
New approach of LP Rounding Algorithm for the

Active Time Problem

Gruia Cǎlinescu ∗ 1 and Kai Wang† 2,3

1Department of Computer Science, Illinois Institute of Technology,
Chicago, IL 60616, USA

2Department of Computer Science, City University of Hong Kong, Hong

Kong SAR, China
3Center for Advanced Studies in Management (CASiM), HHL Leipzig

Graduate School of Management, Jahnallee 59, 04109 Leipzig, Germany

December 23, 2020

Abstract

In this paper, we work on the scheduling problem with active time model. We
have a set of preemptive jobs with integral release times, deadlines and required
processing lengths, while the preemption of jobs are only allowed at integral time
points. We have a single machine that can process at most g distinct job units at
any given time unit when the machine is switched on. The objective is to find a
schedule that completes all jobs within their timing constraints and minimizes the
time when the machine is on, i.e. the active time. This problem has been studied
by Chang et al. where they proposed an LP rounding approach which gives a 2-
approximation solution. In this paper, we also give a 2-approximation algorithm
based on LP rounding approach with a different rounding technique and analysis.
Finally, we give a new linear programming formulation for which we conjecture that
the integrality gap is 5/3, which might bring new hope for beating the barrier of 2
for the approximation ratio.

1 Introduction

Scheduling with parallelism is a fundamental problem in computer science. Many studies
have been done on parallel machine scheduling for decades. In this research, we focus
on the parallelism over memory. In terms of energy saving, memory can be turned off
when it is not accessed [1, 2]. At each time slot when the memory is on (active), the

∗calinescu@iit.edu
†Corresponding author; kai.wang@my.cityu.edu.hk

1

scheduler can work on a group of at most g jobs, due to the capacity limit of the memory
banks. Meanwhile, the memory bank consumes a fixed amount of energy during this
active time slot, regardless of the number of jobs that access the memory. The objective
is to schedule the jobs while minimizing the total energy consumption, which is equivalent
to the total active time. This problem is referred to as active time scheduling problem

and was introduced by Chang et al. [3]. They gave a general framework of this problem
and studied the jobs with multiple available intervals and showed that the problem is
NP-complete even for g = 3. Later, Chang et al. [4] worked on a more standard case
where each job has only one available interval during which it can be scheduled. They
considered preemptive jobs in the sense that the execution of a job could be interrupted
and resumed later. They proposed a greedy algorithm with approximation ratio 3 which
closes as many time slots as possible in an arbitrarily order as long as the new solution is
feasible, and also an LP rounding approach for which they claim an approximation ratio
of 2, while the complexity of the problem still remains open. More recently, Kumar and
Khuller [6] proposed another greedy algorithm with approximation ratio of 2.

In this paper, we continue to work on the problem studied by Chang et al. [4]. We
propose a new algorithm based on LP rounding approach and show that the solution is
2-approximation. This algorithm introduces a “chain” technique that might be useful
for getting an approximation ratio smaller than 2, or for other problems. In Section 2
we formulate the problem and give the LP formulation referred from [4]. In Section 3
we introduce a rounding scheme which is the basis for the final rounding algorithm. In
Section 4, we generalize the rounding scheme to make it work for the general case. We
also introduce a potentially stronger LP relaxation for this problem.

2 Formulation

The input consists of a set J of jobs and a parallelism parameter g with g ∈ N 6=0. Each
job j ∈ J is defined by its release time rj ∈ N, deadline dj ∈ N 6=0 and processing time
pj ∈ N 6=0. We consider the schedule on a single machine in which the time horizon is
discretized into many time slots by unit length where time slot t is defined to be the
time interval (t− 1, t] with t ∈ N 6=0

1, and time slot t is called active if the machine is on
during (t− 1, t]. The parameter g indicates the parallelism ability of the machine, where
for each time slot t, the machine can finish up to an amount of g units of workload of
jobs while the workload of a single job assigned to time slot t is at most 1. We assume
all the values in the input are integers. Jobs can be preempted, in other words, jobs can
be interrupted during execution and resumed later, while the preemption is only allowed
at integer time points, i.e. at the end of some time slot. In a feasible schedule, the
machine is not necessarily switched on for all the time. Thus, the objective is to find a
feasible schedule that uses the minimum number of active time slots to finish all the jobs.
Without loss of generality, we assume the smallest job release time is 0 and the largest
job deadline is T and denote T = {1, 2, ..., T} as the set of time slots. For each job j ∈ J ,
let Ij = {rj + 1, ..., dj} be the set of available time slots for job j. Also, we denote time
interval (rj, dj] as job j’s window. We use the phrase open a time slot as the meaning of
turning on the machine during that time slot.

