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Abstract

Motivated by applications to wireless sensor networks, we study the following problem. We
are given a set S of wireless sensor nodes, given as a multiset of points in a normed space.
We seek to place a minimum-size (multi)set Q of wireless relay nodes in the normed space
such that the unit-disk graph induced by Q ∪ S is two-connected. The unit-disk graph of a
set of points has an edge between two points if their distance is at most 1.

In Infocom 2006, Kashyap, Khuller, and Shayman present two algorithms, for the two
variants of the problem: two-edge-connectivity and biconnectivity. For both they prove an
approximation ratio of 2dMST , where dMST is the maximum degree of a minimum-degree
Minimum Spanning Tree in the normed space. It is known that in the Euclidean two-
dimensional space, dMST = 5, and in the three dimensional space, dMST = 12.

We give a tight analysis of variants of the same algorithms, obtaining approximation ratios
of dMST for biconnectivity and 2dMST − 1 for two-edge-connectivity respectively. To do so
we prove additional structural properties regarding bypassing Steiner nodes in biconnected
graphs.

Keywords: approximation algorithm, wireless network, Steiner points, submodular flows,
two connectivity, parsimony

1. Introduction

A wireless sensor network is composed of a large number of sensors, which can be densely
deployed to monitor the targeted environment. Some of the most important application
areas of sensor networks include military, natural calamities such as forest fire detection and
tornado motion, and different sorts of surveillance. When compared to traditional ad hoc
networks, the most noticeable point about sensor networks is that they are limited in power,
computational capacities, and memory.

Sensors may have a short transmission range, since long transmission consumes more
energy, and the sensors normally have limited power. Therefore, network partitions may
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occur or more sensors must be placed to maintain connectivity. Higher connectivity may be
desired to ensure fault-tolerance.

Formally, in the Two-Connected Relay Placement problem, we are given a set S
of wireless sensor nodes, given as a multiset of points in a finite-dimensional normed space
(”multiset” meaning two nodes may be placed at the same location). We seek to place a
minimum-size (multi)set Q of wireless relay nodes in the normed space such that the unit-disk
graph induced by Q ∪ S is two-connected.

A normed space is a metric space (X, d), given by a set X (of points) and a symmetric
function (distance) d : X × X → R

+ that obeys the triangle inequality: ∀x, y, z ∈ X ,
d(x, y) ≤ d(x, z) + d(z, y), and the property that d(x, y) = 0 if and only if x = y. As defined
in the literature (3), a normed space also has the following property (and others that we do
not use): ∀x, y ∈ X and ∀α ∈ [0, 1], there exists z ∈ X such that d(x, y) = d(x, z) + d(z, y)
and d(x, z) = α · d(x, y). In other words, the normed space contains all the Steiner points.
Normed spaces of interest to wireless networks are the two and three dimensional Euclidean
space, with d being the Euclidean distance (the l2 norm).

A multiset allows several nodes to be placed at the same location. The unit-disk graph
of a set of points has an edge between two points if their distance is at most 1 (we normalize
to 1 the transmission range of the sensors). For a multiset of points Z, let U(Z) be the
unit-disk graph induced by Z. Also, we call two vertices U -adjacent, or U -neighbors, if their
distance is at most 1.

Kashyap, Khuller, and Shayman (17; 18) introduce the two variants of this problem:
Two-Edge-Connected Relay Placement (when U(S∪Q) must be two-edge-connected,
that is, have between any two vertices two edge-disjoint paths) and Biconnected Relay

Placement (U(S ∪ Q) must be biconnected, that is, have between any two vertices two
internally vertex-disjoint paths). Two paths are internally vertex-disjoint if they only have
the endpoints in common. Biconnectivity also goes by the name of two-vertex-connectivity,
or two-connectivity.

Let dMST be the maximum degree of a minimum-degree Minimum Spanning Tree in the
normed space. It is known (27; 25) that dMST is the strict Hadwiger number of the unit
ball in the normed space, defined as follows: the maximum size of an independent set in
U(Nx), taken over all the points x of the space, with Nx being the points, other than x,
within distance 1 of x. Is is known that dMST = 5 in the Euclidean two-dimensional space,
and dMST = 12 in three dimensions (25).

(17) presents two algorithms, based on the Khuller and Vishkin (20) (Algorithm KV)
and the Khuller and Raghavachari (19) (Algorithm KR) algorithms forMinimum-Weight

Spanning Two-Edge-Connected Subgraph, and Minimum-Weight Spanning Bi-

connected Subgraph, respectively. For these problems, a weighted graph G = (V,E, w)
is given as an input, and one must select a minimum weight set of edges F such that (V, F )
is two-edge-connected, or biconnected respectively. For Two-Connected Relay Place-

ment, (17) proves that variants of the two algorithms have each approximation ratio of
2dMST .

We give a tight analysis of variants of the same algorithms, obtaining approximation
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ratios of dMST for biconnectivity and 2dMST−1 for two-edge-connectivity respectively. Thus,
in the two-dimensional Euclidean plane, we get a ratio of 9, instead of 10 ((17)), for two-
edge-connectivity and 5, instead of 10 ((17)), for biconnectivity. Assuming that no post-
processing removes redundant relay nodes, the ratios given in this paragraph are tight for
these algorithms.

For the ratio of 2dMST −1, we use a more careful accounting and look inside Algorithm
KV. For the ratio of dMST for biconnectivity, we look inside Algorithm KR, and prove a
property of biconnected graphs that may be of independent interest.

This property is technical and we only describe here a simpler version that is not used in
proving our main results. We prove the following result, new to the best of our knowledge.
Let H be a biconnected planar undirected graph, and replace every edge by two anti-parallel
directed arcs. Let R be a subset of V (H). Then there exists a set of arc-disjoint directed
paths Pi of H , all starting and ending at a vertex of R and without interior vertices from R,
such that, if we replace each Pi by an arc ei joining the start and the end vertex of Pi, we
obtain a biconnected digraph on R. This property allows one to “bypass” Steiner vertices
(“parsimony”) and in some sense eliminate them. This parsimony differs from the classical
concept as given in (13) since it applies to combinatorial (and not linear programming)
solutions.

For graphs in general, we prove a “fractional outconnected” variant of the property
above, and use it together with Algorithm KR to obtain an approximation ratio of dMST

for biconnectivity in arbitrary normed spaces. Structural properties of biconnected Steiner
networks were also studied by (15; 14; 30; 23), and we use some of their results and techniques
for our “outconnected parsimony”. Using these structural properties, we construct from the
optimum solution of an arbitrary Biconnected Relay Placement instance a fractional
solution to a certain polytope. This polytope was proposed by Frank and Tardos (11), who
proved that it is integral (see also (10)). Thus, there exists an integral solution with cost
at most this fractional solution, for any non-negative cost function. We define costs that
relate the objective function to an optimum relay solution, and notice that the output of
Algorithm KR in a weighted graph that we describe later is (almost) derived from an
integral polytope optimum solution.

As an example of its possible applications, this new fractional outconnected parsimony
property can be used to prove that a variant of Algorithm KR has approximation ratio
of 2 for the following network design problem: we are given a normed space and a set of
terminals S. We must choose a set Z of points and a set of edges F of minimum total
distance such that the graph (Z ∪ S, F ) is biconnected. This would not be an improvement,
since an approximation algorithm with a ratio of 2 is already known in finite graphs (even
without a metric cost function) from the paper by Fleischer, Jain, and Williamson (9). In
Euclidean spaces, a PTAS (for any ǫ > 0, there is an algorithm with approximation ratio
of 1 + ǫ; the running time being polynomial for any fixed ǫ) was announced by Czumaj and
Lingas (7); their algorithms have running time exponential in the dimension and in 1/ǫ.
Also, no fully PTAS exists (23).

In other previous works, Wang, Thai, and Du (28) and Bredin, Demaine, Hajiaghayi, and
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Rus (2) also gave constant factor algorithms, those of (2) achieving an O(k4 log k) approxi-
mation for k-connectivity of U(S ∪Q) in the Euclidean plane (it seems from their proof that
a dMST factor would apply in other normed spaces). We remark that in a wireless setting,
one only needs k-connectivity between the vertices of S, i.e. k edge-disjoint (or internally
vertex-disjoint) paths between any two vertices of S. For k = 1 or k = 2, by eliminating re-
dundancy from any solution, one can see that k-connectivity or k-edge-connectivity between
the vertices of S implies k-connectivity or k-edge-connectivity, respectively, of U(S ∪ Q).
We only present the argument for 2-connectivity: If U(S ∪ Q) is not biconnected, it has
a vertex v such that U ((S ∪Q) \ {v}) has at least two connected components, and one of
these two components contains no vertex of S, since we have two-connectivity between the
vertices of S; the removal of this component does not decrease the connectivity between the
vertices of S. This argument fails for k > 2. When requiring only k-connectivity between
the vertices of S, the best known approximation ratio is obtained by Kamma and Nutov
(16): O(dMSTk

2 log k).

