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Abstract Motivated by applications in systems using Processing-In-Memory,
we study four related scheduling problems, with the objective of minimizing
the total energy consumption within the real-time constraints. In the preemp-
tive Local-Shared Memory Task Scheduling problem, we are given n tasks
7:(ri, di, pi, ¢i ), where integers r;, d; represent the release time and deadline of
task 7;, while integers p; and ¢; denote the non-negative processing time when
T; is executing on the shared memory, and on the local memory, respectively.
Each task is allocated to a separate core (n cores), and the shared memory
is large enough to accommodate all the tasks. We must decide for each task
whether to be scheduled on the shared or local memory, and when to turn on
the shared memory (the variable g; indicates the on-time for integer time slot

j) such that for any task ¢ assigned to the shared memory, Z;l:;j gj > Di.
The objective is to minimize Zj 9i + 22 | task 7 assigned to local memory -
For the non-preemptive version of this problem, we present a polynomial-
time exact algorithm, based on dynamic programming. For the preemptive
Local-Shared Memory Task Scheduling problem as well as the more general
Multiple-task-per-core Local-Shared Memory Task Scheduling problem (where
turning on the local memory of a core replaces g; in the objective function),
we give a 1.865-approximation algorithm based on a linear program. For both
problems, we show that the integrality gap of the linear program matches ex-
actly the approximation ratio. Finally, we prove that Multiple-tasks-per-core
Local-Shared Memory Task Scheduling, with or without preemption, is NP-
hard. Experimental results show that the proposed approximation algorithm
performs close to the optimal solution in average.
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1 Introduction

In the preemptive Single-task-per-core Local-Shared Memory Task Schedul-
ing (or just Local-Shared Memory Task Scheduling) problem (LSMSP), we
are given n tasks 7;(r;,d;, pi, qi), where integers r;, d; represent the release
time and deadline of task 7;, while integers p; and ¢; denote the non-negative
processing time when 7; is executing on the shared memory, and on the local
memory, respectively. Each task is allocated to a separate core (n cores), and
the shared memory is large enough to accommodate all the tasks. We must
decide for each task whether to be scheduled on the shared or local mem-
ory, and when to turn on the shared memory (the possibly fractional variable
g; indicates the on-time for integer time slot j) such that for any task ¢ as-
signed to the shared memory, Zj:;l g; > pi. The objective is to minimize
2259+ 2 | task i assigned to local memory %- For the non-preemptive ver-
sion of this problem, we present a polynomial-time exact algorithm, based on
dynamic programming.

In the preemptive Multiple-tasks-per-core Local-Shared Memory Task Schedul-
ing problem (MLSMSP), we are given n tasks 7;(r;, d;, p;, ¢(i)), where integers
ri, d;, and p; represent the release time, deadline, and processing time on the
shared memory of task 7;, and ¢(i) is the core to which 7; belongs. Both the
local and shared memory are large enough to accommodate all the tasks, and
there is a cost cost(c) for turning on the local memory of core c. We must de-
cide which local memory to be turned on (and then all the tasks that belong
to this core are assigned to local memory), and when to turn on the shared
memory (the possibly fractional variable g; indicates the on-time for integer
time slot j) such that for any task 7 whose core memory is not turned on
(and thus, the task is scheduled on the shared memory), Z;j;;l g; > pi- The
objective is to minimize >, g; +>_.| core ¢ turned on €05t(¢)-

It can be easily seen that MLSMSP generalizes LSMSP. For preemptive
MLSMSP, we give a 1.865-approximation algorithm based on a linear program.
The integrality gap of the linear program matches exactly the approximation
ratio, even for preemptive LSMSP. We prove that MLSMSP, with or without
preemption, is NP-hard.

1.1 Motivation
Our problems model decisions that need to be made on whether tasks to

execute in the shared memory or the local memory to minimize the total
energy consumption within the real-time constraints.
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As we are moving towards the Internet of Things (IoT), processing capa-
bilities of sensors or smart devices are required to be faster and more powerful
to better fulfill the real-time constraints or provide more satisfactory user ex-
perience. However, with the memory size increasing and the CPU frequency
becoming higher, the discrepancy between computation speed (of CPU) and
data transfer speed (of memory), commonly known as the memory wall [25],
becomes wider, which limits the response speed of devices. To address this
challenge, in current systems designers have to devote a large fraction of the
transistors and area of chips to caches.

In recent years, the concept Processing-In-Memory (PIM) is proposed as
a better solution to the memory wall issues and attracts wide interests. PIM,
is an architecture that integrates CPU and memory into the single chip to
narrow the CPU-memory performance gap, by more efficiently utilizing the
internal memory bandwidth. It is reported that a 256MB memory system has
at least 3000 times as much accessible memory bandwidth within chip than
that to an external CPU [5]. It can achieve 5 — 10x higher speed compared to
most cache-based machines [11]. The integrated PIM chip can be used either
as a conventional memory with simpler logic [4, 24] , or as a processor, which
can handle data transfers in fast speed [11, 14, 17].

The main challenge of a PIM chip working as a processor is that the mem-
ory capacity is limited due to the fixed size of PIM chip. However, in the
ToT system, typically the amount of data is not that large when being pro-
cessed in the chips of sensors or smart devices, which makes the integration of
the modest-sized memory in the PIM chip reasonable. On the other hand, to
handle a large amount of data, several cores can share one off-chip large size
memory. The shared memory is one of the most widely used memory archi-
tecture in the modern computing system, including the embedded systems on
several kinds of smart devices [19, 27].

In the IoT system, energy efficiency is one of the most critical issues, as
most of the senors or smart devices are energy harvested or battery powered
[1]. Among the overall energy consumers, the static power of memory occupies
a significant portion, as the memory chips are becoming denser with smaller
technology scales. For example, in DRAM, which is widely used as memory,
static power can be as much as 10 times of the dynamic read/write power on
the memory chip using a process technology with the size smaller than 50nm
[23]. Effectively reducing the static power can significantly improve the energy
efficiency. One of the most widely applied methods to reduce the static power,
is to switch the memory from the active state to the power-saving state, or
directly turn it off when it is not accessed [2, 18].

In the memory system with local memory on chip and the off-chip shared
memory, this work aims to explore the system energy efficiency by properly
powering down memory. The challenges lie in how to allocate tasks into mem-
ory partitions (local or shared memory), and power down the idle memory
properly while meeting the real-time constraints to minimize the energy con-
sumption. On one hand, by allocating tasks to the local memory, shorter exe-
cuting time can be achieved. In the meantime, the static power of local memory
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is typically lower than the shared memory (because the local memory size is
smaller). On the other hand, however, tasks scheduled in shared memory may
enjoy execution-time overlap with other tasks from other cores, which in fact,
brings less active time than the tasks’ real execution time in shared memory.
Meantime, as turning on/off the memory requires extra energy overhead, one
can save the energy cost of turning on the local memory of a core if all its
tasks are properly scheduled in shared memory.

Based on the integrated local memory on chip, with the off-chip memory
shared among multiple cores in the IoT system, this work explores the task al-
location and scheduling problem with the objective of minimizing the memory
system energy consumption. Both complexity analysis and polynomial-time
algorithms with constant approximation ratio are proposed. Experimental re-
sults show that the proposed scheme performs close to the optimal solution in
average. The main contributions of this paper include:

— Two different task allocation models are defined based on whether the
switching cost of the local memory dominates its static power of local
memorys;

— For the first task model, which assumes switching cost does not dominate
the static power, an optimal Dynamic Programming (DP)-based algorithm
within polynomial-time is proposed when tasks are non-preemptive;

— For the second task model, which assumes switching cost dominates the

static power, APX-hardness is proved for both preemptive and non-preemptive

versions;

— For both task models with preemption allowed for tasks, we firstly formu-
late the problem by Integer Linear Programming (ILP), and then propose
an Linear Programming (LP)-rounding procedure. The LP-rounding pro-
cedure is proved to achieve an 1.865-approximation ratio compared to the
LP solution, and this bound is then proved tight.

The rest of this paper is organized as follows. The related work is presented
in Section 2. Section 3 presents the problem definitions, system models and
a motivation example. In Section 4, with preemption not allowed, an optimal
DP-based algorithm is proposed for the first task model. Section 5 proposes the
LP-rounding procedure for both task models when preemption is permitted
and proves a constant (circa about 1.865) approximation ratio. This constant is
also proven to be the integrability gap of the linear program, which implies our
rounding procedure is optimal (for this linear program). The APX-hardness
analysis of the second task model is presented in Section 6. The experimental
results are given in Section 7. Finally we conclude the paper in Section 8.