1It is necessary that the time interval of a time slot is defined to be a half-open interval, i.e. (,].

2

As this problem has been studied in [4], we cite their linear programming formulation
as follows.

Linear Programming Formulation For ∀t ∈ T , we create a binary variable xt indi-
cating whether time slot t is active. And ∀t ∈ T , ∀j ∈ J , we create a binary variable yjt,
indicating the amount of workload of job j that is scheduled in time slot t.

min
∑

t∈T

xt subject to

∑

t∈Ij

yjt = pj ∀j ∈ J (1)

∑

j∈J

yjt ≤ g · xt ∀t ∈ T (2)

yjt ≤ xt ∀j ∈ J, ∀t ∈ T (3)

xt ∈ {0, 1} ∀t ∈ T (4)

yjt ∈ {0, 1} ∀j ∈ J, ∀t ∈ T (5)

It is easy to check that the integer linear program above corresponds to the active
time problem. The linear program is obtained by replacing the constraints 4 and 5 by
xt ≥ 0 ∀t ∈ T and 0 ≤ yjt ≤ 1 ∀j ∈ J, ∀t ∈ T . The following fact is referred from [4],
which is a corollary of the integrality flow theorem in Maximum Flow problem [5].

Fact 1. Given a set of integrally opened time slots (that is, xt ∈ {0, 1} ∀t ∈ T), with
feasible fractional assignment of jobs for the active time problem (that is, 0 ≤ yjt ≤
1 ∀j ∈ J, ∀t ∈ T), an integral assignment of jobs can be found at the end of the rounding
procedure, via maximum flow computation.

In this paper, we use LP rounding technique to obtain a 2-approximation solution.
Generally, we first solve the relaxed linear programming in which the variables xt, yjt are
relaxed into floating numbers, i.e. xt ∈ [0, 1], yjt ∈ [0, 1]. Then in the rounding process,
we open time slots (by making the values xt integral; a time slot t being open if xt = 1),
and then construct a feasible assignment that assigns the fractional workload yjt into the
opened (i.e. active) time slots. Finally, a feasible schedule is computed according to the
above fact.

3 LP Rounding

Given the values xt, yjt in the optimal LP solution, we aim to find an integral solution
of 2-approximation. Before we present our rounding algorithm, we introduce several
definitions over the LP solution. Here is an overview of the algorithm: first, we label the
times at which the accumulated fractional active time from the LP solution reaches the
multiples of 0.5, which is referred to as time mark (formally defined in the two paragraphs
below). Then, for each time slot which contains one time mark, the rounding algorithm
will open it, and for each time slot which contains two time marks, the rounding algorithm

3

will open it and possibly also open one of its neighboring time slots as well, depending on
the LP solution. Meanwhile, we create a feasible assignment that assigns the fractional
workload yjt into the opened time slots, which is the major focus of the rounding process.

In the following, we use t as the notation of a time slot t ∈ T and s a particular
time s ∈ [0, T]. For each time slot t, we assume that the fractional active time xt is
uniformly distributed in time slot t. In other words, the total active time during time
interval (t − η, t] equals η · xt for any η ∈ [0, 1]. Similarly, we assume each value yjt is
uniformly distributed in time slot t. Hence, given an interval I ⊆ [0, T], we denote x(I)
as the total active time during time interval I, denote yj(I) as the total workload of job j
that are assigned to interval I, and let y(I) =

∑

j∈J yj(I) be the total workload of all jobs
assigned in interval I. To abuse notation, for time slot t and interval I ⊆ [0, T], we use
I \ t to denote I \ (t− 1, t], also we use yj(t) as the meaning of yj(I

