}, letS(u, r) be the directed star with centeru containing all
the arcsuv with c(uv) ≤ r; note thatr is the power ofS, also denoted byp(S). For a directed starS,
let E(S) be its set of arcs andV (S) be its set of vertices.

For a givenS(u, r), letQ(u, r) be the set of edgese of T such that there existx, y ∈ V (S(u, r))

with e on the path fromx to y in T . Let Q̂(u, r) be the set of arcse of T̃ such that there exist
x ∈ V (S(u, r)) with e on the directed path fromu to x in T̃ ; it is easy to verify that the undirected
version ofQ̂(u, r) isQ(u, r).

For a collectionA of directed starsS(ui, ri), defineQ(A) =
⋃

S(ui,ri)∈A
Q(ui, ri) andf(A) =

∑

e∈Q(A) c(e). We sometimes writeQ(S) instead ofQ({S}). As a remark (we do not use this ex-
plictly in the proofs) The functionf(A) is known to be monotone and submodular (see an example
in [20], pages 768-769). ForS = S(u, r), fA(S) := f(A ∪ {S}) − f(A) =

∑

e∈Q(u,r)\Q(A) c(e) =
∑

e∈IA(S) c(e), whereIA(S) is defined to be those arcs ofQ̂(u, r) for which the undirected version is
not inQ(A).

The algorithm starts withM = T̃ as the set of arcs, and adds directed stars to the collectionA
(initially empty) replacing some arcs fromM to reduce the sum of costs of the arcs inM plus the
sum of the powers of the stars inA. For intuition, we mention that this sum is our upper bound on
the power of the algorithm’s output. To simplify later proofs, the algorithm makes changes (adding
directed stars and removing arcs fromM) even if our sum stays the same. Assume below that0/0 = 1.
To be precise:

Algorithm Greedy:
A ← ∅, M ← T̃
While (f(A) < c(T ) ) do
(u, r)← argmax(u′,r′)fA(S(u

′, r′))/r′

M ←M \ IA(S(u, r))
A ← A∪ {S(u, r)}

Output
⋃

S∈AE(S) ∪M

Each of the figures 3 and 4 shows two iterations of the algorithm. For intuition, we mention
that this algorithm “covers” undirected edges of the minimum spanning tree by “stars” and when
implemented, it is a variant of Chvatal’s [9] greedy algorithm for Set Cover.

Fact 2 Note that, unlessf(A) = c(T ), a starS(u, r) always exists for whichfA(S(u, r)) > 0 and
fA(S(u, r))/r ≥ 1. Indeed, as long as a pair of antiparallel arcse′ ande′′ are inM , we can pick as
next starS(u, r) the one given byu being the tail ofe′ andr = c(e′).
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Figure 3: Costs are not relevant here. (a) InitialM . (b) Solid arcs give
⋃

S∈AE(S) ∪M after adding
to A the starS1 (with thick solid arcs) centered atx. The arcs removed fromM are dashed. (c)
Solid arcs give

⋃

S∈AE(S) ∪M after adding toA the starS2 (with thick solid arcs) centered aty.
The arcs removed fromM are dashed. Note that the algorithm does not remove arcuv. Once an arc
from a pair of antiparallel arcs of̃T is removed, the algorithm keeps the other arc, since there are
cases (as in Figure 4) when not all arcs ofQ̂(u, r) can be removed while keeping strong connectivity,
and benefiting from removing arcs whose antiparallel arc hasalready been removed from̃T (when
possible) destroys the submodularity implictly needed in the proof of the approximation ratio.

Thus, as written, the algorithm can have iterations that do not change the output, i.e. the star
S(u, r) above could have just the edgee′ and be added toA while e′ is removed fromM .

Lemma 3 The output ofGreedy is a spanning strongly connected subgraph ofG.

Proof. We prove the following invariant:X :=
⋃

S∈AE(S)∪M gives a spanning strongly connected
subgraph whenever thewhile condition is checked by the algorithm. Moreover, suppose weremove
from T all edges for which both antiparallel arcs appear inM , splittingT in components with vertex
setsTi, for some range ofi. We prove that for everyi and everyx, y ∈ Ti, there exists a directed path
P from x to y using only vertices ofTi and arcs fromX.

