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We study the problem of separating n points in the plane, no two of whi
h have the same

x- or y-
oordinate, using a minimum number of verti
al and horizontal lines avoiding

the points, so that ea
h 
ell of the subdivision 
ontains at most one point. Extending

previous NP-hardness results due to Freimer et al. we prove that this problem and some

variants of it are APX-hard. We give a 2-approximation algorithm for this problem, and

a d-approximation algorithm for the d-dimensional variant, in whi
h the points are to be

separated using axis-parallel hyperplanes. To this end, we redu
e the point separation

problem to the re
tangle stabbing problem studied by Gaur et al. Their approximation

algorithm uses LP-rounding. We present an alternative LP-rounding pro
edure whi
h

also works for the re
tangle stabbing problem. We show that the integrality ratio of the

LP is exa
tly 2.

Keywords: Point separation; approximation algorithm; LP-rounding; integrality gap.

1. Introdu
tion

Let P be a set of n points in the plane, no two of whi
h have the same x- or y-


oordinate. We 
onsider the problem of �nding a minimum set of axis-parallel lines

1
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that do not pass through any of the given points, su
h that ea
h 
ell of the resulting

subdivision 
ontains at most one point. In other words, for ea
h pair of points there

is a line in our set whi
h separates the two points. We refer to this problem as the

separation problem Separation. Its natural extension to higher dimensions, 
alled

the multi-modal sensor allo
ation problem in

11

, asks for a minimum 
ardinality set

of axis-parallel hyperplanes whi
h separate n given points. It has appli
ations to

fault-tolerant multi-modal sensor fusion in the 
ontext of embedded sensor networks

11

. The problem appears to be 
losely related to other problems of separating points

or hitting obje
ts studied in the 
omputational geometry literature

1

,

3

,

4

,

8

,

9

,

10

,

12

.

The point separation problem appears to have been studied for the �rst time

by Freimer, Mit
hell and Piatko

5

, under the name point shattering problem; they


onsidered both the general 
ase | when the points 
an be separated by arbitrary

lines, and the spe
ial 
ase | when only axis-parallel lines are used. They have

shown that both variants are NP-hard, and have left the problem of obtaining good

approximation algorithms as open for further resear
h

5

.

Our paper is organized as follows. In Se
tion 2 we present two LP-based ap-

proximation algorithms with ratio 2 in the plane

a

, respe
tively d in R

d

: the �rst

is obtained by 
asting the separation problem as a spe
ial 
ase of the re
tangle

stabbing problem

7

,

8

. The se
ond uses a di�erent rounding pro
edure. We show

that the se
ond algorithm also works for the re
tangle stabbing problem, with the

same ratio, 2.

In Se
tion 2.1, we show that, for any � > 0, there are examples in the plane hav-

ing integrality ratio at least 2� � for Separation, and hen
e also for Re
tangle

Stabbing

b

. Sin
e the integrality ratio is 2, it means one 
annot prove a 
onstant

approximation ratio less than 2 based only on the value of the linear program as a

lower bound on the optimum value.

In Se
tion 3, we show (under standard assumptions) that Separation is in fa
t

hard to approximate beyond a 
ertain threshold (see Theorem 3).

A natural variant of the above point separation problem is a 
olored version:

the points are 
olored, and one has to �nd a minimum set of axis-parallel lines,

su
h that the set of points in ea
h 
ell of the resulting subdivision, if nonempty, is

mono
hromati
. Clearly having ea
h point 
olored by a di�erent 
olor is equivalent

to the original problem. Thus when the numbers of 
olors is part of the input this

problem is also NP-hard. We prove that it remains so for any number k of 
olors,

k � 2. This version also extends to higher dimensions, as the original problem does.

Both our algorithms 
an be used to obtain a 2-approximate solution for the 
olored

version in the plane, or d-approximate solutions for the 
olored version in R

d

.

a

An approximation algorithm with ratio r outputs a separating set of lines of size at most r �OPT ,

where OPT is the size of an optimal separating set.

b

The integrality ratio (gap) of a minimization integer program is the supremum over instan
es of

the ratio of the value of the integer program to the value of its linear program relaxation.



January 9, 2006 17:58 WSPC/Guidelines separating

3

2. Algorithms for Separation

In this se
tion we prove

Theorem 1. There exists a 2-approximation algorithm for Separation.

Without loss of generality, we 
an restri
t the set of verti
al or horizontal sepa-

rating lines to a set L of 2(n� 1) 
anoni
al lines, one for ea
h pair of horizontally


onse
utive points, and one for ea
h pair of verti
ally 
onse
utive points (say, at

the average 
oordinate value of two 
onse
utive points).

We �rst give two lower bounds on OPT , the size of an optimal solution. Consider

the 
omplete geometri
 graph G = (V;E) whose vertex set is the set P of n points.

We say that two edges of G are independent if there is no verti
al or horizontal line

that interse
ts both in their interior. Let I be a maximum independent set of edges

of G. Then 
learly OPT � jI j, sin
e ea
h edge of I requires a distin
t separating

line.