′) where I ′ = (t− 1, t]
for some time slot t 2. Moreover, we define τ(a) = min{s | x([0, s]) = a, s ∈ [0, T]} as
the earliest time s when the amount of accumulated active time reaches a where a ∈ R≥0

and a ≤
∑T

t=1 xt.
Let δ = 0.5 be the rounding threshold. Especially, we say time s is a time mark if

s = τ(kδ) for some integer k ∈ N 6=0. For each time slot t, if (t − 1, t] contains two time
marks (resp. one time mark), we call time slot t doubleton (resp. singleton). Note that
time slot t never contains three time marks because δ = 0.5 and a time slot is a half-open
interval by definition. Let Γ be the set of all singletons and doubletons. An interval
(s1, s2] is called block if it contains exactly one time slot t from Γ, i.e. (t− 1, t] ⊆ (s1, s2],
and that the interval (s1, s2] is maximal in the sense that expanding the interval into
(s1, s2 + ǫ] or (s1 − ǫ, s2] for any ǫ > 0 will make it intersect with another time slot from
Γ. Note that two blocks can have non-empty intersection. By definition, a block is an
extension of a singleton or doubleton and the endpoints of a block are integers. Note
that a singleton or doubleton can be a block by itself, if the neighboring time slots are
also in Γ. We use Bt to denote the block of time slot t. Two blocks Bt, Bt′ with t < t′

are referred to as adjacent if Γ ∩ {t+ 1, t+ 2, ..., t′ − 1} = ∅.

Rounding Scheme. The rounding scheme works in many phases where in each phase, a
time slot t ∈ Γ is considered. First, we open time slot t. Moreover, if t is a doubleton,
we may open an additional time slot t − 1 or t + 1. The rounding scheme is shown
in Algorithm 1, which relies on definitions we introduce next. We aim to assign the
fractional workload y(Bt) into the slots we opened (i.e. subset of {t − 1, t, t + 1}) and
show that the assignment is feasible for the jobs. The result, provided it is feasible, is a
2-approximation solution due to the fact that we open at most as many time slots as the
total number of time marks.

If both time slots t−1 and t+1 are contained in Γ, block Bt equals time slot t and we are
done, without opening any additional time slot. Thus we guarantee that any additional
time slot opened in the algorithm is not included in Γ. One may note that the additional
time slot t − 1 or t + 1 might be “opened twice” in the process by two adjacent blocks,
possibly resulting in the infeasibility of the assignment of fractional workload. Therefore,
Algorithm 1 is not the final algorithm and in Section 4 we propose a generalized rounding
scheme for the final rounding algorithm and show that the assignment is feasible.

In order to assign the fractional workload y(Bt) into the time slots t or its neighboring

2The endpoints of interval I are not restricted to be integers.

4

time slot t−1 or t+1, we need to guarantee that the assignment fulfills the LP constraints
(2) (3), where constraints (2) make sure the total workload assigned into an active time
slot is no more than g, and constraints (3) make sure the total workload of a single job
assigned into an active time slot is no more than 1. This will be hard to achieve, but we can
get help from this idea: note that two adjacent blocks might have an intersection, and the
fractional workload during this intersection interval may be assigned twice, while in the
algorithm we need to guarantee that this fractional workload is assigned at least once (to
satisfy LP Constraint 1). Moreover, we can ignore any job j such that yj(Bt) > 0, t 6∈ Ij
since the interval Bt ∩ (rj, dj] must be covered by a block which is adjacent to block Bt.

To begin with, we show that if t is a singleton, no additional time slot is needed and
we simply assign yj(Bt) into time slot t for any job j ∈ J with t ∈ Ij .

Lemma 1. If t is a singleton, the assignment that assigns yj(Bt) into time slot t for any
job j ∈ J with t ∈ Ij fulfills the LP constraints (2) (3) for time slot t.

Proof. If t is a singleton, interval Bt only contains one time mark (regardless of endpoints
of Bt), then by the definition of time marks, we have that x(Bt) ≤ 2δ = 1. Hence, from
the LP solution, we have y(Bt) ≤ g · x(Bt) ≤ g and for each job j ∈ J , yj(Bt) ≤ x(Bt) ≤
1. Therefore, assigning the fractional workload y(Bt) into time slot t fulfills the LP
constraints (2) (3) for time slot t.

As a result, in the following, we only focus on the case where t is a doubleton. Let
s1, s2 be the endpoints of block Bt, i.e. Bt = (s1, s2]. We consider the jobs that can be
scheduled at time slot t and partition them into six disjoint classes, which are defined in
the following and depicted in Figure 1.

Definition 2. For an interval I, let ỹ(I) be the workload of the LP solution in the interval
I from the jobs j whose (rj , dj] interval intersects Γ∩ I. In other words, we only consider
the jobs that can be possibly scheduled in the singleton and doubletons that intersect I.
Recall that y(I) is the workload of the LP solution in the interval I of all the jobs.