Proving that the invariant holds is done as always by induction on the number of iterations. The
invariant is true before the first iteration, when eachTi has just one vertex, so consider the moment
when a starS = S(u, r) is added toA. Figure 5 may provide intuition. We add the arcsuz, for
z ∈ V (S) \ {u}, while removing fromM (and fromX) the arcsxy for which yx ∈ M and there is
somez such thatxy is on the directed simple path fromu to z in T̃ . The same effect is obtained if we
do this change for eachz ∈ V (S) \ {u} one after the other, instead of all suchz at the same time.

Let P be the simple path inT from u to z, and letxiyi, for 1 ≤ i ≤ k, be, in order, the arcs
of M on P such that alsoyixi ∈ M . Thus the change toX consists of adding the arcuz and
removing all the arcsxiyi; note that ifk = 0 no arc is removed and our induction step is complete.
Let M ′ = M \ {x1y1, . . . , xkyk} andX ′ = X \ {x1y1, . . . , xkyk} ∪ {uz}. We need to show thatX ′

andM ′ satisfy the conditions from the induction hypothesis.
Let us splitT into components by removing all the undirected edgesxy with both antiparallel

arcsxy andyx in M (in particular all the undirected edgesxiyi, for 1 ≤ i ≤ k), resulting in the
componentsTi.

By induction,X contains the following directed paths:P1 from x1 to u, P2 from x2 to y1, . . . ,
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Figure 4: Costs are not relevant here. (a) InitialM . (b)
⋃

S∈AE(S)∪M after adding toA the starS1

(with thick solid arcs) centered atx, and removing arcs fromM . (c) Solid arcs give
⋃

S∈AE(S)∪M
after adding toA the starS2 (with thick solid arcs) centered aty. The arcs removed fromM are
dashed. Note that the algorithm cannot remove arcuv even thoughuv ∈ Q̂(S2), sinceu and v
become disconnected.

Pk from xk to yk−1, andPk+1 from z to yk, and each of these paths stays in the same componentTi

of the split (done in the previous paragraph) ofT by M . Thus none of these paths usesxiyi or yixi.
Putting together these paths, the arcsyixi, for 1 ≤ i ≤ k, and the arcuz, we have a directed cycleC
containing none of the arcsxiyi, for 1 ≤ i ≤ k. Any arc removed can be replaced, when discussing
connectivity, with a path around the cycleC, and so(V,X ′) is strongly connected, as required.

We now splitT into components by removing all the undirected edgesxy with bothxy andyx
in M ′, obtaining componentsT ′

i . Note that none ofPi, 1 ≤ i ≤ k + 1, from above, has an arc with
endpoints in two distinct componentsT ′

i (asT ′
i is the union of severalTj). As all the edges on the

path fromu to z in T do not have anymore both antiparallel arcs inM ′, all the vertices on this path
includingu, z and allxi, yi are in the same componentT ′

j of the split ofT byM ′. Thus all the arcs of
C have their endpoints in the same component of the split ofT by M ′.

We prove that for everyi and everyx, y ∈ T ′
i , there exists a directed pathP ′ from x to y using

only vertices ofT ′
i and arcs fromX ′. First, let us describe a pathP from x to y using only arcs ofX:

find the path fromx to y in T , and letziwi, for 1 ≤ i ≤ q, be, in order, the arcs ofM onP such that
alsoziwi ∈ M . Whenq = 0, x, y ∈ Tj for somej (same component of the split ofT by M) and by
induction, a pathP from x to y exists inX using only vertices insideTj . We pickP ′ = P , and indeed
P ′ only uses arcs ofX ′ since the arcs ofX \X ′ (same set asM \M ′) cross from one component to
another of the split ofT by M . Assume nowq > 0. Notice that all unordered pairsziwi belong in
the set of unordered pairsxjyj on the simple path fromu to v mentioned earlier, or else we cannot
have thatx andy belong to the sameT ′