2 Related work

In this section, we introduce two groups of the most related works. First,
studies based on integrating local on-chip memory into the CPU chip are
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introduced. Second, the research works on minimizing the active time of shared
memory among multiprocessors are presented.

There are mainly two working approaches of integrating memory and CPU
on the same chip. One is using the PIM chip as the main memory with simple
logic but large data, the other is using the PIM chip as a processor to perform
faster processing capabilities. This work explores the energy efficiency based
on the second approach, denoted as integrated memory on-chip in the follow-
ing. The integrated memory architecture is firstly proposed by a group from
Berkeley University [11, 20]. DRAM, as the main memory, is directly embed-
ded in the processor chip. However, the size of DRAM is limited to 13MB
[11, 12] due to the fixed chip size. More recently, the 3D stacking technology,
which enables the construction of multiple layers of active silicon bonded with
very dense vertical interconnects of CPUs and DRAM dies, is proposed to be
applied in the PIM chip to explore larger size of memory [14, 21, 26]. Kgil et al.
[14] proposed to stack 4 layers of DRAM on top of multi-core processors, the
total size of which achieves 256 MB. A 10%-20% performance improvement can
be achieved compared to the cache-based memory system. In industry, Intel
[21] demonstrated a chip, where each core has a 256 KB local memory on top
of the CPU, and this chip provides a bandwidth of 12GB/s for each core. Even
though the memory size is limited by the chip size, in the IoT system, where
typically the amount of processing data is not too large at a time, the local
memory can provide fast processing capabilities for most of works. Meanwhile,
this work proposed to share a larger off-chip memory among multiple cores to
handle the larger task, and to explore better energy efficiency.

With the memory energy consumption becoming more and more signifi-
cant, researchers have studied for several years to reduce the static power of
memory by minimizing its active time. In [3], the authors explored the problem
of minimizing the active time of the processor when the processor can schedule
up to B tasks at a time. They pointed out that their problem is equivalent to
minimizing memory active time if all tasks share the same memory. An LP-
based optimal algorithm is proposed when preemption is allowed at arbitrary
point. When preemption is only allowed at integral point, they proved the
problem to be NP-hard when B is bounded by the number of tasks. Optimal
polynomial time algorithms targeting at the same problem are proposed in
[10] for the unbounded case (i.e. B is no less than the number of tasks). The
Dynamic Programming (DP)-based solution to the non-preemptive version of
the above problem is presented in [15]. Another similar problem is studied in
[7], where each task has a unit demand, and each processor has a uniform ca-
pacity g, which implies at most g tasks can be non-preemptively scheduled on
a processor simultaneously. They prove the NP-hardness of the problem when
g > 2. In this paper, by considering the interactions between local memory
and shared memory, more complex problems are studied. Novel algorithms are
proposed for both the preemptive and non-preemptive cases.
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3 Preliminaries

In this section, we first present the system model and the problem definitions
based on two different task models, and then provide a motivation example
to show the necessity of wisely scheduling tasks in the local-shared memory
system.

3.1 Problem formulation and assumptions

System model: On a multi-core processor system, each core integrates the
CPU with a local on-chip memory, and all cores share a large off-chip memory.
The memory architecture is shown in Fig. 1. Tasks on cores have shorter
latency to access the local memory, and longer latency when accessing the
shared off-chip memory. We assume that a task accesses the memory during
its whole execution period [28, 29]. The local memory of each core can be either
turned on or off. We assume that switching on the local memory can be done
instantly but requires extra energy cost. The shared memory contains multiple
memory banks and can be turned to sleep state to reduce the static power when
no core is accessing it. Waking up the shared memory also requires extra energy
but it is negligible compared to the static power of shared memory. Actually,
previous studies suggest that the schemes as well as the solutions will not differ
much between considering and not considering the waking up cost of shared
memory as shown in [6, 9].

Generally, the energy consumption of accessing the on-chip local memory
is less than that of accessing the off-chip memory per memory access. As we
assume that tasks access memory during their entire execution period, the
dynamic energy is consumed as long as the memory is accessed. Hence the
dynamic memory power can be roughly added to the static power of mem-
ory. In this work, as we mainly focus on the static energy of memory system
optimization, we roughly assume that the static power of the shared memory
as = a9 + B3, where a2 is the original shared memory static power, and j3
is a parameter that represents the dynamic power increment normalized to the
static power. So when tasks are executed in shared memory, both the static
power and dynamic power (coefficient) of shared memory will be multiplied

core core
memory memory
|
core core
memory memory

Multi-core chip

Fig. 1: The architecture of the local-shared memory system.
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by the execution time to get the overall energy. The analysis of accurate and
detailed dynamic energy of memory system is left as future work. Besides the
memory energy, one may concern about whether the CPU energy cost might
be affected due to different task execution time in different memories. Actu-
ally, the memory accessing time does not affect the CPU energy consumption,
because CPU must wait until the memory accesses finish. During this wait-
ing time, CPU is most likely to do something else, which are not related to
the memory-associated tasks. Thus, no matter how long the memory is being
accessed, the CPU energy will not differ much.

The memory architecture will be referred to as “local-shared memory sys-
tem” in the following of this paper. For the system model, we made the fol-
lowing assumptions:

1. Tasks on different cores can access the shared memory in parallel.

2. Each task has already been assigned to a core (executed by the correspond-
ing CPU), while it needs to be decided to either use the local memory, or
not (using the shared memory). Migration is not allowed between memory
partitions.

3. Each local memory is large enough to accommodate the tasks assigned to
each core.

4. The shared memory is large enough to accommodate tasks from all cores.
Tasks can be feasibly scheduled if all are executed in shared memory.

Note that the above assumptions do not over-idealize the problem. The
reasons are presented after introducing the task models.

The static power of memory is related to the size of memory area. Consid-
ering the local memory is of relative small area, in this work we discuss the
following two scenarios. First, the energy overhead of switching on/off the local
memory is less than or is comparable with the static energy of local memory;
second, the switch on/off energy cost is larger than the static energy in local
memory. For these two scenarios, we formulate them into two system models:
one-task-per-core and multiple-task-per-core models.

For the first scenario, both the active time in local memory and the switch
on cost need to be considered. Even though tasks are already assigned to cores,
it is basically equivalent to assuming that each task is allocated to a separate
core. This is reasonable because for two tasks in the same core, the processing
time when scheduled in the local memory is typically short, and it has high
possibility that there is a gap between the scheduling of two tasks in local
memory. Therefore we are most likely to pay for a switch on cost as long as
a task is executed in the local memory. In this model, the main decision is
that whether each task should be scheduled in the local memory or the shared
memory. For the second scenario, it is the switch on cost that dominates the
energy of local memory, especially when tasks on cores have short execution
time and thus leads to smaller static energy of local memory comparing to the
switch cost. It is reasonable to assume tasks on one core should well utilize the
local memory once it is turned on. In this model, the main decision is which
local memory to turn on, or not. For an “on” local memory, all its tasks will
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be assigned to it, while for an “off” local memory, all its tasks go to the shared
memory. Based on the above analysis, the features of both task models are
listed as follows.

Single-task-per-core model for the first scenario:

1. Given n tasks, for each task 7;(r;, d;, pi, ¢i), i, d; represent the release time
and deadline of task 7;, while p; and ¢; denote the non-negative processing
time when 7; is executing on the shared memory, and on the local memory,
respectively. W.l.o.g, we assume p; > ¢;, Vi.

2. Each task is allocated to a separate core. The number of cores C' = n. We
denote cost(i),i € [1,n] as the switch cost of turning on the local memory
of core 1.

Power coeflicients oy and «y, of the shared and local memory, respectively, are
also given. To simplify the notation, we scale the coefficients to make oy = 1,
and thus we reset ¢; to be the (g + cost(i))/alphas, and we obtain the
Single-task-per-core Local-Shared Memory Task Scheduling problem from the
introduction.

Multiple-task-per-core model for the second scenario:

1. Multiple tasks can be assigned to the same core.

2. Each task 7; does not have a ¢;, but instead a core ¢(4) to which it belongs,
i.e. 7(ri,d;, pi,c(i)). The number of cores is denoted as C, c(i) € [1,C].

3. Each core ¢ has a cost cost(c) for turning on its memory.

Power coefficients a and «;, of the shared and local memory, respectively,
are also given. To simplify the notation, we scale the coeeficients to make
as =1, and thus we reset cost(i) to be the cost(i)/alphas, and we obtain the
Multiple-task-per-core Local-Shared Memory task Scheduling problem from
the introduction.