Definition 3. We define job sets ü, v̈, ä, b̈, ë, c̈ where jobs from sets ä, ü have common
deadline t with release time from [0, s1), [s1, t− 1) respectively, jobs from sets v̈, b̈ have
common release time t − 1 with deadline from (t, s2], (s2, T] respectively, and jobs from
set ë are tight jobs with release time t−1 deadline t, and jobs from set c̈ have release time
strictly smaller than t−1 and deadline strictly larger than t. Let Z = {ü, v̈, ä, b̈, ë, c̈}. For
each set of jobs z̈ ∈ Z, we denote z (resp. z) as the summation of their fractional workload
in time slot t (resp. during interval Bt \ t), i.e. z =

∑

j∈z̈ yjt and z =
∑

j∈z̈(yj(Bt)− yjt).

In other words, in the following, we use the notations u, v, a, b, e, c and u, v, a, b, e, c as
the meaning of corresponding workload of jobs. We denote β =

∑

j∈J yjt as the total
workload assigned to slot t in the LP solution.

We propose a rounding scheme in Algorithm 1, which makes an assignment of frac-
tional workload except a or b. In other words, for jobs from ä (or b̈), their fractional
workload during Bt \ t will not be assigned in this phase. Moreover, we make the decision
of opening time slot t − 1 or t + 1 according to the jobs from ü and v̈, as described
later. In terms of feasibility, if we open time slot t + 1 (i.e. time slot t − 1 is closed),
the fractional workload u has to be assigned into time slot t because jobs from set ü

5

PSfrag

ü

ä

b̈

c̈

ë

v̈

1/2
1/2

1/2

tt-1
s1 s2

Figure 1: Illustration of the job partition as it pertains to one doubleton at time slot
t, represented here by the middle solid bar. There are two other solid bars, one before
and one after the doubleton, which are also in Γ. Time marks are represented by arrows
pointing up. Job classes are represented by horizontal thinner lines, where an arrow
represent that jobs in this class may or may not be longer than depicted in the direction
of the arrow.

cannot be assigned into time slot t+ 1 due to their deadlines. Hence, in order to achieve
a feasible assignment in which the total workload assigned to time slot t is no more than
g, we adopt the strategy of shifting the fractional workload yjt for any job j ∈ v̈ (i.e. v)
into time slot t + 1, in short, jobs ü in and jobs v̈ out. Symmetrically, if we open time
slot t− 1, we adopt a similar strategy of shifting the fractional workload yjt for any job
j ∈ ü (i.e. u) into time slot t− 1. As a result, the rounding scheme checks which one of
the two options is feasible, and we show that at least one of the two options is feasible if
the following two properties are satisfied.

Property.

P(i) pj ≤ 1, ∀j ∈ ü ∪ v̈

P(ii) yjt ≥ pj/2, ∀j ∈ ü ∪ v̈

We claim that the properties hold directly from the LP solution. Note the fact that no
time mark occurs in interval (s1, t−1) and (t, s2), hence x([s1, t−1]) ≤ 0.5, x([t, s2]) ≤ 0.5
and x(Bt \ t) ≤ 1. As time slot t is a doubleton, at most two time marks occurs in Bt

(regardless of interval endpoints), hence x(Bt) ≤ 1.5. Since job j ∈ ü∪v̈ is fully contained
in interval Bt (i.e. (rj, dj] ⊆ Bt), we have pj ≤ x(Bt), i.e. pj = 1. Moreover, due to
the fact that jobs ü, v̈ either have release time t − 1 or deadline t, interval (rj, dj) \ t is
contained either in interval (s1, t − 1) or (t, s2), hence, yj(Bt \ t) ≤ 0.5, which implies
yjt = pj − yj(Bt \ t) ≥ 0.5. Consequently, both properties hold directly from LP solution.
Later on in Section 4, we will split some jobs so that the split jobs also conform to the
above two properties.

Let ψ = (u+ u)− (v + v) and λ1 = v + β − u, λ2 = u+ β − v.
We claim that in the rounding scheme in Algorithm 1, the additional time slot t′ is not

included in Γ. If ψ > 0 we have (u+ u) ≥ ψ > 0, hence ü 6= ∅, i.e. s1 < t− 1. Therefore,

6

Algorithm 1 Rounding Scheme

for each: t ∈ Γ
1: Open time slot t
2: if t is a doubleton then

3: Identify jobs ü, v̈, ä, b̈, c̈, ë and compute ψ as described earlier.
4: Open slot t′ = t− 1 if ψ > 0.
5: Open slot t′ = t+ 1 if ψ < 0.
6: Open a random slot t′ from {t− 1, t+ 1} \ Γ if ψ = 0.
7: end if