i of the split ofT by M ′. Also, by induction,X contains the
following directed paths:P1 from x to z1, P2 from w1 to z2, . . . ,Pq from wq−1 to zq, andPq+1 from
wq to y, and each of these paths stays in the same component of the split of T by M . Thus none of
these paths usesziwi or wizi. Next, obtainP ′ by replacing inP , if necessary, arcs ofX \X ′ (same
set asM \M ′) by arcs ofC, staying, as shown in the previous paragraph, in the same component of
T split byM ′. Note thatP ′ indeed uses only vertices ofT ′

i . This completes the induction step.
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Figure 5: Rounded rectangles show the componentsTi, dashed beforeS is added toA (the split of
T by M) and solid afterward (the split ofT by M ′). Arcs ofM crossing from one component to
another are given by thin arcs,S by the four thick arcsuz1, uz2, uz3, uz4, and the dashed arcs are
those removed fromM whenS is added.

3.2 Approximation ratio analysis

For a collectionA of directed starsS(ui, ri), definep(A) =
∑

S(ui,ri)∈A
ri, the total power used by

the stars inA.
Lemma 4 Let B be an arbitrary collection of stars, andT be an arbitrary spanning tree. There
exist non-negative coefficientsxS (over the collection of all possible starsS(u, r)) such that
∑

S xSfB(S) ≥ c(T )− f(B) and
∑

S xS p(S) ≤ (1/2)opt .
Proof. We assume thatc(T ) − f(B) > 0, or elsexS = 0 for all S will do. AssignxS = (1/2) for
every star ofOPT , andxS = 0 otherwise. Therefore

∑

S xS p(S) = (1/2)opt.
Recall thatQ(B) =

⋃

S(ui,ri)∈B
Q(ui, ri) and lete ∈ T \ Q(B). If we removee from T , we

create two subtreesTu andTv, whereu andv are the endpoints ofe. OPT , being strongly connected,
has at least one starSu with the center inV (Tu) and one of its other vertices inV (Tv). Thene ∈
Q(B ∪ {Su}). Similarly,OPT has at least one starSv with the center inV (Tv) and one of its other
vertices inV (Tu). Thene ∈ Q(B ∪ {Sv}). Note thatSv 6= Su (the two centers are in two disjoint
vertex sets).

We have:
∑

S

xSfB(S) =
∑

S

xS

∑

e∈Q(B∪{S})\Q(B)

c(e)

=
∑

e∈T

c(e)
∑

S | e∈Q(B∪{S})\Q(B)

xS

=
∑

e∈T\Q(B)

c(e)
∑

S | e∈Q(S)

xS

≥
∑

e∈T\Q(B)

c(e) = c(T )− f(B),
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where the inequation is given by the two distinct starsSu andSv described above for every edge
e ∈ T \Q(B). This completes the proof.

The example from Figure 1 shows that a constant better (smaller) than1/2 is not possible in the
statement of Lemma 4: withB being empty, we have thatc(T ) andopt are circan, and for each star
S of optimum,p(S) is circa1 andf(S) circa2.

Now we need the following lemma, whose proof is obtained fromRobins-Zelikovsky as presented
in [11] by changing what quantities represent and some parameters, together with a “fractional cover”
idea from the submitted journal version of [3].

Lemma 5 Assuming that for the minimum spanning treeT , constant0 < α < 1, and for any collec-
tion of starsB, there exist non-negative coefficients(xS) such that

∑

S xSfB(S) ≥ c(T )− f(B) and
∑

S xS p(S) ≤ αopt , whereopt is the power of the optimum solution, the Greedy algorithms’output
has power at mostβopt whereβ = 1 + α + α ln(1/α).

Proof. First, if c(T ) ≤ αopt , then before any improvement we have a solution of cost at most 2αopt
and2α < β. Thus in the following we assumeopt ≥ c(T ) > αopt > 0 (the first inequality is due to
T being a minimum spanning tree).