Write l = OPT . The maximum number of 
ells indu
ed by l horizontal and

verti
al lines is attained when the lines are divided evenly into verti
al and hor-

izontal. Sin
e ea
h point requires a distin
t 
ell of the arrangement of l lines, we

have (bl=2
+ 1)(dl=2e+ 1) � n, whi
h implies that for all sets of n points,

OPT � d2

p

ne � 2:

In the re
tangle stabbing problem

7

,

8

, we are given a set of (nondegenerate) axis-

parallel re
tangles in the plane, with the obje
tive of stabbing all the re
tangles with

the minimum number of axis-parallel lines (a re
tangle is said to be stabbed by line

` if ` interse
ts its interior). Gaur, Ibaraki and Krishnamurti have re
ently given a

2-approximation algorithm for this problem

7

.

Let us �rst see how the separation problem 
an be 
ast as a re
tangle stabbing

problem. For ea
h pair of points u; v 2 P , 
onsider the re
tangle R

uv

whose diagonal

is uv. Then separating all the points in P is equivalent to stabbing all re
tangles

R

uv

, with u; v 2 P . Note also that it is enough to restri
t ourselves to empty

re
tangles, i.e., those that do not 
ontain other points of P : stabbing all empty

re
tangles R

uv

guarantees that all re
tangles are stabbed. However, in general this

restri
tion may be not signi�
ant, as it is easy to 
onstru
t examples with 
(n

2

)

empty re
tangles determined by the n points.

Let R be the 
olle
tion of re
tangles in the re
tangle stabbing problem. A set

L of 
anoni
al lines is sele
ted �rst, as in the separation problem. The natural IP

(integer program) with variables �

L

, for L 2 L, is

minimize

X

L2L

�

L

subje
t to

X

L stabs R

�

L

� 1 8R 2 R (1)

�

L

2 f0; 1g 8L 2 L: (2)
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The linear programming relaxation of IP is obtained by repla
ing the 
onstraints

(2) by

�

L

� 0 8L 2 L:

Denote by LP the value of the above linear program. The algorithm of Gaur et

al. solves the linear program and 
lassi�es re
tangles as horizontal or verti
al (with

ties broken arbitrarily), depending on whether

X

horizontal L: L stabs R

�

L

�

1

2

or

X

verti
al L: L stabs R

�

L

�

1

2

:

It then solves optimally the problem of stabbing the horizontal re
tangles with

verti
al lines, by solving the 
orresponding linear programs LP

H

and LP

V

. The

solutions of these two linear programs are integral, a property that follows from the

total unimodularity of their 
onstraint matri
es. Putting together the two sets of

lines results in a 2-approximation algorithm, using again the total unimodularity

property. Instead of solving LP

H

and LP

V

, one 
an solve dire
tly the 
orresponding

stabbing problems using the greedy algorithm, sin
e these be
ome interval stabbing

problems on the line.

The formulation of the integer and linear programs for the separation problem

is analogous. The IP with variables �

L

, for L 2 L, is

minimize

X

L2L

�

L

subje
t to

X

L separates uv

�

L

� 1 8u; v 2 P; u 6= v; (3)

�

L

2 f0; 1g 8L 2 L: (4)

The linear programming relaxation of IP is obtained by repla
ing the 
onstraints

(4) by

�

L

� 0 8L 2 L:

The 2-approximate solution is obtained in the same way.

We now provide a new, 
on
eptually simpler, LP-based algorithm, that only

solves the linear program above and dire
tly rounds the solution. Sort the horizontal

lines L

1

; L

2

; : : : ; L

n�1

in order of their y-
oordinates. Pi
k line L

j

if and only if

the interval

�

P

j�1

i=1

�

L

i

;

P

j

i=1

�

L

i

i


ontains a multiple of 0:5. There are at most

2

P

n�1

i=1

�

L

i

multiples of 0:5 in the interval (0;

P

n�1

i=1

�

L

i

℄ and therefore the number

of horizontal lines pi
ked does not ex
eed 2

P

n�1

i=1

�

L

i

. Apply a similar pro
edure

to the verti
al lines

�

L

1

;

�

L

2

; : : : ;

�

L

n�1

sorted in order of their x-
oordinates. Hen
e

the number of lines pi
ked 
annot ex
eed twi
e the value of the LP.

Now we show that we obtain a valid integral solution. Let P and Q be two points

and let i

P

(i

Q

, respe
tively) be the index in the sorted order of the �rst horizontal

line after P (Q, respe
tively) with the 
onvention that if P has the highest y-


oordinate, then i

P

= n. Similarly, we de�ne j

P

and j

Q

in referen
e to verti
al lines.
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Assume i

P

< i

Q

and j

P

< j

Q

|the other three 
ases are symmetri
. Constraint (3)

gives

P

i

Q

�1

k=i

P

�

L

k

+

P

j

Q

�1

k=j

P

�

�

L

k

� 1, and therefore

P

i

Q

�1

k=i

P

�

L

k

�

1

2

or

P

j

Q

�1

k=j

P

�

�

L

k

�

1

2

. Assume the �rst inequality holds, the other 
ase being symmetri
. Then there is

a multiple of 0:5 in the interval

�

P

i

P

�1

k=1

�

L

k

;

P

i

Q

�1

k=1

�

L

k

i

and therefore one of the

lines L

i

P

; L

i

P

+1

; : : : ; L

i

Q

�1

is sele
ted by the algorithm and separates P and Q.