1.1. Related Work

MSPT (Minimum Number of Steiner Points Tree with bounded edge length) is the fol-
lowing problem: Given S in the plane, find minimum Q such that U(S ∪ Q) is connected.
This problem was introduced by Lin and Xue (21) and proven NP-hard. They also prove
that taking a Euclidean minimum spanning tree, and placing a minimum number of relay
nodes on each edge of the tree to connect the endpoints of the edge, achieves an approxima-
tion ratio of 5. Mandoiu and Zelikovsky (24) give a tight analysis of 4 for the MST-based
algorithm described above, and generalize the proof to arbitrary normed spaces obtaining a
ratio of dMST − 1. Chen, Du, Hu, Lin, Wang, and Xue also prove in (4) the same ratio of
4 but with a different approach, and present a 3-approximation algorithm. Later, Cheng,
Du, Wang, and Xu (5) improve the running time of some of the algorithms found in (4) and
present a randomized algorithm with approximation ratio 2.5. In arbitrary normed spaces,
Nutov and Yaroshevitch (26) obtain a ⌊(dMST + 1)/2⌋+ 1 + ǫ-approximation.

2. Two-edge-connectivity

We start with notation. For any graph G, we use
−→
G to represent the bidirected version

of G, that is the weighted digraph obtained from G by replacing every edge uv of G with
two oppositely oriented arcs uv and vu with the same weight as the edge uv in G. As usual,
the weight of a subgraph H of G is defined as w (H) =

∑

e∈E(H)w (e) , and the weight of a

subdigraph D of
−→
G is defined as w (D) =

∑

e∈E(D)w (e) .

A spanning subdigraph A of
−→
G is said to be an arborescence rooted at some vertex

s ∈ V (G) if A contains exactly |V (G)| − 1 arcs and there is a path in A from s to any other
vertex. In other words, arborescences in directed graphs are directed analogs of spanning
trees in undirected graphs.

Call a feasible solution Q of a Two-Connected Relay Placement problem instance
a bead-solution if U(Q∪S) contains a two-edge-connected graph (or biconnected, respectively)

4



Figure 1: On the left, an optimum solution for two-edge-connectivity. The nodes of S are black disks, and
the relay nodes are empty circles. On the right, an optimum bead solution.

H where each node of Q has degree exactly two. The Kashyap et al. (17) algorithms produce
bead solutions - see for example Figure 1, borrowed from (17). In a bead-solution, we may
call the relay nodes beads.

For two-edge connectivity, we describe the analysis using Euclidean distance in two di-
mensions. It is straightforward to extend the analysis below to any normed space, using dMST

instead of 5 and dMST − 1 instead of 4, as the only time 4 comes in below is as dMST − 1 in
the MST -based algorithm for MSPT, and we can use the result of (24) in arbitrary normed
spaces.

The Kashyap, Khuller, and Shayman algorithm works as follows. For x, y ∈ S, define
w(x, y) = max(0, ⌈||x, y||⌉ − 1), where ||u, v|| denotes the Euclidean distance from u to v.
One can easily verify that w(x, y) is the minimum number of relay nodes required to connect
x and y, and that w(x, y) is an increasing function of ||x, y||. However, w is not a metric.

If w(x, y) > 0, allow two parallel edges of weight w(x, y) between x and y; otherwise allow
only one edge of weight 0, plus parallel edges of weight 1 (thus a bead may be placed to
increase connectivity among U -adjacent nodes of S), creating an edge-weighted multigraph
G. Use Algorithm KV to compute in G a set of edges F , attempting to minimize w(F )
while (V, F ) is two-edge-connected. Replace each edge of positive weight by new beads (that
is, every such edge has its own distinct beads); this is the output. Algorithm KV is a
2-approximation for Minimum Weight Spanning Two-Edge-Connected Subgraph,
and the approximation ratio of (17) is based on showing that G has a two-edge-connected
subgraph of weight at most 5opt , where opt is the value of an optimum relay solution.

The constant 5 above is known to be tight (17), as in Figure 1.

Theorem 1. Algorithm KV has approximation ratio 9.

Proof: We look deeper into Algorithm KV, which works as follows. Pick in V (G) an
arbitrary root r. Use the polynomial-time algorithm of Gabow (12) to compute two arc-
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disjoint arborescences A and B of
−→
G , rooted at r, such that w(A) + w(B) is minimized.

Output an edge xy if either xy or yx are in A∪B. It is shown in (20) (and not hard to see)
that the output graph is two-edge-connected.

To prove the approximation ratio, it suffices to construct, from an optimal solution, two

arc-disjoint r-rooted arborescences A and B in
−→
G satisfying

w(A) + w(B) ≤ 9opt . (1)

This process is illustrated in Figure 2, with S = {r, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}.
We assume opt ≥ 1, as we can easily check if U(S) is two-edge-connected. Consider OPT ,

a multiset of points giving an optimal solution. Partition OPT into connected components
Q1, Q2, . . . , Qk of U(OPT ). In the example of the Figure 2, we have k = 2, Q1 = {u1, u2}
and Q2 = {u3}. Let Si be the set of U -neighbors of Qi in S; these Si are not necessarily
disjoint sets. In Figure 2, we have S1 = {x3, x4, x5, x10} and S2 = {x2, x5, x6, x7, x8, x9}.

There exist two r-rooted arc-disjoint arborescences A0 and B0 in D0, the bidirected
U(OPT ∪S), as U(OPT ∪S) is two-edge-connected (the existence of the two arborescences
is stated and used in (20), and is not hard to see). An example of A0 and B0 appears in
Figure 2 (b). The edges of U(OPT ∪ S) have weight 0 and therefore

w(A0) + w(B0) = 0. (2)

We do the following for i = 1, 2, . . . , k. From Ai−1 and Bi−1, we create Ai and Bi, arc-
disjoint r-rooted arborescences in the digraph Di, where Di consists of the bidirected version

of U
(

S ∪
⋃k

j=i+1Qi

)

, plus some arcs of
−→
G that have positive weight. Moreover, we will

ensure that
w(Ai) + w(Bi) ≤ w(Ai−1) + w(Bi−1) + 9|Qi| (3)

and therefore, by adding up for all i, and using Equation 2, we get

w(Ak) + w(Bk) ≤ 9opt , (4)

thus obtaining Equation 1 with A = Ak and B = Bk. In the example of Figure 2, A1 and
B1 appear in subfigure (d) and A2 and B2 appear in subfigure (f).

The arcs of
−→
G that are used in Ai and Bi and that are not from Ai−1 ∪ Bi−1, have both

endpoints in Si. Let us fix an i ∈ {1, 2, . . . , k} from now on. We look at Si, and choose in
it rA and rB such that the paths in Ai−1 and Bi−1 from r to rA and rB respectively do not
contain other vertices in Si; strictly speaking, rA = rA,i and rA is obtained by picking an
arbitrary vertex of x ∈ Si and following the path of Ai−1 from r to x until we meet the first
vertex of Si (so, if r ∈ Si, rA = r). The existence of rB is obtained similarly. Start with
Ai being Ai−1 after removing all the arcs entering Si other than, if r 6∈ Si, the arc entering
rA. Similarly, start with Bi being Bi−1 after removing all the arcs entering Si other than, if
r 6∈ Si, the arc entering rB. Further remove from Ai and from Bi all the arcs that have both
endpoints in Si ∪Qi. Note also that no arc of Ai−1 ∪Bi−1 enters Qi from outside Si, by the
way Qi and Si are constructed. For i = 1, the example in Figure 2 could have rA = x4 and
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Figure 2: An example giving the construction of arborescences A (solid arc segments) and B (dashed arc
segments) in the proof of Theorem 1. Figure (a) shows a (possible) optimum solution, where the input set
S is given by the black disks, and the solution OPT is given by empty circles, with line segments giving
the graph U(OPT ∪ S). The sets Qi and Si are given by dashed ellipses and rounded rectangles minus the
dashed ellipses, respectively. The thin and thick arc segments represent some of the arcs of the bidirected
version of G that have weight 0 and 1 respectively. Further explanation is in the text.
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rB = x3, with subfigure (c) depicting Ai and Bi at this moment in the proof. For i = 2, we
may have rA = rB = x5 with subfigure (e) depicting Ai and Bi at this moment in the proof.