The system model assumptions do not over-idealize the problem. For tasks
on different cores (assumption (1)), many techniques, such as bank/channel-
level parallelism, the NUMA (non-uniform memory access) architecture, etc.
have been proposed and applied to reduce the shared memory access conflict
delay and increase the parallelism of scheduling. Therefore, even though tasks
have the potential to be scheduled simultaneously to access the shared memory
in the target problem, it is acceptable to assume that the access conflict delay
can be ignored and tasks on different cores can access the shared memory in
parallel. On the other hand, as this work mainly focuses on tasks scheduling
issues, the analysis of the memory access congestion and behaviors are left as
future works. For tasks that have too large data size to be allocated to the
local memory (assumption (3)), they will be directly put into the shared mem-
ory. For assumption (4), we do not need to worry about that a set of tasks are
not schedulable if all are executed on the shared memory for the single-task-
per-core model. This is because under this model each task is allocated to a
dedicated core, and hence they do not affect each other’s schedulability. For
the multiple-task-per-core model, if tasks on the same core are not schedulable
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when all are executed on the shared memory, then it implies that the corre-
sponding local memory should definitely be turned on for feasibility. We can
move all tasks to be the local memory under this case. The problem discussed
in this work ignores these trivial allocations.

Problem formulation: The objective of the target problem is to allocate
tasks to memory partitions (local or shared memory), schedule them properly,
turn the idle shared memory to sleep state, and turn off the idle local memory,
in order to minimize the system memory energy consumption. This gives us the
LSMSP for the one-task-per-core model, and MLSMSP for the multiple-
task-per-core model, respectively. These problems are discussed for both
the non-preemptive and preemptive cases in this work. In the following, for
simplicity, by saying “turning on/off the core”, it is equivalent to “turning
on/off the local memory of the core”.

3.2 Motivation example

To better understand the target problem, below we present a simple example
based on the multiple-task-per-core model, without preemption. Three differ-
ent task schedules are shown in Fig. 2. The schedule when tasks are all assigned
to shared memory is based on the algorithms proposed in [10].

In Fig. 2, shadowed rectangles represent the execution time of tasks in
shared memory, while tasks scheduling in local memory is represented by filling
the ”Core” with blue (shown in the legends). The energy consumption of
shared memory FEj is calculated by multiplying the static power by total active
time. For the local memory, the energy FEj is equivalent to the product of
switch cost and the number of cores that are turned on. This example shows
that by properly executing tasks in different memory partitions, better energy
efficiency can be achieved. Intuitively, we can note that for tasks that have
large overlapped execution time, like tasks 71, 7o, 73, scheduling them in the
shared memory might gain benefits by fully utilizing the active time of shared
memory. For tasks like 74 and 75, which have no overlapped processing time
with other tasks, it is better to schedule them on the local memory.

4 Non-preemptive case for single-task-per-core model

For the non-preemptive case of the LSMSP problem we adapt the Dynamic
Programming (DP) proposed by [15], which minimizes the shared memory
active time by properly scheduling tasks non-preemptively. The high-level idea
of the DP algorithm for the LSMSP problem is as follows. Tasks are scheduled
either in the shared memory or the local memory. In the shared memory, define
an interval [A, B], so that the whole time interval (e.g. [—00,4oc]) can be
divided into two sub-intervals by [A, B]. DP can be constructed by combining
the solutions obtained from the sub-intervals.

Intuitively, select the task 75 from T with the maximum pj. The interval
[A, B] can be developed by enumerating all the possible execution intervals
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Fig. 2: Motivation example. Given a set of tasks under multiple-task-per-core
model: 71(3,13,9,1), 2(5,18,9,2), 73(4,19,9,3), 74(0, 3, 3,4), 75(13,20,6,4),
three different schedules are shown. The static power (coefficient «s) of shared
memory is 227.15m W, and the energy transition overhead of the local memory
between active and power-down modes (c(i), same for all i) is 9.12 x 1077.J.
Detailed configurations can be found in Section 7.1. Each time slot in this
example represents 107 %. The energy consumption of each schedule is: (a)
40.89 x 1077.J; (b) 36.48 x 107".J; (c) 31.83 x 10~".J.

of 7, including [rg, ri + px], and [dr — pk, di] (the corresponding property is
proved in [15]), Vk € [1,i — 1]. We should assign as many tasks as we can
to the interval [A4, B] to obtain the most benefit. Interval [A, B] divides tasks
into two subsets, T7, which must be partially scheduled in [—oco, A], and Tb,
which must be partially scheduled in [B,+oo] (based on 7 being the longest
task, it is not hard to see, and it is proved in [15]. that those tasks which are
contained within [A, B] do not need to be further considered in the recursive
subproblems, while the tasks in 77 do not interfere with those from T%).

Formally, assume that the set of tasks is sorted in non-decreasing order
of pi. Let T* be the list of the first & tasks in this order. To construct the
DP, we define OPT (L, R, k), for L and R in a certain set of integers, and
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0 < k < n, to be the minimum objective that can be achieved to sched-
ule tasks of T* with the condition that [—oc, L] and [R, 4+oc] are active and
cost nothing (in other words, with the objective function ZAgng—l g; +
22i | task 7 of Ty assigned to local memory ¢;) Note that the overall optimum
is OPT (—o0, +00,n). The integer Rin OPT(L, R, k) comes from a polynomial-
sized set of integers where tasks may start in an optimum solution, and L comes
from a polynomial-sized set of integers where tasks may finish in an optimum
solution. That these sets are polynomial-sized can be proven using arguments
of [15]; without this, we can still get a pseudopolynomial algorithm.

We have as the base case OPT(L, R, k) = 0 if L > R or k = 0. We have
the recurrence relation: if ry, + pp < A or di, — pr, > B, then

OPT(A, B, k) = OPT(A, B,k — 1), (1)

(task 7 is schedule for free, completely outside interval (A, B)), and otherwise
OPT(A, B, k) is the minimum of OPT(L, R,k — 1) + g, (task 7; is scheduled
in local memory), (B — A) (all the remaining shared memory is used), and

(ri + px — A) + OPT (ry, + pi, B,k — 1), (2)
(task 7y is scheduled in the shared memory, starting execution at rj) and

(B — di + pi) + OPT (A, 15 + pr, k — 1), (3)
(task 73 is scheduled in the shared memory, ending execution at dj) and

: !/ !/

ac D +OPT(A A" k—1)+ OPT(A" 4+ pr, B,k — 1) (4)
(task 7 is scheduled in the shared memory, fully in the interval (A, B)). The
values A’ are taken from the set of integers (mentioned above) when tasks can
possibly start in an optimum solution; then A’ + py is in the set of integers
(mentioned above) when tasks can possibly end in an optimum solution, and
thus the subproblems to have the left and right value of the interval (A, B) of
the required form.

Note that for the non-preemptive case, multiple-task-per-core model, this
dynamic programming does not work. Intuitively, it can be noted that tasks
executed in the local memory in the LSMSP problem are independent with
each other, while those in MLSMSP are not. In MLSMSP, if a task is decided to
execute in the local memory, all the tasks which share the same local memory
will be forced to be scheduled in that local memory. In fact, the non-preemptive
MLSMSP problem is NP-hard as shown in Section 6.

5 Approximation algorithm for both models with preemption
In this section, we firstly formulate the problem of both models by Integer

Linear Programming (ILP), and then propose a LP-rounding procedure with
constant and tight bound of the approximation ratio.
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5.1 ILP formulation

In this section, we formulate the problem for both models by ILP. Given n
tasks, we sort the release times and deadlines of all tasks, and divide the time
into T time-intervals based on the sorted release times and deadlines, where
T < 2n. We abuse notation to use r; as the first time-interval during which
task 7 can be (partially) executed, and d; as the last time-interval during which
task i can be (partially) executed. Let {; be the length of time-interval I;.
For both models, we assume that every task can be scheduled in the main

memory, that is
d;

> b >pi, Vi€ [Ln). (5)

t=r;
Otherwise, in the single-task-per-core model, any task that does not satisfy
the inequality above must be scheduled on local memory, which leads to a
trivial solution for these special tasks. In the multiple-task-per-core model, if
some task on a core cannot be scheduled on shared memory, we turn on the
corresponding local memory and use it for all the tasks that belong to this local
memory (without any decrease in the objective function). In the following, we
end up solving the “reduced” instance where all tasks that cannot be scheduled
in shared memory are removed from the instance.