Sin
e LP � OPT , the approximation ratio is at most 2. It is easy to see that

this algorithm works for the re
tangle stabbing problem as well, with the same ratio

of 2.

We �nally remark that both algorithms 
an be used to solve the 
olored version

of the separation problem in the plane with the same ratio of 2: write 
onstraints

only for the set of bi
hromati
 edges, i.e., those whose endpoints have di�erent


olors.

2.1. Integrality Ratio

The main result of this se
tion is that the integrality ratio is exa
tly 2. As a warm-

up we show (Lemma 1) an in�nite sequen
e of simple examples in the plane having

integrality ratio 3=2, for both the re
tangle stabbing and the separation problem.

It is enough to do this for Separation (as a spe
ial 
ase of the re
tangle stabbing

problem).

Lemma 1. The integrality ratio of the linear program is 3=2 on a set of examples

with arbitrarily large optimal values of the integer program.

Proof. Consider the �ve-point 
on�guration in Fig. 1 (left), that we 
all an X .

a b c

2

3

1

Fig. 1. A 
lass of examples with integrality ratio 3=2.

The points 
an be fra
tionally separated with weights 1=2 on ea
h of the four


anoni
al lines shown in the �gure. Thus LP � 4=2 = 2. Using the trivial lower
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bound (1) (or by inspe
tion) gives OPT � d2

p

5e�2 = 3, and it is easy to see that

this is tight.

By repeating the X diagonally k times, su
h that two adja
ent X 's share one

point, we obtain a 
on�guration with 4k + 1 points, as in Fig. 1 (right), for k = 3.

One 
an think of the points as being pla
ed on an (in�nite) 
hessboard. Observe

that in ea
h row or 
olumn of the board the points have in
reasing x- and y-


oordinates. Again, the points 
an be fra
tionally separated with weights 1=2 on

ea
h of the 
anoni
al lines shown in the �gure. Thus LP � 4k=2 = 2k. To separate

the points of ea
h X requires three lines, and sin
e the points have in
reasing x-

and y-
oordinates in ea
h row or 
olumn, no line used to separate one X is of any

help in separating other X 's; thus OPT � 3k. It is easy to see that 3k lines are

also enough, and the lemma follows.

We now state and prove the main result of this se
tion. Let Z

�

LP

be the optimal

value of the LP relaxation and Z

�

IP

be the optimal value of the IP. Note that the

proof of Theorem 1 gives Z

�

IP

� 2Z

�

LP

. We have

Theorem 2. For every � > 0 there is an instan
e of Separation su
h that Z

�

IP

�

(2� �)Z

�

LP

, where both Z

�

LP

and Z

�

IP


an be arbitrarily large.

Proof. Let � > 0. Using a probabilisti
 argument we show that there are instan
es

su
h that

Z

�

LP

� (2 +

1

2

�)q (5)

Z

�

IP

� (4�

1

2

�)q (6)

for all suÆ
iently large integers q. As 4�

1

2

� > (2��)(2+

1

2

�), and sin
e Z

�

IP

� 2Z

�

LP

,

the two inequalities above imply the theorem.

We �x a parameter k > 200=�. Let q � k be suÆ
iently large. Our instan
es

have points in [0; q+1)�[0; q+1). There are n = dq

5=4

e pairs of points P

i

and Q

i

(so

the number of points is 2n, not n) obtained as follows: independently and uniformly

at random pi
k x

P

i

and y

P

i

to be multiples of 1=k in [0; q). Add 1=(2k) + 1=(3ki)

to both x

P

i

and y

P

i

. Also, for every i, independently 
hoose l

i

uniformly at random

from the set f1=k; 2=k; : : : ; (k�1)=kg and set x

Q

i

= x

P

i

+l

i

and y

Q

i

= y

P

i

+(1�l

i

).

It is easy to see that no two points have the same x-
oordinate and no two points

have the same y-
oordinate.

Now we 
onstru
t the LP solution. Sort the 2n points by x-
oordinate; they

de�ne exa
tly 2n�1 
anoni
al verti
al lines. If two 
onse
utive points in the sorted

order above have x-
oordinates x

0

< x

00

, the variable in the LP asso
iated with

verti
al line L has value �

L

= x

00

� x

0

. Similarly, using y-
oordinates, we de�ne a

fra
tion �

L

for every 
anoni
al horizontal line L.

In addition, we sometimes in
rease the fra
tions to give a valid LP solution as

des
ribed below. Noti
e that the initial values of �

L

ensure that the separating



January 9, 2006 17:58 WSPC/Guidelines separating

7


onstraints (3) are satis�ed for u; v if there is an i 2 f1; 2; :::; ng su
h that u =

P

i

; v = Q

i

. However, for points from di�erent pairs some 
onstraints might be

violated. Call a pair (i; j) of indexes, 1 � i < j � n, bad if any of jjP

i

�P

j

jj

1

; jjP

i

�

Q

j

jj

1

; jjQ

i

� P

j

jj

1

; jjQ

i

� Q

j

jj

1

is less than 1. For every bad pair of indexes (i; j),

we in
rease �

L

to 1 for three verti
al lines. These three verti
al lines are 
hosen

from L su
h that any two horizontally 
onse
utive points from fP

i

; Q

i

; P

j

; Q

j

g are

separated by one of the three lines, and we obtain a valid LP solution.