Construct sets X, Y, Z as follows. Initially, X = Y = ∅, and Z = Si\{rA, rB}. If rA 6= rB,
set r′A = rA and r′B = rB. This is the case in the example of Figure 2 for i = 1. If rA = rB
and there are at least two distinct nodes of Z that are U -adjacent to rA, then arbitrarily pick
two such nodes r′A and r′B and remove them from Z. If rA = rB, and there is at most one
node of v ∈ Z that is U -adjacent to rA, then remove v (if it exists) from Z, and set r′A = rA
and r′B = rB. This is the case in the example of Figure 2 for i = 2, with v = x2. Regardless
of what case was before, if r′A has U -neighbors in Z, remove them from Z and place them
in Y ; otherwise place r′A in Y . If r′B has U -neighbors in Z, remove them from Z and place
them in X ; otherwise place r′B in X . Assume two vertices x, y ∈ Z are U -adjacent. Put x
in X and y in Y , taking both out of Z. Do this as long as possible, and note that Z at the
end is an independent set of U(S), and that X, Y, Z are disjoint. In the example of Figure
2 for i = 1, we end up with X = {x3}, Y = {x4} and Z = {x5, x10}. For i = 2, we may end
up with X = {x6, x8}, Y = {x7, x9}, and Z = ∅.

As U(Qi) is connected, and every vertex in Si is U -adjacent to a vertex of Qi, Qi is a
MSPT feasible solution for input {r′A} ∪X ∪ Z. Use the tight analysis for MSPT proposed
by (24) to get a tree TA connecting {r′A} ∪X ∪ Z, using edges of G of total weight at most
4|Qi|. Orient the edges of TA away from r′A. If r′A 6= rA, add the arc rAr

′
A. Every vertex

y ∈ (Y \{r′A}) has a U -neighbor x ∈ (X∪{r′A}); add to TA the arc xy of weight 0, using x = r′A
whenever possible. If r′B 6= r′A and r′B 6∈ X , then r′B has a U -neighbor x ∈ (X ∪{r′A}); add to
TA the arc xr′B of weight 0. In the case (mentioned earlier when X, Y, Z were constructed)
that rA = rB and there was exactly one node of Z that is U -adjacent to rA (this node is
called v and was removed from Z), add to TA the arc rAv of weight 0. In the example of the
Figure 2, compare subfigures (c) and (d) with TA possibly having the arcs x4x3, x4x5, and
x4x10, and compare subfigures (e) and (f) with TA possibly starting with the arcs x5x6 and
x6x8, and to which later were added the three arcs x6x7, x8x9, and x5x2, all three of weight
0.

Similarly, note that Qi is a MSPT feasible solution for input {r′B} ∪ Y ∪ Z. Obtain TB

connecting {r′B} ∪ Y ∪ Z of weight at most 4|Qi|. Orient the edges of TB away from r′B. If
r′B 6= rB, add the arc rBr

′
B. Every vertex x ∈ (X \ {r′B}) has a U -neighbor y ∈ (Y ∪ {r′B});

add to TB the arc yx of weight 0. If r′B 6= r′A and r′A 6∈ Y , then r′A has a U -neighbor
y ∈ (Y ∪ {r′B}); add to TA the arc yr′A of weight 0. In the case (mentioned earlier when
X, Y, Z were constructed) that rA = rB and there was exactly one node of Z that is U -
adjacent to rA (this node is called v and was removed from Z), add to TB the arc (of weight
1): rBv. The total weight of the arcs added is at most 8|Qi|+ 1 ≤ 9|Qi|. In the example of
the Figure 2, compare subfigures (c) and (d) with TB possibly having the arcs x3x10, x10x4,
and x10x5, and compare subfigures (e) and (f) with TA possibly starting with the arcs x5x7

and x5x9, and to which later were added the arcs x7x6, x9x8, both of weight 0, and the arc
x5x2 of weight 1. One may have avoided the “+1” in this last example by picking rA = x2

for i = 2, but there are instances where the “+1” cannot be avoided, as it can be seen by
running the algorithm on the example from Figure 1, with the output shown in Figure 3.
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Figure 3: On the left, we have the optimal solution of Figure 1. As there, S is given by the black disks.
On the right, there is a possible output of Algorithm KV, with the two arborescences given by solid and
dotted arcs, and beads empty or dotted. One arc of weight w = 1 from r to v is required by one of the two
arborescences.

Add TA to Ai and TB to Bi. Note that TA indeed reaches every vertex of Si, and thus Ai

indeed contains a r-rooted arborescence in Di. Indeed, any directed path P in Ai−1 from r
to some vertex x 6∈ Qi can be replaced by the following path in Ai (assuming P uses vertices
of Qi ∪ Si): if y is the last vertex of P in Qi ∪ Si, then we use Ai−1 to get from r to rA,
then in TA from rA to y (as y ∈ Si and y 6∈ Qi, by the method Qi and Si were constructed),
followed by the part of P from y to x. Similarly, note that TB indeed reaches every vertex
of Si, and thus Bi indeed contains a r-rooted arborescence in Di.

The theorem follows from the following claim:

Claim 2. TA and TB are arc disjoint.

Proof: Only the arcs of weight 0 are an issue; for the others arcs, parallel arcs are allowed.
With Z independent in U(S) (indeed, U(Z) has no edges), and X, Y, Z disjoint, all the
0-weight arcs in TA are in one of the following categories:

1. rAr
′
A, if rA 6= r′A

2. from Z to X

3. from X to Z ∪X ∪ Y

4. from r′A to Y (in this case, r′B 6= r′A and r′A 6∈ Y )

5. from rA to v, if v exists

6. from X ∪ {r′A} to r′B (in this case, r′B 6= r′A and r′B 6∈ X)

(note that r′B ∈ X is possible and TA can have arcs out of r′B; however these arcs, other than
rAv, would have positive weight, as argued next. The case r′B ∈ X only happens if we had
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that r′B had no U -neighbors in Z, and if r′B does have a U -neighbor y ∈ Y , then y is also a
U -neighbor of r′A and the construction of TA uses the arc r′Ay instead of r′By). The 0-weight
arcs in TB are in one of the following categories:

1. rBr
′
B, if rB 6= r′B

2. from Z to Y

3. from Y to Z ∪ Y ∪X

4. from r′B to X (in this case, r′B 6= r′A and r′B 6∈ X)

5. from Y ∪ {r′B} to r′A (in this case, r′B 6= r′A and r′A 6∈ Y )

(note that r′A ∈ Y is possible and TB can have arcs out of r′A; however these would have
positive weight, since if r′A ∈ Y , then we had that r′A had no U -neighbors in Z, which at
that time contained all the nodes of Si \ {rA, rB, r

′
A, r

′
B, v}). ⊓⊔

Thus TA and TB are indeed arc disjoint, and therefore we conclude that the approximation
ratio of Algorithm KV is at most 9. Without a post-processing phase removing redundant
nodes, the example of Figure 3 shows that the approximation ratio is exactly 9. ⊓⊔

3. Biconnectivity

Here (17) use the approximation algorithm of Khuller and Raghavachari (19). We could
use this algorithm, but prefer a variant of the Khuller and Raghavachari algorithm proposed
by Auletta, Dinitz, Nutov, and Parente (1), since this variant has a somewhat nicer analysis,
and also is faster by an order of |S|. It is this variant that we call Algorithm KR, and go
deeper in the algorithm to obtain a better approximation ratio.

A digraph is said to be k-outconnected (short for k-vertex-outconnected) from a vertex s
if it contains k internally vertex-disjoint paths from s to any other vertex. The min-weight
spanning subdigraph of a given weighted digraph which is k-outconnected from a specified
vertex, if such a digraph exists, can be found in polynomial time by an algorithm of Frank
and Tardos (11).

For any digraph D, we use D to represent the undirected graph obtained from D by
ignoring the orientations of the arcs and then removing multiple edges between any pair of
nodes. Suppose that D is a 2-outconnected digraph from a vertex s in which s has exactly
two outgoing neighbors. Then the graph D is biconnected (1). Algorithm KR constructs
a biconnected spanning subgraph of a given complete weighted graph G as follows.

1. For all s ∈ V

(a) Bidirect G, and add to the weight of the arcs leaving s an integer
M > 2

∑

uv∈G w(u, v). The resulting digraph is denoted by G+(s).
(b) Find a minimum-weighted spanning subdigraph D(s) of G+(s) which is

2-outconnected from s (We can assume no arc of D(s) enters s. Moreover, M is
large enough that s is incident to exactly two arcs in D(s)).