Let the fractional variables x; represent the active time of the shared mem-
ory in the time slot ¢, where t € [1,T]. Note that the shared memory stays
active as long as there is one core active. In other words, z; represents the
maximal interval where at least one task is scheduled during the time slot .
Let the variables z; represent whether task 7; is allocated to local memory
(in which case z; = 1) or the shared memory (in which case z; = 0). The
formulation for single-task-per-core model is given as follows:

T n
minimize Z Ty + Z Z2iQis (6)
t=1 i=1

d;
subject to Z x> (1= z)pi, Vi€ [1,n], (7)
t=r;
Zi S {Oa 1}7 (8)
0 S T S lta (9)

Note that the formulation of LSMSP allows for fractional values of z;, and
we keep them so as it simplifies our discussion. As an aside, it is know that,
once all z; are integers, we get a Hitting Set problem were the sets are intervals
of points, and the LP /ILP of such a Hitting Set instance is known to be Totally
Unimodular, making the values x; also integers.

For the multiple-task-per-core model, we use variable z. to represent whether
core ¢ has its local memory turned on (z. = 1) or off (2. = 0). Based on this
model, turning on the local memory of core ¢ implies that all tasks in c are ex-
ecuted in local memory, while turning off the local memory means all tasks are
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scheduled in the shared memory. The formulation for multiple-task-per-core
model is given as follows:

T
minimize Z T + Z zccost(c), (10)
t=1 c

d;
subject to Z zt > (1 = ze())pis Vi € [1,n], (11)
t:’l‘i
0 < Tt < lt, Vt, (12)
ze € {0,1}, Ve, (13)

Based on the ILP formulation, the corresponding LP formulation can be
developed. For LSMSP, the LP is to assume that an arbitrary task 7; can be
partially allocated to the shared memory. In other words, replace Equation (8)
with

0<z <1 (14)

Similarly, for MLSMSP, the corresponding LP replaces Constraint (13) to
represent that the local memory of core ¢ can be partially turned on by

0<2.<1, Ve (15)

In the following subsection, an LP-rounding procedure, which partitions
an entire task to either shared memory or local memory based on the LP
formulation solution, and its approximation ratio analysis are presented.

5.2 LP-rounding procedure

The approximation algorithm requires solving the linear programming in poly-
nomial time, followed by a rounding procedure described in this subsection.
The proposed rounding procedure works for both single-task-per-core and
multiple-task-per-core models. W.l.o.g, we present the analysis based on multiple-
task-per-core model as example, and the analysis toward single-task-per-core
model can be done similarly.

Let 0 be the rounding threshold, where 0 < 6 < 1. For a given ¢, the
LP-rounding algorithm, which develops the scheduling results z.. for each core
¢ and x} = z}(0) for each time slot ¢ based on the LP solution is given in
Algorithm 1.

As shown in Lines 1-7 in Algorithm 1, if z. > 1—, then we set the rounded
solution z/, = 1 (local memory of core ¢ turned on, all tasks in ¢ assigned to
local memory). If z. < 1—4, then we set z/, = 0 (local memory of core ¢ turned
off, all tasks in ¢ executed in shared memory). After rounding z/, to integers, x}
needs to be increased to satisfy Constraint (11). We firstly initialize each z} to
be z; (Lines 8-10), and then z} is updated for each time slot ¢ € [1,7] (Lines
11-30). To update z}, two intermediate variables v and " are defined, which
are initialized to (3 — 1)z (Line 12). We try to add v (7') to @ in the first
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Algorithm 1: LP-rounding procedure

Input: LP solution of x; for each time slot ¢, z. for each core ¢ and rounding threshold §
Output: LP-rounding solution z} and z.,

1: for c=1 to C do
2 if z. > 1 — 6 then
3 2zl =1
4 else
5: 2z, =0
6 end if
7: end for
8: fort=1to T do

9: oz, =
10: end for
11: fort =1to T do
12: V'Z’Y:xt'%—l‘t;j:t
13:  whiley >0and j < T do

14: if xg +v >1; then

15: Y=oty -l =1
16: else

17: x&:x}—l—'y;’yzo

18: end if

19: j=ji+1

20:  end while

21: =t

22:  whiley’ >0and j >1do
23: if x; ++' > 1; then

24: 'y’:m}+~/’—lj;m}:lj
25: else

26: =z ++59 =0
27: encf if !

28 j=j—1

29:  end while

30: end for

while loop ( similarly, in the second while loop). If the updated z} exceeds
l¢, the algorithm will add the remaining parts, i.e. %xt — x} to the next time
slot ¢ +1 until 7 (¢ — 1 until 1 in the second while loop).

Lemma 1 For ¥ € (0,1], the variables z. and x} (both are functions of §)
output by Algorithm 1 are feasible for the integer linear programming (10).

Proof To prove the LP-rounding solutions are feasible for the ILP, solutions
z! and 2} should be tested to satisfy all the constraints in ILP.

First, note that all z} are initialized to be at most I;, and stay this way
throughout the execution of the rounding procedure, as this will be constrained
in Line 14 and 23. Thus Constraint (12) is satisfied. Next, the following analysis
discusses the feasibility for Constraint (11).

Let ¢ be the value of the variable v = z; - % — x; when executing the for
loop for variable t. Let i be the task index. Constraint (11) can be trivially
achieved if zé(i) = 1. On the other hand, if z(’:(i) =0, then 1 — z.;) > § and we
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know from Constraint (11) that

d;
Z wy > (1 = ze())Pi = Opi. (16)

t:’l‘i

For each task i, there are two cases which might appear in Algorithm 1.
For the first case, every t € I’ is such that either the first while loop reaches
v = 0 with j < d; or the second while loop reaches v/ = 0 with j > r;.
Then under this case, when processing ¢ in the for loop, at least ; is added
to th:r x}, and thus overall at least th:r (3 — 1) 2 is added to th:'r Xt
We conclude that

Z‘T; > th <1+3—1> = thg > i,

t:m t:m t:m
where Equation (16) is used to obtain the last inequality. Thus Constraint (11)
is satisfied for task ¢ in terms of variables x}.

In the second case, there isa t € {r;,...,d;} such that both while finish d;
and r; with v > 0 and +" > 0 respectively. This means that :v; = [; for every
j € {ri,...,d;}. This, combined with Equation (5), implies that Constraint
(11) is satisfied for task ¢ in terms of the variables x}. O

5.3 Upper bound of LP-rounding procedure

In this subsection, Lemma 2 is firstly developed to bound the objective of the
LP-rounding solutions for all values of §, and then Lemma 3 is proposed to
show the upper bound of the approximation ratio under proper 4.

Let ALG = ALG(9) represent the objective of the proposed LP-rounding
solution, and LP* represent the objective of the optimal LP solution. That is,

LP*=A+ Z zccost(c), (17)

where
T
A= E Tt.
t=1

Lemma 2 The objective of the LP-rounding solution (function of &) satisfies
ALG((S) < (% - 1)A + ZC:ZCZI—ls COSt(C)'

Proof Let v be the value of the variable v = z; - % — x; when executing the for
loop for variable t. The value of Z;‘Ll :103 increases by at most 2v; = x4 (% — 2)
for each iteration in terms of ¢ in the for loop. This is because there are
two while loops, each of which will add at most 7, to Z;‘;l ', as shown in
Algorithm 1 (Lines 13-20 and Lines 22-29). For V¢ € [1,T], the increase is at
most A (%2 —2), and thus S <A+ A (2-2) = (3 —1)A. The lemma
follows. 0O
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Fig. 3: Corresponding function f(z) and the area of rectangles to help denote
ALG(6) and LP* equations.

To obtain the upper bound of the approximation ratio of the proposed
LP-rounding procedure, all the “interesting” values of ¢ should be examined,
including 1 and all values of 1 — z(;). There are at most n+ 1 such values, and
the solution of the minimum ALG(d) can be developed.

Let £ be the solution of the following equation

“oln(1 — 1y = ¥+ (18)
Y Y

with variable y > 1. This solution exists since the function f(y) = yTH+2 In(1—
i) has negative values if y — 1, f(2) is positive, and f is increasing as one
can check that f’s derivative is positive (£ &~ 1.865). From the next lemma,
it can be proved that the proposed LP-rounding procedure achieves the &-
approximation ratio compared to the optimal LP solution (LP*) under some

proper ¢ for the preemptive case in both single-task-per-core and multiple-
task-per-core models.

Lemma 3 There exists 6 € (0,1] such that ALG(d) < {LP*.

Proof For the sake of simplification, we eliminate the notation A from Equa-
tion (17) by setting:
cost'(c) = cost(c)/A,Ve.

Note that if A = 0, then all z. must be equal to 1 and any value of § would
work. Then, based on Equation (17) and Lemma 2, we have:

ALG(8)/A < (% - 1> + ) cost'(c) (19)

c:ze>1—0

Then we notice that once we prove that there exists a d € (0, 1] such that

(% — 1) + Z COSt/(C) < 5 <1 + ;zccost/(c)> ) (20)

cize>1—0
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it follows that ALG(0) < (¢LP*.