Thus the value of the LP solution is at most 2(q+1)+3b, where b is the number

of bad pairs of indexes. The probability of a pair being bad is at most (5 � 5)=q

2

,

as the pair 
an be bad only if jbx

P

i


 � bx

P

j


j � 2 and jby

P

i


 � by

P

j


j � 2, and

the random variables bx

P

i


, by

P

i


, bx

P

j


, and by

P

j


 are independent and uniformly

distributed in the set f0; 1; : : : ; q� 1g. Thus the expe
ted value of b satis�es E[b℄ �

n

2

25=q

2

� 50q

1=2

. By Markov's inequality, with probability at least 1=2 we have

b � 100q

1=2

and in this 
ase we have Z

�

LP

� 2q+2+ 3(100q

1=2

) = 2q+2+ 300

p

q.

For suÆ
iently large q we have 2 + 300

p

q � (�=2)q, and then Equation (5) holds

with probability at least 1=2.

Consider now the potential integral solutions (a potential integral solution is a

set of horizontal and verti
al lines) of value (i.e., size) less than (4�

1

2

�)q. In fa
t,

we 
onsider only integral solutions required to separate only P

i

from Q

i

for every

i = 1; 2; : : : ; q, and show that there is a 
on�guration of points from our probability

spa
e su
h that all su
h potential integral solutions fail to separate at least one

su
h pair (P

i

; Q

i

).

We 
an assume without loss of generality that the lines used by su
h integral

solutions have 
oordinates j � (1=k), j being a positive integer, sin
e any line with


oordinate in the interval ((j � 1) � (1=k); j � (1=k)) 
an be repla
ed by one with


oordinate j �(1=k) and all the previously separated pairs (P

i

; Q

i

) are still separated.

Moreover we assume j � kq, as 
utting at a 
oordinate larger than q is not needed,

sin
e the largest possible x

P

i

or y

P

i

is (qk � 1)=k+1=(2k) + 1=(3k) < q. There are

in total at most 2kq su
h lines (both verti
al and horizontal), and thus the total

number of potential integer solutions of value at most 4q � 1 is at most

4q�1

X

i=0

�

2kq

i

�

� 4q(2kq)

4q�1

� (4kq)

4q

= e

4q ln(4kq)

: (7)

Let us �x now a potential integral solution of size r � (4 �

1

2

�)q. If r < q, we

add more lines (at 
oordinates j � (1=k) for some j's) to the solution until r � q. Let

r

1

be the number of verti
al lines and r

2

be the number of horizontal lines used;

r = r

1

+ r

2

. Together with the four lines, horizontal and verti
al, at 
oordinates 0

and q, the lines of the solution divide the [0; q℄� [0; q℄ square into re
tangles. Let t

be the number of re
tangles and note that

t � (r

1

+ 1)(r

2

+ 1) �

1

4

(r + 2)

2

; (8)

where the se
ond inequality follows from (r

1

+ 1) + (r

2

+ 1) = r + 2.
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Label the re
tangles R

1

; R

2

; :::; R

t

in some order. For i = 1; 2; : : : ; t, let �w

i

be

the (horizontal) width of R

i

and

�

h

i

be its (verti
al) height. The sum of the �w

i

's

and

�

h

i

's is at least q(r�2), as every line used (ex
ept those at 
oordinate q) by the

integral solution has length q and 
ontributes to either the �w

i

's of the re
tangles

above it, if the line is horizontal, or to the

�

h

i

's of the re
tangles to its right, if the

line is verti
al.

Let w

i

= k �w

i

2 N and h

i

= k

�

h

i

2 N. Thus

t

X

i=1

(h

i

+ w

i

) = k

t

X

i=1

(

�

h

i

+ �w

i

) � k[q(r � 2)℄: (9)

We will need later the following inequality:

kq(r � 2)� (k + 1)

1

4

(r + 2)

2

� qr; (10)

whi
h we now prove for suÆ
iently large q based on the fa
ts that k > 200=� and

q � r � (4�

1

2

�)q. Indeed, (10) is equivalent to

q(kr � 2k � r) � (k + 1)

1

4

(r + 2)

2

: (11)

As k > 4 and r � q 
an be assumed to be large, and using r � (4 �

1

2

�)q, it is

enough to show that

r(kr � 2k � r) � (1� �=8)(k + 1)(r + 2)

2

: (12)

On the left-hand side of (12) the 
oeÆ
ient of r

2

is k � 1 > k + 1� k�=8� �=8 =

(k + 1)(1� �=8) (using k > 200=�), whi
h is the 
oeÆ
ient of r

2

on the right-hand

side. Thus for suÆ
iently large r, (12) holds, implying (10).