8: Call procedure JobAssignment

9: procedure JobAssignment

10: if t′ = t− 1 then

11: Assign fractional workload λ1 → t, a+ c→ t′.
12: Assign yj(Bt) into slots t, t′ whenever it is feasible, for each job j ∈ ü.
13: else if t′ = t + 1 then

14: Assign fractional workload λ2 → t, b+ c→ t′.
15: Assign yj(Bt) into slots t, t′ whenever it is feasible, for each job j ∈ v̈.
16: else

17: Assign fractional workload ỹ(Bt) into slot t.
18: end if

19: end procedure

t − 1 6∈ Γ. Similarly, we have t + 1 6∈ Γ if ψ < 0 due to (v + v) ≥ −ψ > 0. Moreover,
if {t − 1, t + 1} \ Γ = ∅, then u = u = v = v = 0, and in the rounding scheme we do
not open any additional time slot in this scenario; also in this case, y(Bt) can definitely
be assigned into slot t because in this case we have s1 = t − 1, s2 = t. Therefore, the
additional time slot t′ that is opened by the algorithm is not included in Γ.

Lemma 2. In Algorithm 1 when doubleton t ∈ Γ is considered, if t′ = t−1, the fractional
workload ỹ(Bt)− b is feasibly assigned into the slots t and t′. If t′ = t+ 1, the fractional
workload ỹ(Bt)− a is feasibly assigned into the slots t and t′.

We will show that Lemma 2 holds if the above two properties (P(i) and P(ii)) hold.
Since in the rounding scheme we shift the fractional workload of jobs ü (or v̈) from time
slot t to t′, we have to guarantee that the workload assigned to t′ for each of these jobs is
no more than 1, hence the first property is necessary. The second property will guarantee
that one of the two shifting strategies is feasible for time slot t.

Now, we are ready to prove Lemma 2.

Proof of Lemma 2. In the assignment of the rounding scheme, we never assign a job
outside its window, i.e. jobs ä, c̈ can be scheduled in time slot t− 1 and jobs b̈, c̈ can be
scheduled in time slot t+ 1. From the LP solution, we have

a + b+ c ≤ g · x(Bt \ t) ≤ g (6)

β ≤ g · xt ≤ g (7)

7

Next, we show that the total workload that is assigned to each of the time slots t and t′

is at most g. Using property P(ii), we have

λ1 + λ2 = 2β + (u+ v)− (u+ v) ≤ 2β ≤ 2g

Hence, min{λ1, λ2} ≤ g. Also, we have that λ2 − λ1 = ψ. If ψ ≥ 0, we have λ1 =
min{λ1, λ2} ≤ β ≤ g and if ψ ≤ 0 we have λ2 = min{λ1, λ2} ≤ β ≤ g. Therefore,
the total fractional workload that is assigned to slot t is at most g. Moreover, the total
fractional workload that is assigned to slot t′ is at most g by inequality (6). We prove the
lemma for the case t′ = t− 1, as a symmetric argument can be constructed for the other
case of t′ = t+1. We claim that the assignment in both time slots t, t′ is feasible, without
considering jobs ü. Combining with the fact that yj(Bt \ t) ≤ x(Bt \ t) ≤ 1, ∀j ∈ J ,
the assignment in slot t′ (a + c → t′) is feasible. Also, by property P(i), jobs ü, v̈ have
processing time at most 1, therefore, the assignment in slot t (λ1 → t) is feasible. The
claim holds. Finally, for jobs ü, in the rounding scheme we assign them into time slots
t, t′ whenever feasible. Because y(Bt) ≤ g · x(Bt) ≤ 1.5g and we opened two time slots
t, t′ in interval Bt, the assignment is feasible for jobs ü.

One may wonder why the workload a is not assigned in the case t′ = t+1, as we have
just proved that there is enough capacity in slots t and t+ 1. The issue is that for a job
j in ä, yj(Bt) > 1 is possible, and only time slot t is available for such a job. A similar
issue happens to b in the case t′ = t− 1.

The above rounding scheme is the basis for the final rounding algorithm and the
process in one phase is independent of another (recall that in each phase, just one time
slot t ∈ Γ is considered), however, it does not work directly. This is because the remaining
fractional workload a or b may not be assigned in any phase, and also it could happen
that the additional time slot t′ is opened twice in two different phases. For the former
case, we identify such situations (so-called “unlucky” jobs) and propose a job splitting
method to adjust the rounding scheme and guarantee a feasible assignment. For the
latter case, we propose a generalized rounding approach, which particularly identifies the
doubletons that might cause reopening; this happens because of the so-called “bad” jobs.
These doubletons are partitioned into so-called “doubleton chains” and handled in the
next section.