(c) Store the graph D(s)

2. output the D(s) that has minimum weight in G

10
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Figure 4: u, y, z, t is a chord-path between u and t for the cycle s, u, x, t, v. As an example for Lemma 4, let
vertices of R be represented by black disks, and the vertices not in R by empty small circles. Then the cycle
s, u, x, t, v has in u, y, v a chord-path without a vertex of R.

(1) prove that this modified version is a 2-approximation for Minimum-Weight Span-

ning Biconnected Subgraph. We use as the input of Algorithm KR (the graph G,
above) the complete simple graph on S with weight w defined by (similar to the previous
section) w(x, y) = max(0, ⌈d(x, y)⌉ − 1) (for all x 6= y ∈ S), where d(u, v) denotes the dis-
tance from u to v. One can easily verify that w(x, y) is the minimum number of relay nodes
required to connect x and y, and that w(x, y) is an increasing function of d(x, y). As noted
before, w is not a metric.

After runningAlgorithm KR , replace each edge of positive weight ofD(s) by new beads
(that is, every such edge has its own distinct beads); this is the output of the algorithm for
Biconnected Relay Placement. The approximation ratio of 2dMST obtained by (17)
is based on showing that G has a biconnected subgraph of weight at most dMST · opt , where
opt is the value of an optimum relay solution, and the fact that Algorithm KR is a 2-
approximation for Minimum-Weight Spanning Biconnected Subgraph. For us, the
approximation ratio of dMST follows from Theorem 10, proven in the next subsection after
preliminary lemmas.

3.1. Analysis for arbitrary normed spaces

First, a corollary of Menger’s Theorem:

Theorem 3 (Fan Lemma). (see, for example, (8)) Suppose that G is a k-vertex connected
undirected graph and X is a proper subset of its vertices with |X| = k. Then for any vertex
v not in X, there are k paths that link v to vertices of X, and the only vertex appearing on
more than one path is v.

Luebke (22) and Luebke and Provan (23) proved an equivalent of the following property
when minimizing the total distance. We use their approach below. Given a cycle C in an
undirected graph H and two distinct vertices u and v on C, a chord-path between u and v
is a path P̄ in H between u and v that, except for u and v, shares neither vertices nor edges
with C. See Figure 4 for an illustration.

11



Lemma 4. Let J be a biconnected simple undirected graph and R be a subset of V (J) with
|R| > 2. Assume no proper biconnected subgraph J ′ of J exists such that R ⊆ V (J ′). Then
for every cycle in J , any chord-path has in its interior a vertex of R. Every simple cycle of
J contains at least two vertices of R, and if it contains exactly two vertices, then each of the
two paths contained in the cycle between these two vertices has an interior vertex of degree
greater than two. Moreover, there exists a vertex of R of degree 2 in J .

Proof: First assume, for a contradiction, that a cycle C has a chord-path P̄ with no vertices
of R in its interior. A biconnected graph J has an ear-decomposition ((10), Theorem 2.1.6).
That is, J can be built up from a simple cycle by sequentially adjoining edges (loops are
not allowed) and subdividing edges (in any order). We call the paths added (the subdivided
edges) ears. By following the proof, we can see that one can choose the starting cycle and a
number of ears arbitrarily, and after this continue to finish the ear decomposition.

We start an ear decomposition of J with C, followed by P̄ , and we obtain that there exist
ear decompositions of J that have ears without vertices of R in the interior. Among all such
ear decompositions, choose a decomposition with a shortest possible ear without vertices of
R in the interior. Let C ′ be the first cycle of the ear decomposition, and P̄1, . . . , P̄k be the
ears added. Let P̄i be the ear without vertices of R. If no further ear uses internal vertices
of P̄i, then we simply do not add P̄i, adding all the other ears, and obtain a smaller graph,
biconnected and spanning R, a contradiction.

If ear P̄j, for j > i, is with the smallest j such that it has as one endpoint a vertex x
interior of P̄i, (note that x 6∈ R), then we have two cases. If vertex y, the other end of P̄j,
is not on P̄i (including the ends), then we split P̄i in two paths P̄ ′ and P̄ ′′ at x. We do not
use P̄i in the ear decomposition, and have P̄i+1 follow either P̄i−1, or C

′ if i = 1. We join P̄ ′

with P̄j and use it as an ear instead of P̄j . Immediately after this new P̄j, and before P̄j+1,
we use P̄ ′′ as an ear. We get another ear decomposition of the same graph that has in P̄ ′′

an ear shorter than P̄i without vertices of R in its interior, contradicting the choice of the
original ear decomposition. If y, the other end of P̄j, is on P̄i (including its ends), then we
split P̄i in three paths P̄ ′, P̄ ∗, and P̄ ′′, at x and y. P̄ ∗ is not trivial since x 6= y (loops are
not allowed in the ear decomposition), and one of P̄ ′ and P̄ ′′ is not trivial (the other path
could have no edges). We use instead of P̄i the concatenation of P̄ ′, P̄j, and P̄ ′′, and instead
of P̄j the non-trivial path P̄ ∗. We get another ear decomposition of the same graph that has
in P̄ ∗ an ear shorter than P̄i without vertices of R in its interior, contradicting the choice
of the original ear decomposition. Thus every ear must contain in its interior a vertex of R,
and so does every chord-path of every cycle of J .

Second assume, for a contradiction, that C ′ is a cycle with one vertex of R. Let us
choose another vertex of R and two internally disjoint paths between these two vertices of
R as the starting simple cycle in the ear decomposition. Let P̄i be the last ear in the ear
decomposition to contain an edge of C ′. Then P̄i must be a part of C ′, as its ends must be
vertices of C ′ either from the first cycle of the ear decomposition or from an ear added before
P̄i. Thus P̄i is an ear without interior vertices from R. We argued above that no such ears
exist and therefore we reached a contradiction. If C ′ has no vertex of R, a similar argument
works, after starting with another arbitrary cycle containing vertices of R.

12



If C ′ has exactly two vertices of R, say, x, y, and a path P contained in C ′ from x to y
that does not contain a vertex of degree greater than two, denote by P ′ the other path of C ′

between x and y. Choose another vertex of v of R, and based on the Fan Lemma (Theorem
3), there are two paths of J from v to x and to y that only share vertex v. These two paths
are disjoint from the internal vertices of P (if any) since these vertices only have degree two,
and the two paths cannot both contain x or y. One can then start the ear decomposition
with the cycle made by these two paths together with P (note that this cycle is not C ′ since
v is not a vertex of C ′) followed by a non-trivial part of P ′ as an ear without interior vertices
of R. We argued above that no such ears exist and therefore we reached a contradiction.

Finally, note that the last ear added in any ear decomposition must contain in its interior
a vertex of R, and this vertex has degree 2 in J . ⊓⊔

From here it is immediate to deduce the following:

Corollary 5. Let J be a biconnected simple undirected graph and R be a subset of V (J)
with |R| > 2. Assume no proper biconnected subgraph J ′ of J exists such that R ⊆ V (J ′).
Let Xi be a connected component of the subgraph of J induced by V (J) \R. Let Ri be the set
of vertices of R adjacent to some vertex in Xi, and let Ti be the the subgraph of J induced
by Ri ∪Xi. Then Ti is a tree (called full Steiner component) with all the leafs in Ri.

We also need the next lemma, giving a maximum degree condition that is claimed and
used in (17) (Property 4.3). The journal version of (17) sidesteps this property and thus we
include its proof.

Lemma 6. Assume Q is minimal such that U(S ∪Q) is biconnected. In U(S ∪Q), there is
a biconnected subgraph such that every vertex of Q has degree at most dMST .

Proof: We follow the proof from Robins and Salowe (27), with extra work since biconnected
subgraphs are harder than trees. Assume for the moment that no two edges of U(S ∪ Q)
have exactly the same distance. Let H be a biconnected subgraph of U(S ∪Q) of minimum
total distance, defined as

∑

xy∈E(H) d(x, y).
Assume now that H does have a vertex x ∈ Q of degree more than dMST . We will obtain

a contradiction, as follows. First, we show (whole argument taken from (27)) that x has
neighbors in H : y and z, such that d(y, z) < d(x, z). Let y1, y2, . . . , yk be the neighbors of x
in H . Draw a ball of radius ǫ (using distance d) around x, where ǫ < d(x, yi) for all i. Let
y′i be the intersection of a segment xyi with the boundary of this ball. Since k exceeds the
Hadwiger number of the unit ball in the normed space, there exist i, j with d(y′i, y

′
j) ≤ ǫ.