Claim 2.1. The total number of possible pla
ements for the pair (P

j

; Q

j

) in whi
h

both P

j

and Q

j

are in the same re
tangle R

i

for some i 2 f1; 2; : : : ; tg is at least

P

t

i=1

(w

i

+ h

i

� k � 1).

Proof. It is enough to 
onsider only re
tangles satisfying w

i

+h

i

> k+1, and from

now one we dis
uss only su
h re
tangles. Every i su
h that w

i

+ h

i

> k + 1 
an be


lassi�ed into exa
tly one of these four sets:

A: Those with 1 < w

i

� k and 1 < h

i

� k.

B: Those with w

i

> k and h

i

� k.

C: Those with w

i

� k and h

i

> k.

D: Those with w

i

> k and h

i

> k.

Note that re
tangles R

i

with w

i

= 1 and w

i

+ h

i

> k + 1 are in C and re
tangles

with h

i

= 1 and w

i

+ h

i

> k + 1 are in B.

First �x a re
tangle R

i

from A. Re
all that w

i

+ h

i

> k + 1, 1 < w

i

� k,

and 1 < h

i

� k, i.e., the width �w

i

and height

�

h

i

of R

i

are at most 1. (Informally,

this is the \general" 
ase.) We 
laim that at least w

i

+ h

i

� k � 1 of the potential
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pla
ements of (P

j

; Q

j

) result in both P

j

's and Q

j

's being in R

i

. Indeed, pla
e P

j

in

the 1=k � 1=k square sharing the lower left 
orner with the lower left 
orner of R

i

(su
h a pla
ement exists for every j sin
e 1=(2k) + 1=(3kj) < 1=k). Then Q

j

with

x

Q

j

= x

P

j

+ (w

i

� 1)=k and y

Q

j

= y

P

j

+ (k � (w

i

� 1))=k (indeed (x

Q

j

� x

P

j

) +

(y

Q

j

� y

P

j

) = 1) is also in R

i

, as h

i

� 1 � k � (w

i

� 1). Furthermore, P

j

and Q

j

are in the re
tangle as well if they are both translated upward by a=k, where a is

any integer in the set f1; 2; : : : ; w

i

+ h

i

� k � 2g, as a+ [k � (w

i

� 1)℄ � h

i

� 1. In

total, we have found w

i

+ h

i

� k � 1 pla
ements.

Consider two 
onse
utive verti
al lines of the potential integral solution at hor-

izontal distan
e greater than 1, and let G be the set of i 2 A[B [C [D su
h that

R

i

borders both these lines. All su
h re
tangles R

i

have the same w

i

> k, whi
h

we denote by w. All su
h re
tangles are in B [D. Let Z

G

be the set of potential

pla
ements of (P

j

; Q

j

) with P

j

and Q

j

both inside some re
tangle R

i

with i 2 G

and having x

Q

j

� x

P

j

= (k � 1)=k.

We now prove that there are at least

P

i2G

(h

i

� 1)(w

i

� k+1) su
h pla
ements

of (P

j

; Q

j

). Indeed, if the lower left 
orner of R

i

has 
oordinates (x

i

; y

i

), then for

all integers a; b satisfying 0 � a < w

i

� k + 1 and 0 � b < h

i

� 1, pla
ing P

j

in the

1=k � 1=k square with lower left 
orner at (x

i

+ a=k; y

i

+ b=k) results in P

j

's and

Q

j

's being in the re
tangle R

i

, as the reader 
an verify by adding and 
omparing

numbers. It follows that jZ

G

j �

P

i2G

(h

i

� 1)(w � k + 1).

Using

P

i2G

h

i

= kq, we have jZ

G

j � (w � k + 1)(kq � jGj). As this potential

solution has r � (4 �

1

2

�)q � 4q � 1 horizontal lines, jGj � 4q, and therefore

jZ

G

j � (w�k+1)q(k�4) = (w�k�1)q(k�4)+2q(k�4). Sin
e k > 8, we obtain

jZ

G

j � 4q(w � k � 1) + kq � (w � k � 1)jGj+

X

i2G

h

i

=

X

i2G

(w

i

+ h

i

� k � 1): (13)

Noti
e that ea
h re
tangle of B [D appears for some two 
onse
utive verti
al

lines at horizontal distan
e ex
eeding 1.

Consider now two 
onse
utive horizontal lines of the potential integral solution

at verti
al distan
e greater than 1, and let G be the set of i 2 A [B [ C [D su
h

that R

i

borders both these lines. All su
h re
tangles R

i

have the same h

i

> k, whi
h

we denote by h. All su
h re
tangles are in C [D. Let Z

G

be the the set of potential

pla
ements of (P

j

; Q

j

) with P

j

and Q

j

both inside some re
tangle R

i

with i 2 G

and having y

Q

j

� y

P

j

= (k � 1)=k. Analogously to the above argument, we have

jZ

G

j �

X

i2G

(w

i

+ h

i

� k � 1): (14)

Noti
e that ea
h re
tangle of C[D appears for some two 
onse
utive horizontal

lines at verti
al distan
e ex
eeding 1.

For re
tangles in D, the two sets of pla
ements given above are disjoint: in the

�rst set, x

Q

j

� x

P

j

= (k � 1)=k, and in the se
ond, x

Q

j

� x

P

j

= 1=k.