Note that at the end of the algorithm,M contains exactly one of the two antiparallel arcs for each
edge ofT . Then, for the final collection of starsA, the outputH satisfies

p(H) ≤ c(T ) + p(A) (1)

as it follows by summation overu ∈ V from

pH(u) = maxuv∈Hc(uv) ≤
∑

uv∈M

c(uv) +
∑

S∈A

p(S),

which holds for every vertexu (recall thatE(H) =
⋃

S∈AE(S) ∪M).
Let S1, S2, . . . , Sq be the stars picked by our algorithm and letAi, for 1 ≤ i ≤ q, be the collection

of the firsti stars; also let for convenienceA0 be the empty collection. For1 ≤ i ≤ q, let pi = p(Si),
and letfi = fAi−1

(Si). Note then that for alli, sincefAi−1
(Si) = f(Ai) − f(Ai−1), we have

f(Ai) =
∑i

j=1 fj .
If fi = 0, thenpi = 0 and Equation 2 below holds. Otherwise, the greedy choice of the algorithm

and the assumptions of the theorem forB = Ai−1 give:

pi ≤ fi
αopt

c(T )−
∑i−1

j=1 fj
. (2)

Define the functiong : [0..c(T )] → [0..1] by g(x) = αopt/(c(T ) − x) for x ≤ c(T ) − αopt , and
g(x) = 1 for x > c(T )− αopt . Then from Equation 2 and Fact 2 (thatpi ≤ fi), we obtain:

pi ≤

∫

∑i
j=1

fj

∑i−1

j=1
fj

g(x)dx.

Therefore (see Figure 6):
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Figure 6: The functiong(x) is given by the solid curve.
∑q

i=1 pi is the shaded area, in rectangles
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c(T )−
∑i−1

j=1
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. In this particular picture,αopt = (2/3)c(T ) and therefore the

integral is circa0.94c(T ).

q
∑

i=1

pi ≤

∫ c(T )

0

g(x)dx =

∫ c(T )−αopt

0

αopt

c(T )− x
dx+

∫ c(T )

c(T )−αopt

1dx

= (−αopt) ln(c(T )− x)






c(T )−αopt

0
+ (c(T )− (c(T )− αopt))

= (−αopt) (ln(c(T )− (c(T )− αopt))− ln c(T )) + αopt = αopt

(

1 + ln
c(T )

αopt

)

.

Using this andc(T ) ≤ opt and Equation 1 (recall thatp(A) =
∑q

i=1 pi), we obtain that the power
of the output is at most

c(T ) + αopt

(

1 + ln
c(T )

αopt

)

≤ opt (1 + α + α ln(1/α))

finishing the proof.
Based on Lemmas 3 and 4, Theorem 1 follows immediately from the fact thatα = 1/2 makes

β ≤ 1.85. Note also thatα < 1 impliesβ < 2, which follows fromα(1 + ln(1/α)) < 1, which is
equivalent toln(1/α) < 1/α− 1, a fact that holds for allα < 1. Our earlier work [4] hadα = 7/8.

4 Linear Programming Relaxation

While not improving the approximation ratio of Greedy, thismay allow for further LP-based algo-
rithm. The following natural Integer Linear Program is called IP2 as in [5]. We adapted the notation,
and have variablesyS for every starS = S(u, r). The idea is thatyS being 1 represents thatS is a star
of the optimum solution. We say that a starS = S(u, r) ∈ δ−(X), for X ⊂ V, ∅ 6= X 6= V iff u 6∈ X
andV (S) ∩X 6= ∅.

minimize
∑

S

yS p(S) subject to

10



∑

S∈δ−(X)

yS ≥ 1 ∀ X ⊂ V, ∅ 6= X 6= V (3)

yS ≥ 0 ∀ S (4)

yS ∈ Z ∀ S (5)

LP2 is the linear relaxation of IP2, that is, the linear program given by exactly the same constraints
except the last one. LP2 has exponentially many “cut” constraints, but using standard methods they
can be replaced them by “flow” constraints, Indeed, [5] showsthe details and obtainsO(mn2) non-
zero entries in the linear programming matrix. Thus LP2 can be solved in polynomial-time.