Assume by symmetry that d(x, yi) ≤ d(x, yj). Drawing the ball of radius d(x, yi) around x;
and let y′′j be the point where the segment xyj used for finding y′j intersects the boundary of
this bigger ball. Then we also have d(yi, y

′′
j ) ≤ d(x, yi), and therefore

d(x, yj) = d(x, y′′j ) + d(y′′j , yj) = d(x, yi) + d(y′′j , yj) ≥ d(yi, y
′′
j ) + d(y′′j , yj) ≥ d(yi, yj),

and in fact (there are no ties) d(x, yj) > d(yi, yj); use yi as y and yj as z, and then d(y, z) <
d(x, z) as desired.
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Following standard notation (10), a block of a graph L is a maximal biconnected subgraph
of L (assuming that the complete simple graph with two vertices is biconnected). Let
W1,W2, . . . ,Wk be the blocks of L. Form a bipartite graph T = (V,N, F ), where V = V (L),
the elements of N = {b1, b2, . . . , bk} correspond to the blocks of L, and F connects vi to bj
if in L vi ∈ Wj .

Then we have ((10), Theorem 2.1.13): The blocks of the graph L = (V,E) partition the
set E of edges. Two edges belong to the same block if and only if there is a simple cycle
containing both. Any two blocks have at most one node in common, and the nodes belonging
to more than one block are cut nodes. The graph T is a tree, called the block-vertex tree of
L.

Remove xz from H obtaining the graph H ′, and let W1,W2, . . . ,Wk be the blocks of
H ′. Construct the block-vertex tree T ′ = (V ′, N, F ) of H ′. In fact, all the vertices of N
(corresponding to the blocks of H ′) are on the path from x to z in T , or otherwise adding
xz to H ′ will not result in a single block for H . There is a block W ′ of H ′ that contains
edge xy; renumber such that W ′ = W1. The vertex of b1 of T (corresponding to W1) is on
the path from x to z in T .

In fact, b1 must be the first vertex on this path as it is adjacent to x in the tree T . If W1

only has x and y, then the path from x to z in T starts with x, b1, y, followed by the vertex
b corresponding to some other block, say, W2. We can see that removing x (who is not in
S) and adding the edge yz again merges together all the blocks of H ′ (except W1); thus one
can get a biconnected subgraph of H contradicting the minimality of Q.

If W1 has more than two vertices, and y is not on the path in T from z to x, then adding
to H ′ the edge yz results in a single block again, and since d(y, z) < d(x, z), we obtain a
biconnected graph of shorter total distance than H , a contradiction.

We are left with the case that W1 has more than two vertices, and y is on the path in T
from z to x. Remove xy andW1 will split into blocks W

′
1,W

′
2, . . . ,W

′
k′, all with corresponding

vertices on the path from x to y in T ′, the block-vertex tree of H ′ with edge xy removed.
The other blocks of H ′ are not affected, and therefore all the vertices of T ′ corresponding
to all the blocks of H ′ with edge xy removed are on the path from x to z in T ′. Adding xz
back results in a biconnected graph of shorter total distance than H , a contradiction.

It is only left to justify how we assumed that no two distances among vertices of U(S∪Q)
are equal (even if initially S ∪Q is a multiset). First, if 1 + ǫ is the smallest d(x, y) for those
x, y ∈ S∪Q with xy 6∈ E(U(S∪Q)), replace ǫ by min(ǫ, 1), and then shrink all the distances
by 1 + ǫ/2, obtaining distance function d′. Let U ′(Z) be the unit-distance graph of set of
points Z with respect to d′. Note that U ′(S ∪ Q) is isomorphic to U(S ∪ Q), and also,
all x, y ∈ S ∪ Q with xy ∈ E(U(S ∪ Q)) have d′(x, y) ≤ 1 − ǫ/3. Part of the following
argument is taken directly from (27). Make a small random perturbation, replacing point x
with point x′ such that d′(x, x′) ≤ ǫ/6. Note that U ′(S ′ ∪ Q′) is isomorphic to U ′(S ∪ Q),
where Z ′ = {x′|x ∈ Z}. With respect to S ′ ∪ Q′, all pairwise d′-values are distinct with
probability 1. Use d′ and U ′(S ′ ∪ Q′) at the beginning of this proof, as we only need that
U ′(S ′ ∪Q′) = U(S ∪Q), and that we have a normed space with distance d′. ⊓⊔
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Now, it will be nice if we had “parsimony”, described in the introduction and proven
later in Theorem 12. However we are unable to prove or disprove Theorem 12 without
using planarity, and in three dimensions surely we cannot count on planarity. We do have
Lemma 8 below, weaker than Theorem 12 in two respects: the solution is “fractional”, and
2-outconnectivity replaces biconnectivity. It will be enough for our purpose.

Given a digraph D and X, Y disjoint sets of V (D), define E(X, Y ) to be the set of arcs
in E(D) with tail in X and head in Y . Given a digraph D and s ∈ V (D), consider the
polytope P(D, s) in R

|E(D)| (with vectors β having entries β(e) for all e arcs of D) defined
by the constraints:

0 ≤ β(e) ≤ 1 ∀ e ∈ E(D) (5)
∑

e∈E(V (D)\X,X)

β(e) ≥ 2 ∀ ∅ 6= X ⊆ (V (D) \ {s}) (6)

∑

e∈E(V (D)\({z}∪X),X)

β(e) ≥ 1 ∀ z 6= s ∀ ∅ 6= X ⊆ (V (D) \ {s, z}) (7)

Using Menger’s theorem, one can check that, for a simple digraph D and for an integral
vector β valid for P(D, s), the set E ′ of arcs e of E(D) with β(e) = 1 is such that the
digraph (V (D), E ′) is 2-outconnected from s. Thus one can think of a valid vector β as
being “fractional-2-outconnected”.

Our big hammer is Theorem 17.1.14 of (10), (given there with more complicated notation
as it solves k-outconnectivity), given below and originally from Frank and Tardos (11).

Theorem 7. (11) For a simple digraph D, the linear system above giving P is Total Dual
Integral, which implies that for any c : E(D) → N, if the linear program

[Minimize
∑

e∈E(D)

ceβ(e) subject to β ∈ P(D, s)]

has a valid optimum, it has an integer-valued optimum.

To use this deep theorem, which is also at the basis of Algorithm KR, we need the
following “outconnected fractional parsimony” lemma:

Lemma 8. Let J be a biconnected undirected graph, and
−→
J be its bidirected version. Let R

be a subset of V (J) with |R| > 2. Then there exists vertex s ∈ R, and there exist positive real

numbers αi and a set of directed paths Pi of
−→
J , all starting and ending at a vertex of R and

without interior vertices from R, with the following properties. For every arc of e ∈ E(
−→
J ),

∑

i | e∈E(Pi)

αi ≤ 1
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Figure 5: Illustrating Lemma 8 (this graph, being planar, also allows Theorem 12). J is shown with straight
segments, with the vertices of R represented by black disks, and the vertices not in R by empty small circles.
We have two full Steiner components, one with interior vertex g and leafs (which all must be vertices of
R): s, z, v, x, and a second one with interior vertices a and b and leafs s, z, v, y. Some of the paths Pi are
following some Eulerian traversal of the bidirected version of each full Steiner component. For example, for
the component with interior vertex g, the Eulerian traversal can be s, g, z, g, v, g, x, g, s, giving the directed
paths s, g, z, z, g, v, v, g, x, and x, g, s, as well as the reverse of each path, that is, z, g, s, v, g, z, x, g, v, and
s, g, x. For the component with interior vertices a and b, we could have directed paths z, a, b, v and v, b, y
and y, b, a, s and s, a, z, as well as the reverse each path, v, b, a, z etc. Each of these directed paths is replaced
by an arc of K, which is shown in the figure by a (curved) arc. Other paths Pi are obtained from edges of
J with both endpoints in R. Here, from the edge xy with both endpoints in R, we get two paths, each with
one arc: x, y, and y, x. In the proof, we always get the antiparallel arc of every arc of K; therefore we put
double arrows on our curved arcs. Antiparallel arcs get the same α-value, and we used dashed arcs when
α = 1/2 and solid arcs when α = 1.

For all i, replace each Pi by an arc ei joining the start and the end vertex of Pi, obtaining a
directed multigraph K with vertex set R (and an edge set we call E). Let α(ei) = αi. Then
the vector α is feasible for P(K, s) and

∑

e∈E({s},R\{s}) α(e) = 2. Moreover, for all x, y ∈ R,
∑

e∈E({x},{y}) α(e) ≤ 1.