Sin
e ea
h re
tangle of B appears exa
tly on
e for some 
onse
utive verti
al pair

of lines, ea
h re
tangle of C appears exa
tly on
e for some 
onse
utive horizontal
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pair of lines, and ea
h re
tangle ofD appears exa
tly on
e in both, the total number

of pla
ements we have found is at least

X

i2A

(w

i

+ h

i

� k � 1) +

"

X

i2B

(w

i

+ h

i

� k � 1) +

X

i2C

(w

i

+ h

i

� k � 1) + 2

X

i2D

(w

i

+ h

i

� k � 1)

#

;

thus 
ompleting the proof of Claim 2.1 (sin
e

P

i2D

(w

i

+ h

i

� k � 1) � 0).

We 
ontinue with the proof of Theorem 2. From the previous 
laim, the total

number of pla
ements for the pair (P

j

; Q

j

), where both P

j

and Q

j

are in the same

re
tangle of the potential integral solution, is at least

t

X

i=1

(w

i

+ h

i

� k � 1) � kq(r � 2)� (k + 1)t

� kq(r � 2)� (k + 1)

�

1

4

(r + 2)

2

�

� qr � q

2

;

where the �rst inequality follows from Equation (9), the se
ond inequality follows

from Equation (8), the third inequality from Equation (10), and the last inequality

from our assumption that r � q.

As there are in total (kq)(kq)(k � 1) < k

3

q

2

ways to sele
t the 
oordinates of

the pair (P

j

; Q

j

), we obtain that the probability that P

j

; Q

j

are separated by the

given 
olle
tion of lines, i.e., do not fall together in the same re
tangle given by the

potential integral solution, is at most 1� q

2

=(k

3

q

2

) � e

�1=k

3

. Given that there are

n = dq

5=4

e pairs, we obtain that the probability that this �xed integral solution is

valid for a set of points, i.e., P

j

is separated from Q

j

for all j, is at most

(e

�1=k

3

)

n

= e

�dq

5=4

e=k

3

: (15)

Given that the total number of potential integral solutions is bounded by

e

4q ln(4kq)

(Equation (7)), for q so large that q

5=4

=k

3

> 4q ln(4kq) + 1, the prob-

ability that some pair is not separated by any potential integral solution of 
ost at

most (4�

1

2

�)q is stri
tly bigger than 1� 1=e. Hen
e, the probability that (6) holds

ex
eeds 1 � 1=e. We showed earlier that (5) holds with probability at least 1=2.

Be
ause (1�1=e)+1=2 > 1, it follows that there is a pla
ement of points satisfying

both (5) and (6).

3. Hardness Results

In this se
tion we prove:

Theorem 3. Separation is APX-hard, that is: assuming P 6= NP, there is an

absolute 
onstant �

S

> 0 su
h that no polynomial-time algorithm has approximation

ratio at most 1 + �

S

.
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The de
ision version of Separation has been shown to be NP-
omplete

5

. Our

APX-hardness redu
tion is similar to that in

5

and is inspired by the redu
tion

from Proposition 6.2 of

8

, whi
h uses the satis�ability problem 3-Sat.

The maximum 3-satis�ability problem Max-3Sat is that of �nding, in a 3CNF

Boolean formula (in whi
h ea
h 
lause has exa
tly three literals), a truth value

assignment whi
h satis�es the maximum number of 
lauses. For ea
h �xed k, de�ne

Max-3Sat(k) to be the restri
tion ofMax-3Sat to Boolean formulae in whi
h ea
h

variable o

urs at most k times. Theorem 4 below is immediate from Theorems 29.7,

29.11, and Corollary 29.8 in

13

.

Theorem 4.

13

Assuming P 6= NP, there is an absolute 
onstant �

M

> 0 su
h that

no polynomial time algorithm for Max-3Sat(5) satis�es at least (1��

M

)m 
lauses

for every formula � with m 
lauses whi
h is satis�able.

To prove the approximation hardness stated in Theorem 3, we use the following

redu
tion from Max-3Sat(k) to Separation. The input to 3-Sat is a Boolean

formula � in 3CNF form. Let � have n variables and m 
lauses. The redu
tion


onstru
ts a set P

�

of 7n + 11m + 2 points in the plane, no two of whi
h have

the same x- or y-
oordinate. The 
onstru
tion is illustrated in Figure 2 for � =

(t + y + z)(x + y + z)(x + y + z). Here n = 4 and m = 3; the three 
lauses are

denoted C

1

, C

2

, C

3

.

There are three types of points: variable points, 
lause points and 
ontrol points.

The 
ontrol points 
ome in pairs, have in
reasing y-
oordinates when s
anned from

left to right, and are denoted q

1

; : : : ; q

4n+2m+2

. For 1 � i � n+1, the pair q

2i�1

; q

2i

\for
es" a horizontal line (whi
h is more useful than the verti
al line separating the

pair), and for n + 2 � i � 2n +m + 1, the pair q

2i�1

; q

2i

\for
es" a verti
al line.

We 
all these lines grid lines, and we denote by h the lowest horizontal grid line.