The part of ) z.cost’(c) in the RHS of Equation (20) can be represented
by an area of rectangles, as shown in Fig. 3(a). The index to z and cost’() is
sorted in the non-increasing order of z., and we use in Fig. 3(a) ct/, to represent
cost’ of the ¢ core in this sorted order. To represent the part of Y- _,_;ct.
in the LHS of Equation (20), we rotate Fig. 3(a) 90 degrees counterclockwise,
and obtain Fig. 3(b). In the example in Fig. 3(a), it can be noted that z7, 2o
and zz are larger than 1 — 4. We use the rectangles with shadow to denote the
corresponding z., which satisfies z. > 1 — 0.

For 6 € (0,1], let f(6) be defined as follows: for 0 < 6 <1 — zy, f(J) = 0,
for 1 —2 <6 <1~ 241, f(8) = X, ct);, where we make the convention
that z; . 41 = 0 (here, imq, is the number of cores). The function f(z) is
represented by the solid line of Fig. 3(b).

In Fig. 3(b), rectangles are ordered in the non-decreasing order of 1 — z.
from bottom to top. Therefore, f(x) is non-decreasing in the range of z € (0, 1].
In this way, Equation (20) is equivalent to:

(3-1)rrorse (e [ swar). e

Next we show that there exists a § satisfying Equation (21). For the sake of
contradiction, we assume that V§ € (0, 1],

F 1 0(0) > € (14 [ Saae) )
= fO) > E+1—24¢ ) fx)de

Do the integral operation to each side of the inequality.

Sy 508 > [y (€41 =248y f(w)dr) do
> Jiy F0)d6 > S =2 [y 3o+ [ f(0)d8 (23)
< 2[1171

(
L0 > SR+ [T F(9)ds

1
’)
1—

it can be obtained from Equation (23) that

0
]

Since

| =

1
45 =20~ In(1 - 7))

1
1 1 g
—2In(1—2) > et! +/ f(z)dz,
3 £ 0
_1
which, together with fol ¢ f(z)dx > 0, contradicts the definition of ¢ in Equa-
tion (18). O

The above analysis can be similarly conducted for the single-task-per-core
model by setting cost(i) or ct; = g;.
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5.4 Integrality gap

In this subsection, we prove that £ is a tight lower bound for the proposed
LP-rounding solution compared to the optimal LP solution. In the above sec-
tion, analysis is developed based on the multiple-task-per-core model. In the
following, in order to address different features of the other model and to bet-
ter understand both models, we mainly analyze the tightness of lower bound
for the single-task-per-core model. Similar analysis can be extended to the
multiple-tasks-per core model.

Precisely, we present and prove Theorem 1 below. Note that this theorem
implies that, for any ¢ > 0, no algorithm that uses the linear programming
as a lower bound (in particular, no rounding procedure) can achieve an ap-
proximation ratio better than £ — € compared to the optimal solution of ILP
(objective given by (6)).

Theorem 1 For any ¢ > 0, there exists an instance such that the ratio of the
optimal ILP solution to the optimal linear programming solution is at least

&—e.

Proof A set of tasks is constructed as described in the following, with a (posi-
tive real) parameter a to be chosen later. Assuming that there are 2n+1 tasks,
each task 7;(r;, d;, pi, ¢;) is presented below. When i = 1, 71(r1,d1, 1, 1), with
di —ry = 1; when i € [2,n 4 1], 7(r1,dy + (i — 1), 14+ (i — 1)2,£); when
icn+2,2n+1], 7i(ri—(i—n—1)2,d;,1+(i—n—1)2,2) Note that for all
tasks, we have d; — r; = p;. Each task is represented as a rectangle in Fig. 4.
The length of the rectangle represents the processing time in shared memory
(i.e. p;) of a task. Each task 7; has & longer p; than task 7;_;.

Let us look at the optimal solution, denoted as opt in the following. Task 7|
has the same processing time whether allocated on the local or on the shared
memory (p; = ¢q; = 1), thus we do not lose anything if we assign 71 to the
shared memory. For task 7, it will cost 7 whether allocated on the local or
the shared memory, thus we do not lose anything if we assign it to the shared
memory. For task 73, similarly, it will cost * whether allocated on the local
or the shared memory, thus we again assign it to the shared memory. This
re-assignment (if needed) can be done for tasks 4,5,...,2n + 1 and we obtain
an optimal solution with all tasks allocated on the shared memory. For this
allocation, the objective (total active time) is

0pt(n,a)=1+22%:1+2a
i=1

Assume there is an LP solution, which satisfies the following construction.
Assign xy = 1 for ¢ describing the interval [r1,d;], and z; = 0 for all the
other intervals. Assign z; = 0 and z;41 = Zpiip1 = % fori =1,...,n.
This solution implies that task 7 is assigned to the shared memory, while all
the other tasks are partially scheduled within interval [r1,d;] in the shared

memory, and the remaining workload of each task is processed in the private
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memory. It can be noted that this solution is a feasible solution as it can be
easily checked to satisfy Constraints (7) and (9).
Denote the objective of the constructed LP instance as LP(n, a). It can be
deduced that
LP(n,a) < h(n,a),

where
h(n,a) =1+237, &1
:1+2a2?:1#im, x L 24)
=1+2a), (l - ;)

n n+ai
1

=1+2a—2ad "

i=1 ntai-

Let

For fixed a, we have

lim I(n,a) :/0 ! dox = In(1 +a) (25)

n—-+o0o 1+ ax a

according to the definition of integral operation.
Based on Equation (24) and (25), for n which is large enough, we have

%EZ Z; ~ T¥2a 1—+2 i?(l +a) (26)
het 1+2
(a) = 1+2a—21§(1+a)' (27)
Let ag satisfy
1112;;0 —21n(1 + ag) = 0. (28)

This ag exists since the function g(y) = 11+T2;’ —21In(1 4 y) has positive values

if y = 1, g(10) is negative, and g(y) is decreasing as one can check that g’s
derivative is negative. As an aside, Equation (28) was chosen such that the
derivative of 2(a) is 0.

Based on Equations (27) and (28), we know that

2In(1 +ap) 1 1

1+ 2ay N 1+ap N Q(ao)

and correspondingly,

1 o 2In(1+ag) 1
1+ 2(a0) — 2- 1+12+2ao0 =2- 174,
= T = 2In(1+ ap) (29)

= —2111( 10) :—2111(1—%)
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Fig. 4: The tasks constructed for lower bound analysis.

Comparing Equation (29) to Equation (18), it can be noted that

n

—

aO) = 55

and thus
opt opt(n,a) - opt(n, ag)
LP* = LP(n,a) — LP(n,ao)

Z 5 -6 (30)
based on Equations (26) and (27), implying the statement of the theorem. 0O

For the multiple-task-per-core model, the above proof can be easily ex-
tended by constructing a similar task instance and opt/LP solutions, as briefly
described below. Given 2n + 1 tasks, assume there are 2n + 1 cores, each of
which is assigned a task (one can assume a core has multiple tasks as well, but
it is not necessary to make that assumption). Let cost(1) = 1 and cost(c) = =
for all the other cores. The construction of opt solution is the same. For the
LP solution, let z; = 0 and 2,11 = zpyit1 = # fori =1,...,n. And the

following proof is just the same.

6 APX-hardness analysis for the multiple-task-per-core model

The section shows the complexity of MLSMSP. It works for both the preemp-
tive and the non-preemptive model. Note that preemption only matters on
the shared memory. For each core, its local memory is either on or off in this
model. Whether tasks assigned to the local memory are scheduled preemp-
tively or non-preemptively does not affect the complexity.

In the following, Theorem 2 is presented to show that the MLSMSP is
APX-hard.

Theorem 2 MLSMSP is APX-hard, that is: assuming P # NP, there is an
absolute constant eg > 0 such that no polynomial-time algorithm has approxi-
mation ratio at most 1 + eg.
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Fig. 5: The construction of a MLSMSP instance M corresponding to ¢ =
(x1 + 23 +T2)(T2 + T3 + x4)(T2 + T3 + Ta). Tasks are represented as ([release
time, deadline], processing time, core id which it is assigned).

Our APX-hardness reduction is similar to that in [8] and is inspired by the
reduction from Proposition 6.2 of [13], which uses the satisfiability problem
3-SAT.

The mazimum 3-satisfiability problem MAX-3SAT is that of finding, in a
3CNF Boolean formula (in which each clause has exactly three literals), a truth
value assignment which satisfies the maximum number of clauses. For each
fixed k, define MAX-3SAT(k) to be the restriction of MAX-3SAT to Boolean
formulae in which each variable occurs at most k& times. Theorem 3 below is
immediate from Theorems 29.7, 29.11, and Corollary 29.8 in [22].