4 Generalized Rounding Scheme

In this section, we propose the final rounding scheme in which all jobs are feasibly as-
signed. The scheme appears later in Algorithm 2, which relies on definitions we introduce
next. We introduce the concepts of unlucky jobs and doubleton chain where in the pre-
vious rounding scheme, the former might have fractional workload that is not assigned
and the latter could result in reopening time slots. In the algorithm, we propose a job

splitting approach to obtain a feasible assignment for unlucky jobs. Moreover, we propose
a new approach to open additional time slots for the doubleton chains.

Definition 4 (Unlucky Job). Job j ∈ J is called unlucky if dj − rj ≥ 3 and both time
slots rj + 1 and dj are doubletons such that Γ ∩ Ij = {rj + 1, dj}.

Note that the definition of unlucky job is based on LP solution.

8

Definition 5 (Job Splitting). A job splitting process of an unlucky job j is a process that
replaces job j by two jobs j1, j2 such that jobs j1, j2 have job windows (rj , dj−1], (rj+1, dj]
respectively and pj1 + pj2 = pj with pj1 = α1

α1+α2
if pj = 1 and otherwise pj1 = 1, where

α1 = yj([rj, rj + 1]) and α2 = yj([dj − 1, dj]). Moreover, the fractional workload of job j
during time interval (rj , t

′] (resp. (t′, dj]) in the LP solution belongs to job j1 (resp. j2),
where t′ is the earliest time such that yj([rj, t

′]) = pj1 . (Note that rj + 1 ≤ t′ ≤ dj − 1,
and thus this fractional workload is inside a job’s window).

In the following, we use split jobs to indicate the job set in which all the unlucky
jobs are split (and other jobs remain unchanged). By applying splitting process for an
unlucky job j, the two split jobs j1, j2 are categorized into job set v̈ (resp. ü) when the
rounding scheme processes the doubleton rj + 1 (resp. dj). The reason we use splitting
is that, intuitively, Lemma 2 handles the jobs in ü and v̈ better than the jobs in ä and
b̈. The generalized rounding scheme only considers the split jobs. This means that ỹ()
in Definition 2 is adjusted to use the split jobs in the definition instead of the original
(before split) jobs.

Lemma 3. For each unlucky job j, we have pj ≤ 2 and properties P(i) and P(ii) hold
for both jobs j1, j2 after splitting.

Proof. Since Γ ∩ Ij = {rj + 1, dj} by definition, no time mark occurs in interval (rj +
1, dj − 1), hence we have x([rj +1, dj − 1]) ≤ 0.5, which implies that x([rj , dj]) ≤ 2.5. As
a result, pj ≤ 2. If pj = 2, we have α1+α2 ≥ pj −x([rj +1, dj−1]) ≥ 1.5. Also note that
pj1 = pj2 = 1 by definition of splitting process. Because α2 ≤ 1, we have α1 ≥ 0.5, and
symmetrically α2 ≥ 0.5. Otherwise pj = 1. Since α1 + α2 ≥ pj − x([rj + 1, dj − 1]) ≥ 0.5,
we have pj1 =

α1

α1+α2
≤ 2α1 and pj2 = 1− α1

α1+α2
= α2

α1+α2
≤ 2α2. In either case, properties

P(i) and P(ii) hold for jobs j1, j2.

Definition 6 (Doubleton Chain). A set of doubletons C = {t0, t0 + 2, ..., t0 + 2l} with
t0 ∈ Γ, l ∈ N is called doubleton chain if {t0, t0 + 1, ..., t0 + 2l} ∩ Γ = C. Moreover, C is
called critical if there exists no doubleton chain C ′ such that C ⊂ C ′.

t1 t2 t3 tk tk+1 tm

s1 s2
... ...

Figure 2: Doubleton chain

See Figure 2 for an illustration of doubleton chain. We first identify the critical
doubleton chains from the LP solution, and for each critical doubleton chain we apply a
recursive rounding scheme (describe later) to open the time slots and obtain assignment
of the split jobs. Meanwhile, for the singletons, we stick to the same rounding scheme
as Algorithm 1. Note that a doubleton chain could possibly contain only one doubleton.
We will guarantee that in the generalized rounding scheme, no time slot is opened twice
and the obtained assignment is feasible for the split jobs, as well as the original jobs.