Let opt∗ be the optimum of the linear program LP2 for a given instance.Then clearlyopt∗ ≤ opt

and [5] proves thatopt ≤ 2opt∗. We do better here. First, Lemma 4 has a straightforward adaptation:

Lemma 6 Let B be an arbitrary collection of stars, andT be an arbitrary spanning tree. There
exist non-negative coefficientsxS (over the collection of all possible starsS(u, r)) such that
∑

S xSfB(S) ≥ c(T )− f(B) and
∑

S xS p(S) ≤ (1/2)opt∗.

Proof. We assume thatc(T )−f(B) > 0, or elsexS = 0 for all S will do. Let yS (for all S = S(u, r))
be a an optimum solution of LP2. AssignxS = (1/2)yS for all S; therefore

∑

S xS p(S) = (1/2)opt∗.
Recall thatQ(B) =

⋃

S(ui,ri)∈B
Q(ui, ri) and lete ∈ T \Q(B). If we removee from T , we create

two subtreesTu andTv, whereu andv are the endpoints ofe. Constraints 3 give:

∑

S∈δ−(V (Tu))

xS ≥ 1/2

and
∑

S∈δ−(V (Tv))

xS ≥ 1/2.

Note thatδ−(V (Tu)) andδ−(V (Tu)) are disjoint sets since a star in the first set has its center inV (Tv),
while a star in the second set has its center inV (Tu). Moreover, any starS ∈ δ−(V (Tu))∪δ

−(V (Tv))
hase ∈ Q(S). Thus

∑

S | e∈Q(S)

xS ≥ 1. (6)

From now on we coppied from the previous proof:

∑

S

xSfB(S) =
∑

S

xS

∑

e∈Q(B∪{S})\Q(B)

c(e)

=
∑

e∈T

c(e)
∑

S | e∈Q(B∪{S})\Q(B)

xS

=
∑

e∈T\Q(B)

c(e)
∑

S | e∈Q(S)

xS

≥
∑

e∈T\Q(B)

c(e) = c(T )− f(B),

where the inequation is from Inequality (6). This completesthe proof.
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The example from Figure 1 again shows that a constant smallerthan1/2 is not possible in Lemma
6: with B being empty, we that for each starS with f(S) > ǫ2, p(S) ≥ (1/2)f(S). Thus, if
∑

S xS f(S) ≥ c(T ), then
∑

S xS p(S) ≥ (1/2)(c(T )− nǫ2) ≥ (1/2)(1− γ)opt ≥ (1/2 − γ)opt∗,
where we used that the example can be made to haveopt(1 − γ) ≤ (c(T )− nǫ2), for anyγ > 0, by
first makingn large and thenǫ very small. Asγ can be made arbitraly small, we can see that indeed
a constant smaller than1/2 is not possible.

It is also proven in Section II of [5] (see also below) thatc(T ) ≤ opt∗; then Lemma 5 goes through
with opt∗ instead ofopt . Therefore we conclude that the output of Greedy is at most1.85opt∗.

We include for completeness:
Lemma 7 LetT be a minimum spanning tree inG. Thenc(T ) ≤ opt∗.
Proof. The dual of LP2, denoted byDP2, has a variableαX for everyX ⊂ V with ∅ 6= X 6= V .

maximize
∑

X

αX subject to

∑

X:S∈δ−(X)

αX ≤ p(S) ∀ S (7)

αX ≥ 0 ∀X (8)

Pick an arbitraryr ∈ V as a root, and considerF ⊆ E (E is treated as a directed set of edges
from now until the end of the proof) a minimum-costr-rooted incoming arborescence in(V,E); note
thatc(F ) = c(T ).