Theorem 3 [22] Assuming P # NP, there is an absolute constant ey >
0 such that no polynomial time approximation algorithm for MAX-3SAT(5)
which satisfies at least (1 — epr)m clauses for every formula ¢ with m clauses
which is satisfiable.

To prove the approximation hardness stated in Theorem 2, we develop two
lemmas, Lemma 4 and Lemma 5 to construct the instances and the reduction
from MaAX-3SAT(k) and to determine the scheduling objective time used when
the input Boolean formula is satisfiable, respectively.

Lemma 4 The following construction can be accomplished in polynomial time.
The input to 3-SAT is a Boolean formula ¢ in 3CNF form. Let ¢ have n
variables and m clauses. The constructed MLSMSP instance, defined as Mg,
will have 3n 4+ 2m cores, all with unit cost to turn on the local memory,
and 3n + 2m + 3m tasks, each with unit processing time (whether on shared
or local memory). Let the cost of turning on each core’s local memory be
cost(core(i)) = 1,Vi € [1,3n + 2m).
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Proof All cores are divided into three types: decision cores, clause cores, and
literal cores. Of these, only the literal cores are assigned with multiple tasks.
The instance construction is given below.

— For decision cores: Each variable x; has one core core(i) with one task
7i(20 — 2,2i,1,4). It implies that this task is assigned to core(i) with pro-
cessing time 1. These n cores are referred to as decision cores, as one need
to make the binary decision whether to use the interval [2i — 2,2i — 1] or
[2i — 1,2i] on the shared memory.

— For clause cores: Each clause C; has two cores core(n + j) and core(n +
m + j), each of which has one task: 7% (2n +4j — 4,2n 4+ 45 — 2,1,n + j)
and 7 (2n + 45 — 2,2n 4+ 44,1,n + m + j), respectively. These 2m cores
are referred as clause cores.

— For literal cores: These cores have multiple tasks assigned to them each.
For literal x;, there is one core core(n+2m+1i) with one task 7% (2:—2, 2i —
1,1,n+ 2m+ 1), and more tasks to be discussed later. For literal 77, there
is one core core(2n + 2m + i) with one task 7% (2i — 1,24, 1,2n + 2m + ),
and more tasks to be discussed next. These 2n cores are referred as the
literal cores.

For each Cj create three more tasks, one for each literal in this clause.

Task Tlcj = (2n+4+4j —4,2n + 45 — 3,1, q) has ¢ that corresponds to the
first literal of C; (i.e if Tz is this literal, then ¢ = 2n + 2m + 3). Task
7'2Cj =(2n+45 —3,2n+4j5 — 1,1, q) has ¢ that corresponds to the second
literal of C;. Task 7’30j =(2n+4j—1,2n+4j,1, q) has ¢ that corresponds
to the third literal of C}.

An example of the instance construction is illustrated in Fig. 5 for ¢ =
(r1 + 3 + T2)(T2 + T3 + 24)(T2 + T3 + T1), with the number of variables
n = 4 and the number of clauses m = 3. The three clauses are denoted as
C1, Cy, C5. In Fig. 5, tasks colored as red, blue and green are those assigned
to decision, clause, and literal cores, respectively. Tasks colored as orange are
the tasks that are created for each literal in each clause on the literal cores.
Task schedule corresponding to the instance constructed in Fig. 5 with ¢ =
(x1 + 23 + 72)(T2 + T3 + 24)(T2 + T3 + Za) is shown in Fig. 6. The coloring
rules in Fig. 5 also work here.

On one hand, for the decision and clause cores, every optimal solution to
MLSMSP can be assumed to turn off every local memory of them as their only
task can be assigned to the shared memory without increasing the objective.
This is because for each task on decision and clause cores, the processing time
on the shared memory is unit and disjoint with each other, and the cost of
turning on the local memory is unit.

For clause cores as an example, the canonical choices are to use either
2n 445 —4,2n+ 45 — 3] or [2n+ 45 — 3,2n + 45 — 2|, and either [2n + 45 —
2,2n+ 45 — 1] or [2n + 45 — 1,2n + 4j] as the shared memory time intervals
by the tasks assigned to these clause cores. These choices are shown in Fig. 6
as the scheduling of blue tasks. For example, for clause C5, task6 and task9
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Task 7 is assigned to core j

Fig. 6: Given the MLSMSP instance My corresponding to ¢ = (z1 + x3 +
T1)(T2+T3+x4)(T3+T3+7T1), the solution (i.e., the local memory on which core
to turn on, and how to schedule tasks in the shared memory) corresponding
to the truth assignment x1 = 1,22 = 1,23 = 0,24 = 1 is shown. Turning on
the local memory on core is represented by setting the literal as true (z; =1
means core 11 is turned on and core 15 is off; T3 = 1 implies core 17 is turned
on and core 13 is off). The size of the rounded rectangle represents the feasible
region of scheduling task. Task (or core) with shadow represents that the local
memory on the corresponding core is turned on, otherwise it is turned off. For
tasks with feasible region of two unit time slots, such as taskl, taskb, task20
etc., they are scheduled in either unit time slot (the colored slot) if assigned to
shared memory. For example. task1 is scheduled in [1,2] in the shared memory.

should be scheduled in either [12,13] or [13,14], and either [14,15] or [15, 16].
The canonical choices of the decision cores are similar.

On the other hand, the choice of turning on the literal core corresponds
to setting the literal true. As shown in Fig. 6, corresponding to the solution
r1 = 1,20 = 1,23 = 0,24 = 1, core 11. core 12, core 14, and core 17 are
turned on, while task13, task15, task16 and task18 are scheduled in the shared
memory within their corresponding feasible region. In the meantime, taskl,
task2, task3 and task4 can be scheduled in the same time slots without bringing
extra active time. Orange tasks (task19-27) are scheduled similarly without
bringing extra active time.

Clearly, constructing My can be accomplished in polynomial time. We first
determine the scheduling objective time used when the input Boolean formula
is satisfiable. O

Lemma 5 If ¢ is satisfiable then My has an assignment of objective 2n+ 2m.

Proof Let v be an assignment which satisfies ¢. If a variable x; is set true
by v, we turn on the literal core corresponding to x;, i.e. core n + 2m + i,
on which there is task 7%¢(2i — 2,2i — 1,1,n 4+ 2m + ). In the meantime, use
the interval [2¢ — 1,24] in the shared memory for task 7; (from the decision
core corresponding to variable x;) to execute. Also, turn off the literal core
corresponding to ¥;, i.e. core 2n + 2m + i.

Otherwise (x; is set false by «), we turn on the literal core corresponding
to T, use the interval [2¢ — 2,27 — 1] in the shared memory for task 7;, and
turn off the literal core corresponding to z;. In both cases, doing this for
all the variables contributes 2n to the objective function. Referring to Fig.
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6, scheduling taskl-task4 and taskll-taskl8 will contribute 2n = 8 to the
objective function.

For each clause Cj, if the first literal is true (according to ), then we turn
on the core where task Tlcj (2n+45 —4,2n+4j — 3,1, q) is assigned, and use
the interval [2n + 4j — 3,2n + 45 — 2] for task 7% in the shared memory.
This is because 7¢ can be scheduled in either [2n + 45 — 4,2n + 45 — 3] or
[2n+4j —3,2n+ 45 — 2]. Since Tlcj is allocated to the local memory, utilizing
[2n+4j—3,2n+4j—2] in shared memory has larger potential to obtain overlap
with other tasks. Meanwhile, let 77 execute in the interval [2n+4j—1, 2n+4;]
in the shared memory. Referring to Fig. 6, for Cy, z1 is true, so we turn on
Core 11, and let task5 (7C1) execute in [9,10] while task8 (1) executes in
[11,12].

If the first literal is false, but the second literal is true, use for task 7
the interval [2n + 4j — 4,2n + 4j — 3] in the shared memory, and for 7% the
interval [2n + 45 — 1,2n + 4j] in the shared memory. Referring to Fig. 6, for
Cy, T3 is false but T3 is true, so we turn on Core 17, and let task6 execute
in [12,13] while task9 executes in [15,16]. Similarly, if the first two literals
are false and the third literal is true, then it is used for task 7€ the interval
[2n 4+ 45 — 4,2n + 45 — 3] in the shared memory, and for 7% the interval
[2n + 45 — 2,2n + 4j — 1] in the shared memory.