Figure 5 illustrates the lemma and its proof idea.
Proof: Remove edges and vertices not in R from J until it satisfies the conditions of Lemma
4 and Corollary 5. We pick s to be some vertex of R of degree 2 in J , whose existence is
guaranteed by Lemma 4. Let Ti be the full Steiner components (all of our full Steiner
components have at least one vertex not in R, and no edge with both endpoints in R)

given by Corollary 5. Do an Eulerian traversal of each bidirected
−→
T i (as in Christofides’

algorithm). Recall that the vertices of R ∩ V (
−→
T i) are leafs, and thus each such vertex is

visited exactly once by this traversal, assuming we start at an interior vertex. If vertices u,
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v of R appear in this traversal such that, after u, v is the next vertex of R (thus skipping
the vertices not in R), have two directed paths Pj and Pl one from u to v and one from v to
u, where Pj follows the traversal, while Pl is the reverse of Pj . Set αl = αj = 1/2.

For two vertices u and v of R that are adjacent in J , make (one-arc) directed paths Pj

and Pl, one from u to v and one from v to u, with αl = αj = 1. One can check that for every

arc e ∈ E(
−→
J ),

∑

i | e∈E(Pi)

αi ≤ 1,

as argued next. Indeed, for an arc e of a bidirected full Steiner component, e appears in
exactly two directed paths Pi: one path is a part of the Eulerian traversal, and one path
is the reverse of a directed path P in the Eulerian traversal (precisely P that contains the
arc antiparallel to e). Both these two paths have α-value of 1/2. Also, for an arc e of the
bidirected J connecting two vertices of R, we get exactly one arc of K (with α-value of 1).
Incidentally to this proof, we remark that Kashyap et al. (17) also do this Eulerian traversal
(though they do not call it Eulerian, look at their Figure 2), but implicitly set αi = 1 for all
i and then the equation above only holds with 2 as the RHS. Here is where we improve the
approximation ratio by a factor of two.

For all i, replace each Pi by an arc ei joining the start and the end vertex of Pi, obtain-
ing a directed multigraph K with vertex set R (and an edge set we call E). Since s has
degree 2 in J , then irrespective on how many of its neighbors in J belong to R, we have
∑

e∈E({s},R\{s}) α(e) = 2 as required.

Next we prove that, for all x, y ∈ R,
∑

e∈E({x},{y}) α(e) ≤ 1. Let arbitrarily x 6= y ∈ R.
There can be several arcs of K from x to y, and we have several cases. If x, y are adjacent
in J , then one arc e with tail x and head y is assigned α(e) = 1. In this case no full Steiner
component can have both x, y among its leafs, according to Corollary 5. Therefore no arc
parallel to e can exists in K.

In a second case, x and y are not adjacent in J and there is one full Steiner component
with leafs only x and y. This component gives us exactly two arcs with tail x and head y,
and each is assigned α = 1/2. No other full Steiner component can have both x, y among
its leafs, since then we would have a cycle of J (the paths between x and y in the two full
Steiner components) with exactly two vertices of R and a path between these two vertices
(namely, the path in the full Steiner component with only x, y as leafs) with no interior
vertex of degree three or more in J , contradicting Lemma 4. Therefore K cannot contain
other arcs with tail x and head y.

In a third case, x and y are not adjacent in J , and all the full Steiner component that
have both x and y as leafs have at least three leafs. Then each such component can produce
at most one arc with tail x and head y, and all these arcs are assigned α = 1/2. However,
we cannot have three such components, since from two of them we can obtain a cycle going
through x and y, and from the third we obtain a chord-path without any vertex of R,
contradicting Lemma 4. Thus in all cases

∑

e∈E({x},{y}) α(e) ≤ 1.
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Figure 6: A subgraph of J is shown with straight segments, with vertices of R represented by either black
filled squares (if in X) or by black disks (if not in X), and the vertices not in R represented by empty small
circles. We use dashed segments to represent paths of J , with their interior vertices not depicted. In this
case, the path Pr2 only has the edge v′

2
v
2
. The path Pj1 has vertices x1, x2, x3, x4, the path Pk1

has vertices
y1, y2, y3 and Pq1 has vertices y3, y2, y1. The arcs of K used by the proof are represented by curved arrows,
and have the values α(er2) = 1 and α(ej1 ) = α(eq1) = 1/2.

Once again incidentally, we mention that (17) implicitly obtain a similar K but put α = 1
on all the arcs, while we use 1/2 for all the arcs obtained from full Steiner components. This
is where we improve the ratio - and this also explains why our proof is longer and more
complicated.

Claim 9. The vector α is feasible for P(K, s).

Proof: Constraints (5) are immediate. We proceed to Constraint (6). Let X ⊆ (V (D)\{s})
be arbitrary; arbitrarily pick v ∈ X . Going back to the undirected J , there are two internally-
disjoint paths P̄ ′

1 and P̄ ′
2 from s to v. Let C be the cycle obtained from putting together P̄ ′

1

and P̄ ′
2. Let v1 be the first vertex of X on P̄ ′

1 (v1 = v possible), and v2 be the first vertex of
X on P̄ ′

2 (v2 = v possible). Let v′1 be the vertex before v1 on P̄ ′
1 (v

′
1 = s possible), and let v′2

be the vertex before v2 on P̄ ′
2 (v′2 = s possible). Figure 6 provides an illustration.

If v′1 ∈ R (note that v1 ∈ R), then we have a directed path Pr1 from v′1 to v1 in
−→
J with

αr1 = 1, and then in K we have an arc er1 from v′1 to v1 with αr1 = 1. Similarly, if v′2 ∈ R

(note that v2 ∈ R), then we have a directed path Pr2 from v′2 to v2 in
−→
J with αr2 = 1,

and then in K we have an arc er2 from v′2 to v2 with αr2 = 1. If v′1 6∈ R, then there is a
full Steiner component Ti1 that contains v′1 and that has leafs both in X and outside X . If
v′2 6∈ R, then there is a full Steiner component Ti2 that contains v′2 and that has leafs both
in X and outside X . If we have both Ti1 and Ti2 , we remark that i1 6= i2 since otherwise
we obtain in J a chord-path for C with no internal vertex in R, contradicting Lemma 4.
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The Eulerian traversal of
−→
T i1 gives two directed paths, Pj1 and Pk1, one entering X and one

exiting X . Then αj1 = 1/2, and also there is another path Pq1 , the reversal of Pk1 , that also

enters X and has αq1 = 1/2. The Eulerian traversal of
−→
T i2 gives two directed paths, Pj2 and

Pk2, one entering X and one exiting X . Then αj2 = 1/2, and also there is another directed
path Pq2, the reversal of Pk2, that also enters X and has αq2 = 1/2. Thus K contains either
er1 with αr1 = 1, or both ej1 and eq1 with αj1 = αq1 = 1/2. Also K contains either er2 with
αr2 = 1, or both ej2 and eq2 with αj2 = αq2 = 1/2. In all four subcases, Constraint (6) is
satisfied.

We proceed to Constraints (7), which must hold ∀ z 6= s ∀ ∅ 6= X ⊆ (V (D) \ {s, z}).
Arbitrarily pick v ∈ X . Going back to the undirected J , there are two internally-disjoint
paths P̄ ′

1 and P̄ ′
2 from s to v; assume by renaming P̄ ′

1 and P̄ ′
2 that z is not a vertex of P̄ ′

1.
Let C be the cycle obtained from putting together P̄ ′

1 and P̄ ′
2. Let v1 be the first vertex of

X on P̄ ′
1 (v1 = v possible), and v2 be the first vertex of X on P̄ ′

2 (v2 = v possible). Let v′1 be
the vertex before v1 on P̄ ′

1 (v
′
1 = s possible), and let v′2 be the vertex before v2 on P̄ ′

2 (v
′
2 = s

or v′2 = z possible). If v′1 ∈ R (note that v1 ∈ R), then we have a directed path Pr1 from v′1
to v1 in

−→
J with αr1 = 1, and then in K we have an arc er1 from v′1 to v1 with αr1 = 1. So,

if v′1 ∈ R, Constraint (7) is satisfied.
Assume from now on that v′1 6∈ R; therefore there is a full Steiner component Ti1 that

contains v′1 and that has leafs both in X and outside X . Consider the case when z is an
interior vertex of P̄ ′

2; then we cannot have that Ti1 has z as a vertex, since otherwise, in
J , we get a chord-path of C with no internal vertex in R. One can look at Figure 6 for

intuition, with z = v′2. The Eulerian traversal of
−→
T i1 gives two directed paths, Pj1 and Pk1,

one entering X and one exiting X . Then αj1 = 1/2, and also there is another directed path
Pq1, the reversal of Pk1, that also enters X and has αq1 = 1/2. None of Pj1 and Pk1 and
Pq1 start or end at z, since z is not a vertex of Ti1 . Constraint (7) is satisfied by α(ej1) and
α(eq1).