There are three variable points for ea
h variable, and nine 
lause points for ea
h


lause. The nine points of ea
h 
lause C are made up of six points that appear in

the rows of the variables that appear in C (above the horizontal line h), and three

points below h. We have a pair of points in the grid 
ell given by ea
h variable-


lause pair (x;C), where the variable x appears in C; thus six points per 
lause

above line h. The three points of ea
h variable require two separating lines. Every

optimal solution 
an be assumed to use exa
tly one verti
al line, as one verti
al

line also separates two 
ontrol points and a se
ond one is not needed. The 
hoi
e

of the higher (resp., lower) horizontal line 
orresponds to setting the variable to

true (resp., false). If x appears unnegated in C, the pair of points is separated by

the higher horizontal line, whereas if x appears negated in C, the pair of points is

separated by the lower horizontal line.

The �rst 4n + 4 
ontrol points form spine 1, and the 3m 
lause points below

h form spine 2. The segments q

2i+1

q

2i+2

, for i = 0; : : : ; 2n +m, are 
alled 
ontrol

edges. The segments q

2i

q

2i+1

, for i = 1; : : : ; n, and i = n+ 2; : : : ; 2n+ 1, are 
alled

variable edges. The segments q

2i

q

2i+1

, for i = 2n+ 2; : : : ; 2n+m, are 
alled 
lause

edges. We denote by a; b; 
; d the four 
anoni
al verti
al lines whi
h 
ould be used
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x

t

z

y

C1 C2 C3

h

20

24
q

q

q1

db  ca

Fig. 2. The point set P

�


orresponding to � = (t + y + z)(x + y + z)(x + y + z). The solution

(i.e., set of separating lines) 
orresponding to the truth assignment t = 1; x = 1; y = 0; z = 1

is shown; the grid lines are solid, while the other separating lines are dashed. (The 
olors of the

points only have meaning when dis
ussing the 
olored version of the separation problem at the

end of Se
tion 3.)

to separate the three pairs and the triplet of a 
lause. They are shown in the �gure

for the 
lause C

2

.

Clearly, 
onstru
ting P

�


an be a

omplished in polynomial time. We �rst de-

termine the number of lines used when the input Boolean formula is satis�able.

Claim 3.1. If � is satis�able then P

�


an be separated using 4n+ 3m+ 2 lines.

Proof. Let � be an assignment whi
h satis�es �. Use the (n+1)+(n+1)+(m�1) =

2n+m+1 grid lines to separate the pairs of 
ontrol points q

2i�1

; q

2i

; add a verti
al

line to separate q

2n+2

q

2n+3

. We have thus used 2n+m+2 lines so far. If a variable is

set true by � , use the higher of the two horizontal lines for that variable; otherwise

use the lower horizontal line. For ea
h variable, add a verti
al line whi
h separates

the remaining pair of points. These lines also 
ut all variable edges. Thus, using 2n

more lines, all variable points are separated; this yields 4n+m+ 2 lines so far.

Note now that for ea
h 
lause, at least one of the three pairs of points above
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h must be already separated, otherwise by 
onstru
tion, all literals in that 
lause

would be set to false and the 
lause would not be satis�ed, a 
ontradi
tion. One 
an

now 
he
k that the remaining two pairs of points above h and the three points below

h 
an be separated using exa
tly two verti
al lines per 
lause (at least two su
h

lines are ne
essary to separate the three points below h). Overall, 4n+m+2+2m=

4n+ 3m+ 2 lines have been used.

Note that separating the points of spine 1 requires at least 4n+3 lines. Similarly,

at least 3m�1 lines are ne
essary to separate the points of spine 2. Moreover, none

of these lines 
an be shared, so at least 4n+3m+2 lines are ne
essary to separate

P

�

. Denote by p = 4n+ 3m + 2 the exa
t number of lines needed to separate P

�

,

when � is satis�able.

Assume that there exists a polynomial-time approximation algorithm for Sepa-

ration with performan
e ratio at most 1+� for some � > 0. The assumed algorithm

gives a solution (set of lines) S having at most (1 + �)p lines. We �rst transform S

to S

0

without any in
rease in 
ost, where S

0

is a solution that ful�lls the following

two 
onditions: (i) S

0


ontains the grid lines, and (ii) S

0

uses exa
tly two verti
al

lines per 
lause (i.e., for separating its nine 
lause points).

To a
hieve (i), swit
h any of the verti
al lines 
utting the �rst n+1 
ontrol edges

to horizontal ones, and any of the horizontal lines 
utting the other n+m 
ontrol

edges to verti
al ones; note that the result is still a solution (i.e., separates the

points). Similarly, swit
h any of the verti
al lines 
utting the �rst n variable edges

to horizontal ones, and any of the horizontal lines 
utting the remaining variable

edges to verti
al ones; note that the result is still a solution in whi
h the triplet of

ea
h variable is separated by at least one horizontal and at least one verti
al line.