In all cases, we use an active time of 2 on the shared memory for each
clause, and thus the objective of the assignment is indeed 2n + 2m. This is
a feasible assignment, since whenever a local memory is turned off for a core
corresponding to a literal, all the tasks assigned to this core can be scheduled
on the main memory, as can be easily checked. O

Note that assignments better than 2n+2m never exist. Firstly, the disjoint
intervals of the shared memory must be used for the 2m clause cores and the
n decision cores. Secondly, out of two literal cores corresponding to a variable,
one has a task that does not fit yet on the shared memory (because there
are three tasks with three unit processing time which have disjoint scheduling
regions in interval [2n+45—4, 2n+4j] on a literal core), and thus an additional
term of 1 must be added to the objective function. In fact, we can assume
without loss of generality that the optimal solution turns on the literal core
who has one such task that does not fit on the shared memory.

Based on the above lemmas, the proof to Theorem 2 can conducted and
proved.

Proof (of Theorem 2) Assume that there exists a polynomial-time approxi-
mation algorithm for MLSMSP with performance ratio at most 1+ € for some
€ > 0. The assumed algorithm gives a solution S having objective at most
(1 4+ €)(2n + 2m). We first transform S to S’ without any increase in cost,
where S’ is a solution that fulfills the following two conditions: (i) S’ uses
exactly 2m + n active time on the shared memory, and (i) In S’ there is no
preemption.

To achieve (1), consider the time interval [2n+4j —4, 2n+4j] on the shared
memory, where the tasks of the cores corresponding to clause C; are scheduled
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(we argued earlier that these two tasks are scheduled on the shared memory).
There are another three tasks, which belong to the cores corresponding to the
literals of C; which must be scheduled during this interval; moreover these
three tasks are time-disjoint. It can be proved below that no optimal solution
uses active time more than 3 in this interval. If it uses exactly 3, change the
solution to use exactly 2 and turn on the local memory of one of the three
cores corresponding to the literals of C;. One can easily verify this is feasible.
And if the optimal solution uses less than 3 active time on the shared memory
in this interval, then one of the three cores corresponding to the literals of C}
must have its local memory on. Thus we might as well assume exactly 2 active
time is used on the shared memory during this interval.

A similar argument is used for the time interval [2i — 2, 2i] where the task
of the core corresponding to the variable x; must be scheduled for a time of 1.
It can be assumed that an optimal solution uses exactly 1 active time on the
shared memory for this interval. Thus there are exactly n + 2m active time on
the shared memory in S’ solution.

We further transform the solution so as to satisfy (47). Note that all feasible
regions of multiple tasks on the same core (specifically, on the literal cores)
are distinct. Thus preemption does not need to be considered.

We call S’ the resulting solution. Note that at most €(2n + 2m) variables
have both cores corresponding to its literals with the local memory on. We
now construct a truth value assignment 7: for each variable, if the core corre-
sponding to its positive literal has the local memory on, set it to true; if the
core corresponding to its negative literal has the local memory on, set it to
false, and if both cores corresponding to its literals have the local memory on,
set it arbitrarily (say, to true). The at-most €(2n + 2m) variables that have
both literal cores with the local memory on appear in at most 5¢(2n + 2m)
clauses (cf. the definition of MAX-3SAT(5)). Let C' be any of the remaining
clauses. We claim that 7 makes C' true. One of the three tasks corresponding
to three literals in C' must force the core to which it is assigned to be turned
on. Otherwise three distinct processing time slots need to be scheduled in two
active shared memory time slots (because the active time of shared memory is
exactly n+ 2m). As shown in Fig. 6, task19, task20, task21 need to be sched-
uled in two time units in shared memory that are fixed by taskb and taskS.
By construction, the literal is true corresponding to that the task forces the
core to which it is assigned to be turned on, hence C is true.

Therefore, the number of satisfied clauses is at least m —5¢(2n+2m). Since
we can assume that m > n/3 + 1, we have m — 5¢(2n + 2m) > (1 — 40¢)m.
Setting ep; = 40¢, the result follows from Theorem 3. That is, we can take
€s = € /40, and the proof of Theorem 2 is complete. O

7 Evaluation

This section provides the energy efficiency evaluation of the proposed LP-
rounding procedure, denoted as LPR in the following. The procedure LPR is
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compared with the optimal solution given by ILP, denoted as OPT, and the
relaxed solution given by LP. Even though a tight lower bound (£ ~ 1.865) is
presented for LPR compared to LP, it remains interesting to find the average
performance instead of the worst case bound. In this section, simulations are
conducted for both single-task-per-core and multiple-task-per-core models to
evaluate the average performance of LPR in terms of energy saving.

7.1 Simulation setup
7.1.1 Task set synthesis

To evaluate the energy efficiency of LPR compared to OPT and LP, a large
set of tasks is randomly generated. The synthetic tasks are conducted and
evaluated at different system utilization levels. Specifically, we generate tasks
in the following manners:

— Denote the maximum number of time slots as s, which means all tasks will
be generated between interval [0, s].

— For each task T, we assume that it has 60% probability to be randomly
released in [0, 3] and 40% probability in (5, s]. The probability setting is
based on the consideration that the release time is more likely to be in the
first half of the time interval, in order to guarantee that tasks are uniformly
distributed.

— Deadline d; is randomly generated between (r;, s].

— The processing time p; in shared memory is set to be related with a demand
ratio, denoted as p € (0.1,0.8). p; is then randomly generated with the
restriction that p; < p(d; —r;).

— For single-task-per-core model, the processing time ¢; in local memory
is randomly generated between [0.3p;,0.8p;]. This is because tasks may
have different memory access features, and thus the ratios of tasks’ access
latencies in local/shared memory are not uniform.

— For multiple-task-per-core model, set the number of cores as C. For each
core, randomly generate several tasks in [0, s], with the restriction that
tasks are schedulable on each single core.

7.1.2 System configuration

The configurations of memory are modeled based on the 50nm DRAM, and
the parameters are collected using CACTT [23], where the standby static power
scales with the memory size. In the following experiments, we assume the size
of the shared memory as 1GB, with the standby power of 227.15mW based
on CACTI, while the size of the local memory as 12MB with the static power
of 2.71mW. The clock rate of the local memory is 800MHz (we do not care
the clock rate of shared memory). The energy transition overhead of the local
memory from power down mode to active mode is set to be 9.12 x 10~7.J [6].
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Recall that for multiple-task-per-core model, we assume that the static
power of local memory is smaller than the switch cost. Based on the above
configuration, it implies that 2.71mW x S < 9.12 x 1077.J, where S < 3.37 x
10~%*s represents the maximum interval between the first task’s release time
to the last task’s deadline. In this way, according to the clock rate of 800MHz,

-2
the maximum number of time slots s < 3:37¢19 "5 — 9 83 % 10°. Therefore, for
800M H =z

multiple-task-per-core model, we set s < 2.83x 10°, while s € [2.83x 10°,5.66 x
10°] for single-task-per-core model, where assuming the static power of local
memory is larger than the switch cost. The number of slots s can be larger, but
here in the simulation, we consider the limited number of slots as an example.

7.2 Simulation result

In the experiment, the LP-rounding procedure is implemented in MATLAB.
The LP and ILP formulations are solved by the linear programming solver,
Gurobi [16].

As shown in Table 1, in the experiment, we evaluate the OPT, LP and
LPR algorithms over different parameters. For single-task-per-core model, al-
gorithms are compared over the processing demand p and the number of tasks
n. With the number of slots s € [2.83 x 10°,5.66 x 10°] (i.e. 0.354-0.707ms) ,
the amount of the total in coming tasks are most likely smaller than 80. For
multiple-task-per-core model, algorithms are compared among the processing
demand p, and the number of cores C. Considering in most IoT systems, the
number of cores is limited by chip size and low workload requirement, the sim-
ulation is conducted on at most 10 cores. To generate convincing results, for
each data point, we randomly generate ten different cases, and use the average
value as the final performance of each data point.

The experimental results are shown in Fig. 7(a) and 7(b), where the total
memory energy consumption of the optimal solution and LP-rounding proce-
dure are normalized to the LP solution. For single-task-per-core model, when
the number of tasks is small and the processing demand is high, both OPT
and LPR perform very close to the LP solution. This is because in this case,
tasks have long processing time (p = 72-) and have large potential to occupy
a long active time in shared memory. On the other hand, since the number of
tasks is small, tasks will cost less if executing in local memory. In this way, all
schemes will try to put each task on the local memory, which leads to little

Table 1: Parameters used for evaluating all the algorithms. “Single” is short for
single-task-per-core model, while “Multiple” is short for multiple-task-per-core
model.
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Fig. 7: The total memory energy consumption of OPT and LPR with normal-
ized to the LP solution (a) for the single-task-per-core model and (b) for the
multiple-task-per-core model.

flexibility and differences among schemes. The gap between OPT/LPR and LP
solution becomes larger with the increase of tasks’ amount and the decrease
of the processing demand because of the increasing flexibilities or options in
tasks assignment. In average, the LPR procedure is 1.299x the LP solution,
while the OPT is 1.175x the LP solution. LPR consumes 10.55% more energy
compared to OPT.