From now on, z is not an interior vertex of P̄ ′
2. If v

′
2 ∈ R (note that v2 ∈ R and v′2 6= z),

then we have a directed path Pr2 from v′2 to v2 in
−→
J with αr2 = 1, and then in K we have

an arc er2 from v′2 to v2 with αr2 = 1. So, if v′2 ∈ R, Constraint (7) is satisfied.
We are left with the case v′1 6∈ R, z not on P̄ ′

2, and v′2 6∈ R; recall that z is not on P̄ ′
1.

Please refer to Figure 7 for an illustration of this case. We have the full Steiner component
Ti1 as above, and the full Steiner component Ti2 that contains v′2 and that has leafs in both
X and outside X . Note that i1 6= i2 since otherwise we obtain, in J , a chord-path for C with
no internal vertex in R.

Let v′′1 be the last vertex of R before v1 on P̄ ′
1 (v

′′
1 = s is possible); then v′′1 ∈ V (K)\ (X ∪

{z}). Consider the Eulerian traversal of
−→
T i1 ; it passes through each vertex of R ∩ V (Ti1)

exactly once (as these are the leafs of Ti1). Then, in this traversal, we can get from v′′1 to v1,
or from v1 to v′′1 , without passing through z (which can be a leaf of Ti1). Thus, we have that
either a directed path Pj1 of this traversal goes from V (K) \ (X ∪{z}) to X , or goes from X
to V (K) \ (X ∪ {z}). In the second case, Pq1, the reverse of Pj1 goes from V (K) \ (X ∪ {z})
to X . Let Pk1 be either Pj1 or Pq1, such that it goes from V (K) \ (X ∪ {z}) to X . Thus ek1
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z v = v2s

v1

v′′1

v′1

v′2

v′′2

ej1

eq2

Ti1

Ti2

Figure 7: A subgraph of J is shown with straight segments, with vertices of R represented by black filled
squares (if in X), by black disks (if not in X ∪ {z}), and z is the empty square. The vertices not in
R are represented by empty small circles. We use dashed segments to represent paths of J , with their
interior vertices not depicted. The arcs of K used by the proof are represented by curved arrows, and
α(ej1) = α(eq2 ) = 1/2.

exists in K; also αk1 = 1/2. We repeat the argument for Ti2 , to get another arc ek2 ∈ E(K)
going from V (K) \ (X ∪{z}) to X , and with αk2 = 1/2. Constraint (7) is satisfied by α(ek1)
and α(ek2), since ek1 6= ek2 (true even if they share endpoints).

In all cases, Constraints (7) are satisfied, finishing the proof of Claim 9. ⊓⊔
With this claim, the proof of Lemma 8 is complete. ⊓⊔

Theorem 10. Let S be a multiset of at least three points making an instance of Bicon-

nected Relay Placement, and Q be an optimum feasible solution. Let G be the weighted
complete graph on S with weight w defined in the description of our algorithm. Then there
exists s ∈ V (G) such that w(D(s)) ≤ dMST · |Q|, where D(s) is computed by the algorithm
in Line 1.c.

Proof: Q is optimum and thus minimal such that U(Q ∪ S) is biconnected. Choose a
biconnected spanning subgraph L of U(Q∪S) satisfying the hypothesis of Lemma 6. Apply
Lemma 8 with L as J , and S as R, obtaining vertex s ∈ S, directed paths (Pi), non-negative
numbers αi, and arcs ei giving multidigraph K. Use this s as the vertex of G required by
the theorem.

For directed path P , define P̆ to be the set of vertices in its interior. For an arc e of K
with tail x and head y, define

c(xy) =

{

min
i | Pi starts at x and ends at y |P̆i| if x 6= s

M +min
i | Pi starts at s and ends at y |P̆i| if x = s
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(this and the next definition give the same result for parallel arcs). For an arc e of K with
tail x and head y, define α′(xy) =

∑

i | Pi starts at x and ends at y αi.

Let K ′ be the simple digraph on S obtained from K by removing parallel arcs. Consider
the linear program LP:

Minimize
∑

xy∈E(K ′)

c(xy)β(xy) subject to β ∈ P(K ′, s).

Based on the fact that α from Lemma 8 belongs in the polytope P(K, s) and that
∑

e∈E(K)({x},{y}) α(e) ≤ 1, we obtain that α′ belongs in the polytope P(K ′, s). Note that
costs c are integral. Apply Theorem 7 to get an integral solution for LP, and therefore a di-
graph D′, subgraph of K ′, 2-outconnected from s, satisfying c(D′) ≤

∑

xy∈E(K ′) c(xy)α
′(xy).

Lemma 8 gives
∑

y∈S\{s} α
′(sy) = 2 and therefore, taking the definition of c() into account,

we obtain:

c(D′) ≤

(

∑

i

αi|P̆i|

)

+ 2M. (8)

Let D(s) be a minimum-weighted subgraph of G+(s) which is 2-outconnected from s, as
computed by the algorithm. Let w+ be the weights of G+(s), that is

w+(x, y) =

{

w(x, y) if x 6= s
M + w(x, y) if x = s

Note that for any edge e of G with endpoints u and v, and for any directed path P from u

to v in
−→
L , w(e) ≤ |P̆ |, as beads can be placed on the vertices of P̆ . Thus, for any arc e of

K with tail x and head y, we have w+(x, y) ≤ c(xy).
Recall that D(s) has no arc entering s and exactly two arcs leaving s. Thus

w(D(s)) ≤ w(D(s)) ≤ w+(D(s))− 2M ≤ w+(D′)− 2M ≤ c(D′)− 2M. (9)

Write e ⋄ v if edge e is incident to vertex v, and write next(P, v, e) if, on directed path P ,
one arc obtained from bidirecting edge e is used to leave v. We have:

w(D(s)) ≤
∑

i

αi|P̆i|

=
∑

i

αi

∑

v∈P̆i

1

=
∑

v∈Q

∑

i | v∈P̆i

αi

=
∑

v∈Q

∑

e | e⋄v

∑

i | next(Pi,v,e)

αi

≤
∑

v∈Q

∑

e | e⋄v

1

≤ |Q| · dMST
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where the first inequality follows from Equations 9 and 8. The second inequality comes from
Lemma 8, and the last inequality from Lemma 6. This finishes the proof. ⊓⊔

The analysis given above is tight. Precisely, in the two-dimensional Euclidean plane, the
ratio of the biconnectivity algorithm above is indeed 5−o(1), assuming all ties are broken in
worst-case manner, and no post-processing removes redundant relay nodes. First look at the
example in Figure 8. It has two sea stars (one relay node, the star’s center, that is U -adjacent
to five U -independent nodes of S, called tentacles) with u and v in the center. In general,
we are going to use q spread-out sea stars (as, for example, in Figure 9), and we connect
their tentacles as those of u, v are in Figure 8 - this can always be done while maintaining
planarity to create a biconnected graph. Precisely, plane curves connect tentacles of different
sea stars such that no two points on distinct curves are at distance at most 1. Each curve is
subdivided such that only consecutive nodes on the curve are U -adjacent; the nodes used for
subdivision are put in S. Done carefully, we end up with m paths, each giving a connected
component of U(S) (one for each curve), such that m = 5q/2 (assume q is even). Optimum
is q. We use the following theorem of Whitty (29):

Theorem 11. (29) Suppose that, given a directed graph D = (V ′, E ′) and a specified vertex
s ∈ V ′, there are two internally vertex-disjoint paths from s to any other vertex of D. Then D
has two arc-disjoint outgoing arborescences rooted at s such that for any vertex v ∈ V ′ \ {s}
the two paths to s from v uniquely determined by the arborescences are internally vertex-
disjoint.

Wherever we start with s in Algorithm KR, each of the two arborescences from the
theorem above needs m−1 arcs of weight 1 to enter all of them paths/connected components
of U(S), with the exception of the component containing s. Thus Algorithm KR produces
a solution of weight at least 2(m− 1), and with q large, this converges to 5q. Other variants
of Algorithm KR also produce solutions with 2m− o(1) relay nodes on this example.