Now, we introduce the generalized rounding scheme for a doubleton chain. Let C =
{t1, t2, ..., tm} be a doubleton chain of m (m ≥ 1) doubletons (so, for 1 ≤ i ≤ m, we have

9

ti = t1 + 2(i − 1)), and I = (s1, s2] be the union of blocks of these m doubletons (see
also Figure 2). The goal is to open an additional time slot for each doubleton from C so
that each additional time slot is opened only once and the fractional workload ỹ(I) can
be feasibly assigned into the opened time slots. Similarly, we ignore any job j such that
C ∩ Ij = ∅ and yj(I) > 0, since for this job either rj ≥ tm or dj ≤ t1− 1 and the interval
I ∩ (rj , dj] must be covered by another block.

From the definition of a doubleton chain, we have the following Fact.

Fact 7. x([s1, t1 − 1]) ≤ 0.5, x([tm, s2]) ≤ 0.5 and x([ti, ti + 1]) ≤ 0.5, ∀i ∈ [1, m].

After this paragraph, we assume s1 < t1 − 1, s2 > tm as the other cases are easy, as
shown below. If s1 = t1 − 1, we open the additional time slots {ti + 1 | ti + 1 ≤ s2, i ∈
[1, m]}. Note that the whole interval (s1, tm] is completely active. For interval (tm, s2],
if s2 > tm we assign all the corresponding fractional workload during interval (tm, s2] to
time slot tm + 1; this assignment is feasible due to Fact 7. Symmetrically, if s2 = tm,
another easy solution can be constructed.

We start from a critical double chain C, and reduce to sub-problem by reducing the
length of the doubleton chain and making partial assignment in some blocks. In the
beginning of each iteration, we maintain the invariant that time slots t1 − 1 and tm + 1
have not been opened and apply one of the following operations.

Definition 8. The two operations we use for opening additional time slots when pro-
cessing a doubleton chain are:

• Option 1: open additional time slot ti + 1 for each i ∈ [1, m].

• Option 2: select k ∈ [1, m], open additional time slot ti − 1 for each i ∈ [1, k] and
reduce to the sub-problem with doubleton chain {tk+1, tk+2, ..., tm}.

Before we describe the process of choosing from the above two options, we introduce
necessary definitions related to certain unlucky jobs that we call “bad”, as the choice
highly depends on bad jobs.

Definition 9. A job j is called bad if it is an unlucky job with dj − rj = 3, pj = 2. For
doubleton ti, i ∈ [1, m], let ḧi be the set of bad jobs who have release time ti − 1. Recall
the definition of ü in Definition 3, we use a similar notation üi (resp. v̈i, äi, b̈i, c̈i,) with
respect to the doubleton ti for the split jobs. Moreover, when we split a bad job from
ḧi, let ḧ

+
i and ḧ−i be the sets containing the two split jobs respectively. Let h+i (resp.

h−i) be the total fractional workload of the split jobs ḧ+i in slot ti (resp. ti+1), in other

words, h+i =
∑

j1∈ḧ
+

i
yj1(ti) and h

−
i =

∑

j2∈ḧ
−

i
yj2(ti+1). And let h+i = (

∑

j1∈ḧ
+

i
pj1) − h

+
i

and h−i = (
∑

j2∈ḧ
−

i
pj2)− h

−
i .

See Figure 3 for an illustration. Note that by definition of the splitting process, we
have ḧ+i ⊆ v̈i, ḧ

−
i ⊆ üi+1. Also note that for an unlucky job which is not a bad job, set

üi already contains the corresponding split job. Moreover, since time slot tm is the last
time slot of a critical doubleton chain, we have ḧm = ∅.

Fact 10. For each i ∈ [1, m], we have max{h−i , h
+
i } ≤ min{h+i , h

−
i }.

10

ti

h+

i h+

i

h−
i

h−
i

ti+1
ti + 1

j

j2

j1

üi

v̈i

üi+1

v̈i+1

Figure 3: Illustration of Definition 9. As before, doubletons are depicted by solid bars,
and jobs are represented by horizontal thinner lines. Bad job j covering two doubletons
ti and ti+1 is split into two jobs j1 and j2. The split job j1 belongs to job set ḧ+i , and
jobs ḧ+i is part of v̈i, i.e. j1 ∈ ḧ

+
i ⊆ v̈i. Similar for split job j2 that j2 ∈ ḧ

−
i ⊆ üi+1.