We further transform the solution so as to satisfy (ii). We observe that at most

�p 
lauses are separated verti
ally by three verti
al lines (while ea
h other uses

exa
tly two verti
al lines, the minimum required), otherwise one 
ould separate P

�

with fewer than p lines, a 
ontradi
tion. For ea
h su
h 
lause, swit
h one of the

three verti
al lines to horizontal, so that the resulting three lines still separate the

nine points of the 
lause. There are four 
ases, two of whi
h are symmetri
. If the

three lines are a; b; 
, swit
h b; if the three lines are a; b; d, swit
h b, et
.

We 
all S

0

the resulting solution. Note that at most �p variables are 
ut twi
e

horizontally, as p lines are needed just to separate the points of the two spines, and

a se
ond horizontal line 
utting a variable does not help with separating the points

of the spines. We now 
onstru
t a truth value assignment � : for ea
h variable, if it is


ut horizontally by the higher line, set it to true, if it is 
ut horizontally by the lower

line, set it to false, and if it is 
ut horizontally by two lines set it arbitrarily (say, to

true). The at-most-�p variables that are 
ut twi
e horizontally appear in at most 5�p


lauses (
f. the de�nition of Max-3Sat(5)). Let C be any of the remaining 
lauses.

We 
laim that � makes C true. One of the three pairs of points of C above h must

be separated by a horizontal line (otherwise only two verti
al lines would separate

the three pairs above h, a 
ontradi
tion). By 
onstru
tion, the literal 
orresponding
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to the pair of points that is 
ut horizontally is true, hen
e C is true.

Therefore, the number of satis�ed 
lauses is at leastm�5�p. Sin
e we 
an assume

that m � n=3 + 1, we have m � 5�p � m � 5�(12m+ 3m) = (1 � 75�)m. Setting

�

M

= 75�, the result follows from Theorem 4. That is, we 
an take �

S

= �

M

=75,

and the proof of Theorem 3 is 
omplete.

We 
an use the same redu
tion to show that the separation problem with 
olored

points is APX-hard. The points are 
olored as in Figure 2. The 2-
oloring used has

the property that all the edges spe
i�ed in the above proof are bi
hromati
. We

thus have

Corollary 1. The separation problem in the plane with 
olored points is APX-hard.

4. Remarks

4.1. A Dual Problem

Our 
overing LP for the separation problem suggests the following dual edge pa
king

problem. Given a (non-ne
essarily planar) graph G = (V;E) with a straight-line

embedding in the plane, �nd a maximum set of independent edges of G, where two

edges are said to be independent if they 
annot be stabbed by a 
ommon verti
al

or horizontal line. A 4-approximation algorithm of Bar-Yehuda et al.

2

for �nding a

maximum independent set of re
tangles in the plane|where two re
tangles are said

to be independent if they 
annot be stabbed by a 
ommon verti
al or horizontal

line|gives a 4-approximation for this problem, by 
onsidering the set of re
tangles

fR

uv

j uv 2 Eg. They use rounding of the dual of the LP, and thus their result


ombined with

7

shows that the optimal re
tangle pa
king and the optimal re
tangle

stabbing are within a 
onstant fa
tor of ea
h other.

Even the simple 
ase when E(G) is the edge set of a 
onvex polygon P does

not seem trivial. A 1=2-approximation algorithm is the following: divide P into its

upper and lower 
hains, U and L, respe
tively. Find an optimal solution for both

U and L, and 
hoose the one with the larger number of edges. Finding an optimal

solution for U (or L) amounts to �nding a maximal independent set of intervals on

a line, and it is thus solvable in polynomial time. It is easy to see that the result is

at least half of the optimal.

4.2. Higher Dimensions

Following

7

, it is now straightforward to observe that both our algorithms yield

a d-approximation for the separation problem in R

d

. This holds for the 
olored

version as well. One has to repla
e 1=2 with 1=d in the 
orresponding pla
es. In

the �rst phase, after solving the linear program, edges are 
lassi�ed into d types,

depending on the 
oordinate for whi
h the sum of fra
tional weights is at least 1=d.

In the se
ond phase, the �rst algorithm solves d linear programs (as in

7

), or solves d

interval stabbing problems on the line (as in Se
tion 2). The se
ond algorithm 
y
les

through all 
oordinates and, for ea
h 
oordinate, goes through the hyperplanes in
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order, and 
hooses a hyperplane if and only if the running sum interval for that

hyperplane in
ludes a multiple of 1=d.

4.3. Con
luding Remarks

Several interesting questions regarding the separation problem in the plane remain,

su
h as: Is it possible to improve the approximation ratio? Do spe
ial 
ases, e.g.,

points in 
onvex position, admit better approximation ratios, or even exa
t solu-

tions? One 
an potentially strengthen the LP by adding 
onstraints. For example, a

\stronger" LP 
ould also require that ea
h triplet of points is fra
tionally separated

by at least 2. However, our probabilisti
 
onstru
tion from Theorem 2 has also a ra-

tio of at least 2�� for the stronger LP. In the proof, one must de�ne the \bad" pairs

of indexes to be those with any of jjP

i

� P

j

jj

1

; jjP

i

�Q

j

jj

1

; jjQ

i

� P

j

jj

1

; jjQ

i

�Q

j

jj

1

less than 2. This will in
rease only by a 
onstant fa
tor the expe
ted number of

bad pairs, and the proof with the adjusted 
onstants 
an be used.
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