In the three dimensional Euclidean space, one cannot assume any planar structure of the
optimum, as explained below. Consider an even number q of far-apart sea stars in three
dimensions, each with 12 tentacles. For each star, the set of first vertices of each of the 12
tentacles is an independent set of the unit-disk graph. These tentacles can be arbitrarily
connected two-by-two in three dimensions while ensuring that the connected components of
U(S) are each one path; these paths are obtained by joining two tentacles of different sea
stars. Precisely, curves in three dimensions connect tentacles of different sea stars such that
no two points on distinct curves are at distance at most 1. From now on we use the same
argument as in the two dimensional case. Thus in three dimensions, without a preprocessing
step eliminating redundant nodes, the approximation ratio of Algorithm KR is at least
dMST − o(1).

4. Stronger version of parsimony for planar graphs

Theorem 12. Let J be a biconnected plane undirected graph, and
−→
J be its bidirected version.

Let R be a subset of V (J) with R| > 1. Then there exists a set of arc-disjoint directed paths
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u v

s

Figure 8: The nodes of S are black disks. Optimum uses the relay nodes u and v. If we start Algorithm

KR with s as in the figure, ten edges of weight one would be chosen by the algorithm (precisely, the arcs
passing “around” each of u and v, each arc needing a bead node). The two arborescences from Theorem 11
are represented by dotted and solid arcs, respectively.
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Figure 9: The nodes of S are black disks, while the sea-stars have empty circles as their center (meant to be
the relay nodes of an optimum solution).

Pi of
−→
J , all starting and ending at a vertex of R and without interior vertices from R, such

that, if we replace each Pi by an arc ei joining the start and the end vertex of Pi, we obtain
a biconnected digraph on vertex set R. These directed paths Pi are obtained by removing
vertices and edges of J , and routing counter-clockwise on all the remaining inner faces of J ,
and clockwise on the outer face of J .

Proof: The proof proceeds by induction on |E(J)| + |V (J)|. The base case is when J is
an edge-minimal biconnected planar undirected graph such that every edge has at least one
endpoint in R. Get the directed paths Pi by walking counter-clockwise on the inner faces,
and clockwise on the outer face, and start/finish a path when encountering vertices of R. It

is immediate that each arc of
−→
J is used exactly once when computing the paths. See Figure

10 for an example. Another example appears in Figure 8.
Now we show that the resulting digraph, which we call here D, is biconnected. Pick

arbitrary x, y ∈ R. As J is biconnected, we have two internally vertex disjoint x − y paths
P̄1 and P̄2. Rename the paths such that P̄1 is followed by the reverse of P̄2 gives the counter-
clockwise orientation of a bounded region.

For intuition, we refer to Figure 10 again. The first directed x− y path in D is obtained
as described below. Let P̄1 have the vertices x = v0, v1, . . . , vk = y. We give an arc of D
from each vi ∈ R to either vi+1 or, if vi+1 6∈ R, to vi+2 (as every edge of J has an endpoint
in R, we cannot have that both vi+1 6∈ R and vi+2 6∈ R). If vi+1 ∈ R, then there is an arc in
D from vi to vi+1, going counterclockwise on one of the two faces bordered by the edge of J
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x

y

Figure 10: An edge-minimal biconnected planar graph J is given by the (straight) segments without arrows.
The nodes of R are black disks, and the other nodes of J are circles. The directed paths Pi of Theorem 12
are given by all the arcs (solid or dotted). Given x, y as in the figure, two internally vertex disjoint x − y
paths are given by the thick segments. From these two path, we can obtain two directed paths from x to y
in the resulting digraph as given by the solid arcs.
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vivi+1.
If vi+1 6∈ R, all its J-neighbors are in R, and let z1, . . . , zl be the vertices of R that are

adjacent to vi+1 and such that the l edges of J : vi+1z1, . . . , vi+1zl leave clockwise vi+1 and
such that vi = z1 and vi+2 = zl. The following arcs are obtained in D by walking counter-
clockwise on the borders of the faces bordered by vi+1: z1z2, . . . , zl−1zl; we use all these arcs
to find a directed path in D from z1 = vi to zl = vi+2. We call this process the bypass of
vi+1.

We claim that none of the zk ∈ V (P̄2), except for the cases vi = z1 = x and/or vi+2 =
zk = y, since otherwise the cycle of J obtained from P̄1 and P̄2 has a chord with no vertex
of R, contradicting Lemma 4 (one does need |R| > 2 in proving this part of Lemma 4).

Doing this for all i with vi ∈ R let us obtain a first path in D from x to y. All the vertices
of this path are either on P̄1 or embedded strictly in the bounded plane region bordered by
P̄1 and the reverse of P̄2.

For the second directed path from x to y, apply the same procedure to the path P̄2, and
note that all the vertices of the directed path obtained are either on P̄2 or embedded strictly
in the unbounded plane region bordered by P̄1 and the reverse of P̄2. This finishes the base
cases.

For the induction/recursion step, if J is not edge-minimal, then remove edges and apply
recursion to the resulting graph. The solution for the smaller graph is good for J as well. If
J has two vertices u, v which are adjacent and such that u, v 6∈ R and such that the removal
of edge uv leaves us with a graph that is not biconnected, then proceed as argued below.

Contract uv, obtaining plane graph J ′ with the same set R. J ′ is biconnected - since
((10), Proposition 2.1.9) any edge can either be contracted or removed while preserving
biconnectivity. If J ′ has parallel edges, remove one of them from J ′ (this does not affect
biconnectivity) and remove from J the corresponding edge incident to v. Let u′ be the
vertex obtained from u, v. Note that, going clockwise, the edges in J ′ of u′ are the edges of
u, followed by the edges of v. Thus, if in J ′ we have, in clockwise order, the edges e1, . . . , ek
incident to u′, then we can renumber them such that e1, . . . , el are incident to u and follow
each-other in clockwise order, and el+1, . . . , ek are incident to v, and follow each-other in
clockwise order.

Apply induction/recursion on J ′. Note also that, in our routing (after possibly removing
some edges of J ′ - in which case we remove those edges from J as well), every time we bypass
a vertex z not in R, a directed path Pi enters trough an edge of z and exits trough the next
clockwise edge of z (this statement is equivalent to the counter-clockwise routing on the
inner faces, clockwise on the outer face). Whenever a bypass enters u′ through edge ei, it
exits through edge ei+1 (except that we exit through e1 if entering through ek). If either
l = 0 or l = k (all the edges used in J ′ come from edges of J incident to only v, or to only
u), then we use exactly the same edges and the same bypass in J as in J ′. Otherwise, we
use the same edges/ordering of edges in J as in J ′, except that when entering u through el,
we exit through uv, thus entering v, from which we exit on el+1, and that when entering v
through ek, we exit through vu, thus entering u, from which we exit on e1.

26



These changes result in exactly the same digraph D for J as for J ′, and keep the
clockwise/counter-clockwise property. Two paths are becoming longer, by incorporating
the two arcs of the bidirected J : uv and vu, but all the paths connect exactly the same
vertices of R in J as they did in J ′. And the two arcs resulting from bidirecting uv are used
exactly once each. This completes the induction step of the proof of Theorem 12. ⊓⊔

5. Conclusions

Using variants of previously proposed algorithms, we improved the approximation ratio
of Two-Connected Relay Placement for biconnectivity from 2dMST to dMST , and
for two-edge-connectivity from 2dMST to 2dMST − 1 . In the Euclidean two-dimensional
space, dMST = 5, and in the three dimensional space, dMST = 12. Assuming that no post-
processing removes redundant relay nodes, these ratios are tight, including the ratio of 5 for
biconnectivity in two dimensions. We are not able to analyze the effect of removing useless
beads, a step applicable after both Algorithm KR and Algorithm KV.

It may be unrealistic to place two relay nodes at exactly the same location, or one at
the same location with a sensor. Two segments, each connecting two sensors, that intersect,
have different slope, and place relay nodes at the same location can be replaced, using
an “uncrossing” procedure, by two segments that do not intersect (this is true in three
dimensions as well). We do not have a clean solution for the case when two such segments
do have the same slope (so in effect one is on top of the other); in the case of biconnectivity
this can happen only if we have three sensors that are collinear and their pairwise distance
is integral. Previous work also does not handle such degenerate cases.

Our result for biconnectivity has been generalized by Cohen and Nutov (6), who obtain
the same approximation ratio when the problem statement includes, for every pair {u, v} of
nodes of S, a connectivity requirement ruv ∈ {0, 1, 2} (in our case, all the requirements are
2), and U(S∪Q) must have ruv internally disjoint uv paths, for all u, v ∈ S. Their algorithm
also can handle “unstable terminals”. (6) uses structural results from this paper.
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