From Edmonds’ minimum-cost arborescence algorithm, we obtain thatc(F ) equals the optimum
of the linear programDP3, given below. DP3 has a variableβX for everyX ⊂ V with r ∈ X and
X 6= V .

maximize
∑

X

βX

subject to
∑

X:vu∈δ−(X)

βX ≤ c(vu) ∀ vu ∈ E (9)

βX ≥ 0 ∀X (10)

Moreover, it is known [20] (Subsection 52.4a in page 899, andprecisely the statement 52.14) that
there is a DP3 optimum solution such that the family of setU with βV \U > 0 is laminar (in the linear
programs of [20], the setsU not containingr give the variables of the DP3 equivalent). By definition,
in a laminar family of sets, any two sets are disjoint, or contained one in the other. For us, this laminar
property implies that, for anyv ∈ V \ {r}, the family of thoseX with v 6∈ X andβX > 0 is achain
family, meaning that for all suchX,X ′, eitherX ⊂ X ′ orX ′ ⊂ X. If a DP3 feasible solution is such
that for allv ∈ V \ r, the family of setsX with v 6∈ X andβX > 0 is a chain family, we callβ achain
solution.

Claim 8 For any instance, a feasible chain DP3 solution gives rise toa feasible DP2 solution by
settingαX = βX if r ∈ X, andαX = 0 otherwise.
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Proof. We only need to check that Constraints (7) are satisfied. Pickan arbitrary starS = S(v, r)
and consider the setsX with αX > 0 andS ∈ δ−(X). Using the chain property forv, among these
X, there is one, sayY , that is included in all. Note thatr ∈ Y , and also there is anz ∈ V (S) with
z ∈ Y (z = r is possible). Thenz ∈ X for all the setsX with αX > 0 andS ∈ δ−(X). We have

∑

X:S∈δ−(X)

αX =
∑

X:r∈X∧S∈δ−(X)

βX

=
∑

X:{r,z}⊆X∧S∈δ−(X)

βX

≤
∑

X:z∈X∧v 6∈X

βX =
∑

X:vz∈δ−(X)

βX

≤ c(vz) ≤ r,

with the last inequality following fromz ∈ V (S) and the previous inequality from Constraints (9).
Thusopt(DP2) ≥ opt(DP3). We conclude the proof of Lemma 7:

opt∗ = opt(LP2) = opt(DP2) ≥ opt(DP3) = c(F ) = c(T ),

with the two middle equalities given by linear programming duality and Edmonds’ primal-dual algo-
rithm for constructing arborescences.

We also include a series of examples showing that the integrality gap of LP2 is at least8/7.
See Figure 7. We haven + 1 verticess0, s1, . . . , sn, and another4n vertices:t1, . . . , tn, u1, . . . , un,
v1, . . . , vn, andz1, . . . , zn. We have3n edges cost0: tiui, uivi, andviti. Another6n edges have cost
1: for all 1 ≤ i ≤ n, edgestisi−1, uisi−1, uizi, vizi, tisi, andvisi.

s0 s1 s2t1 t2

u1 u2v1 v2

z1 z2

Figure 7:
An example for the lower bound on the integrality gap. Withn = 2, we use solid segments to
represent the edges of cost1, and dotted segments to represent the edges of cost0.

An integral solution has cost1+ 4n, assigning power1 to eachsi and eachzi, as well as, for each
1 ≤ i ≤ n, two of the three verticesti, ui, vi (indeed, if only one ofti, ui, vi has power1, then either
si−1 or si or zi is not reachable fromti).

A fractional solution assigns coefficientsyS = 1 for all S with power0, or for S having power1
and centersi or zi, for all i. Also, if S = S(ti, 1), or S = S(ui, 1), or S = S(vi, 1), yS = 1/2. One
can easily check this fractional solution is feasible, and it has objective2n+1+3n(1/2) = (7/2)n+1.
Lettingn→∞, we obtain an integrality gap of at least8/7.
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5 Conclusions

This work greatly simplifies and at the same time improves ourearlier work [4]. Instead of Greedy
we could have used the the iterative randomized rounding of Byrka et. al [3] for Steiner Tree, with
the same approximation ratio. However, we do not see furtherimprovements coming from using their
full range of techniques, since we do not see the equivalent of the concept of “loss” used explicitly by
[18] and implicitly by [3].

As part of the simplification of proofs, the submodularity ofthe “covering” functionf(A) is
not used explicitly in the proofs (it is implicitly proved and used in Lemma 4). However, it should
be noted that the relative greedy method of Zelikovsky [22] relies on the more general concept of
submodularity (plus the lower bounds) and may have wider applicability.
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