For multiple-task-per-core model, as shown in Fig. 7(b), similar to that in
Fig. 7(a), both OPT and LPR perform very close to the LP solution when
the number of cores is small and the processing demand is high. However,
different from that in Fig. 7(a), it can be noted that OPT is always close to
LP solution when the processing demand is low. This is because the number
of total scheduling slots is small and tasks have short processing time. Hence
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executing in the shared memory brings less energy consumption, comparing
to the dominating energy overhead in local memory — “turning on cost”
in this model. On the other hand, the LPR procedure does not perform as
good as the OPT. LPR has larger gap with the LP solution with the increase
of the core number. This is because even though this procedure also tends to
schedule tasks in the shared memory, the active time «} is increased due to the
rounding procedure, especially when the number of cores is increased, which
implies the tasks’ amount is increased as well. In average, for this model, the
LPR procedure is 1.171x the LP solution, while the OPT is 1.076x the LP
solution. LPR consumes 8.83% more energy compared to OPT.

8 Conclusions and future work

This paper studied task scheduling problem in the local-shared memory ar-
chitecture of IoT system. Two task models are proposed based on different
scenarios of energy domination in the local memory. We proposed an optimal
DP-based algorithm for the single-task-per-core model with preemption for-
bidden in shared memory. For the preemptive case, an LP-rounding procedure
with constant and tight bound of approximation ratio compared to LP solu-
tion is proposed. This LP-rounding procedure works for both task models. The
integrality gap example is general enough; it will hold from the more general
formulation even if ay; = a; = 1 (same power coefficients for the shared and
local memory), while the cost(i) is zero.

Slightly more complicated models, i.e. if we require the time-slots to be ei-
ther fully used, or not used, can be handled by the same algorithm as explained
after Constraint (9).

For the multiple-task-per-core model, APX-hardness is proved and there-
fore there exists an € > 0 such that no polynomial time algorithm has approxi-
mation ratio of 1+e€g. This hardness also holds in the more general formulation
even if the power coefficient for the shared memory is 1 and is equal to the
cost of turning in each local memory.

We leave open the question if the problem for the single-task-per-core
model with preemption, is NP-hard or not. We also leave open the design of ap-
proximation algorithms for the non-preemptive multiple-task-per-core model.

References

1. L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey.
Computer networks, 54(15):2787-2805, 2010.

2. L. Benini, A. Bogliolo, G. A. Paleologo, and G. De Micheli. Pol-
icy optimization for dynamic power management. [EFE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
18(6):813-833, 1999.



30

Gruia Calinescu et al.

10.

11.

12.

13.

14.

15.

16.

J. Chang, H. N. Gabow, and S. Khuller. A model for minimizing active
processor time. In Proceedings of the 20th Annual Furopean Symposium
on Algorithms, ESA, pages 289-300, 2012.

J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss, J. Granacki,
J. Shin, C. Chen, C. W. Kang, et al. The architecture of the diva
processing-in-memory chip. In Proceedings of the 16th international con-
ference on Supercomputing (ICS), pages 14-25. ACM, 2002.

D. G. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru, and R. McKenzie.
Computational ram: implementing processors in memory. Design ¢ Test
of Computers, IEEE, 16(1):32—-41, 1999.

X. Fan, C. Ellis, and A. Lebeck. Memory controller policies for dram power
management. In Proceedings of the 2001 international symposium on Low
power electronics and design (ISLPED), pages 129-134. ACM, 2001.

M. Flammini, G. Monaco, L. Moscardelli, H. Shachnai, M. Shalom,
T. Tamir, and S. Zaks. Minimizing total busy time in parallel schedul-
ing with application to optical networks. In IEEFE International Parallel
Distributed Processing Symposium, IPDPS, pages 1-12, 2009.

R. Freimer, C. Piatko, and J. S. Mitchell. On the complexity of shattering
using arrangements. Technical report, Cornell University, 1991.

. C. Fu, M. Li, and C. J. Xue. Race to idle or not: balancing the memory

sleep time with dvs for energy minimization. In Proceedings of the 2015
Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 13-18. EDA Consortium, 2015.

C. Fu, Y. Zhao, M. Li, and C. J. Xue. Maximizing common idle time
on multi-core processors with shared memory. In Proceedings of the 2015
Design, Automation & Test in FEurope Conference & Exhibition (DATE),
pages 900-903. EDA Consortium, 2015.

B. R. Gaeke, P. Husbands, X. S. Li, L. Oliker, K. A. Yelick, and R. Biswas.
Memory-intensive benchmarks: Iram vs. cache-based machines. In Parallel
and Distributed Processing Symposium., Proceedings International, IPDPS
2002, Abstracts and CD-ROM, pages 7-pp. IEEE, 2001.

J. Gebis, S. Williams, D. Patterson, and C. Kozyrakis. Viram1: A media-
oriented vector processor with embedded dram. DAC0/, pages 7-11, 2004.
R. Hassin and N. Megiddo. Approximation algorithms for hitting objects
with straight lines. Discrete Applied Mathematics, 30(1):29-42, 1991.

T. Kgil, S. D’Souza, A. Saidi, N. Binkert, R. Dreslinski, T. Mudge, S. Rein-
hardt, and K. Flautner. Picoserver: using 3d stacking technology to enable
a compact energy efficient chip multiprocessor. ACM SIGARCH Computer
Architecture News, 34(5):117-128, 2006.

R. Khandekar, B. Schieber, H. Shachnai, and T. Tamir. Minimizing busy
time in multiple machine real-time scheduling. In LIPIcs-Leibniz Inter-
national Proceedings in Informatics, volume 8. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2010.

G. Optimization et al. Gurobi optimizer reference manual version 5.6,
2014.



Energy-Aware Real-Time Task Scheduling on Local and Shared Memory Systems 31

17.

18.

19.

20.
21.

22.
23.

24.

25.

26.

27.

28.

29.

D. Park, S. Eachempati, R. Das, A. K. Mishra, Y. Xie, N. Vijaykrishnan,
and C. R. Das. Mira: A multi-layered on-chip interconnect router architec-
ture. In ACM SIGARCH Computer Architecture News, volume 36, pages
251-261. IEEE Computer Society, 2008.

A. Sinha and A. Chandrakasan. Dynamic power management in wireless
sensor networks. Design & Test of Computers, IEEFE, 18(2):62-74, 2001.
M. Uddin and T. Nadeem. A2psm: Audio assisted wi-fi power saving
mechanism for smart devices. In Proceedings of the 14th Workshop on
Mobile Computing Systems and Applications, HotMobile '13, pages 4:1—
4:6. ACM, 2013.

B. Univ. of California. The berkeley intelligent ram (iram) project.

S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Fi-
nan, A. Singh, T. Jacob, S. Jain, et al. An 80-tile sub-100-w teraflops
processor in 65-nm cmos. IEEE Journal of Solid-State Circuits, 43(1):29-
41, 2008.

V. V. Vazirani. Approzimation Algorithms. Springer-Verlag, 2001.

S. J. E. Wilton and N. Jouppi. Cacti: an enhanced cache access and cycle
time model. IEEE Journal of Solid-State Clircuits, 31(5):677-688, May
1996.

D. H. Woo, N. H. Seong, D. L. Lewis, and H. H. S. Lee. An optimized
3d-stacked memory architecture by exploiting excessive, high-density tsv
bandwidth. In 2010 The 16th International Symposium on High Perfor-
mance Computer Architecture (HPCA ), pages 1-12. IEEE, 2010.

W. A. Wulf and S. A. McKee. Hitting the memory wall: implications of
the obvious. ACM SIGARCH computer architecture news, 23(1):20-24,
1995.

Y. Xie. Processor architecture design using 3d integration technology. In
VLSID’10. In 2010 23rd International Conference on VLSI Design VLSI
Design, pages 446-451. IEEE, 2010.

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard:
Memory bandwidth reservation system for efficient performance isolation
in multi-core platforms. In Real-Time and Embedded Technology and Ap-
plications Symposium (RTAS), 2013 IEEE 19th, pages 55-64. IEEE, 2013.
X. Zhong and C.-Z. Xu. Frequency-aware energy optimization for real-
time periodic and aperiodic tasks. LCTES, pages 21-30, 2007.

X. Zhong and C.-Z. Xu. System-wide energy minimization for real-time
tasks: Lower bound and approximation. ACM Trans. Embed. Comput.
Syst., 7(3):28:1-28:24, May 2008.