Proof. Given a bad job j ∈ ḧi, let j1, j2 be the two jobs after splitting. Recall that
pj = 2, pj1 = pj2 = 1. By property P(ii), we have yj1(ti) ≥ 0.5 and yj2(ti+1) ≥ 0.5, which
implies yj1(ti + 1) ≤ 0.5 and yj2(ti + 1) ≤ 0.5. Hence, by summing up this over the bad
jobs of ḧi, we get that the fact is true.

Definition 11. Given a constant ω ∈ [0, 1], a forward shifting process of a bad job j ∈ ḧi
is a process that moves an amount of ω · yj1(ti) workload from time slot ti into time slot
ti +1 and moves an amount of ω · yj2(ti +1) workload from time slot ti +1 into time slot
ti+1, i.e. ω · yj1(ti)→ ti +1, ω · yj2(ti +1)→ ti+1. Similarly, a backward shifting process is
defined as ti ← ω · yj1(ti+1), ti+1← ω · yj2(ti+1), which is the reverse of forward shifting
process.

In the forward shifting process of a bad job j, the total amount of workload assigned
to time slot ti + 1 of job j is at most 1 for any ω ∈ [0, 1], that is

yj1(ti + 1) + ω · yj1(ti) + (1− ω) · yj2(ti + 1) ≤ yj1(ti + 1) + yj1(ti) = 1 (8)

The inequality holds due to the fact that, using Fact 7 and Property P(ii), yj2(ti +
1) ≤ x([ti, ti + 1]) ≤ 0.5 ≤ yj1(ti). Therefore, the new assignment of job j in time slot
ti + 1 is feasible. Also, shifting does not lead to the after-shifting yj2(ti+1) > 1, since
yj2(ti + 1) + yj2(ti+1) = pj2 = 1. A similar argument can be constructed to show that
after the backward shifting process of a bad job j, the new assignment is also feasible for
job j. That is (1− ω)yj1(ti +1)+ yj2(ti +1) +ω · yj2(ti+1) ≤ 1. (We will consider the LP
constraints 2 later, in lemmas 5 and 6).

Consider Option 1 from Definition 8, in order to make jobs ü1 feasible, we have to
assign the fractional workload u1 into time slot t1 and hence shift some fractional workload
of jobs v̈1 from time slot t1 into time slot t1 + 1. Specifically, for jobs v̈1, we first shift
the fractional workload of jobs v̈1 \ ḧ

+
1 and then jobs ḧ+1 . For each job of ḧ+1 , we apply

the forward shifting process with gradually increasing parameter ω from 0 to 1 such that
a total amount of u1 − (v1 − h+1) workload of jobs of ḧ+1 is shifted out of time slot t1
(recall that ḧ+i ⊆ v̈i and therefore h+1 is “included” in v1). Then for doubleton t2, since
some workload of jobs of ḧ−1 is shifted into time slot t2, we again need to shift some
fractional workload of jobs of v̈2 (which includes ḧ+2) out of time slot t2. We continue
such shifting process until at some time slot tk (1 ≤ k ≤ m), the fractional workload vk

11

is not enough to compensate for the incoming workload that is shifted into time slot tk,
or all the workload u1 are shifted. If the former occurs, we then show that Option 2 from
Definition 8 is feasible, by applying backward shifting from time slot tk to t1. If the latter
occurs, we take Option 1 from Definition 8 and shift the workload from t1 to tk as above.

Definition 12. A path is a vector 〈q1, q2, ..., qk〉 with k ∈ [1, m] and qi ∈ R≥0, i ∈ [1, k]
such that

q1 ≤ u1

∀1 ≤ i < k, qi+1 =

{

(qi − (vi − h
+
i)) · h

−
i /h

+
i , if (vi − h

+
i) < qi

0 , otherwise
∀1 ≤ i ≤ k, qi ≤ vi

A path 〈q1, q2, ..., qk〉 defines a way to transfer a portion of workload of u1 into time slot
tk via the forward shifting process and qi indicates the amount of workload shifted into
time slot ti in the path. In Definition 12, the value qi+1 in a path is always properly defined
as long as the last constraint holds, i.e. qi ≤ vi. This is true because qi − (vi − h

+
i) > 0

implies h+i > vi− qi ≥ 0, hence the term h−i /h
+
i is properly defined. Part of the following

lemma is used as a procedure in Algorithm 2.

Lemma 4. Let P = 〈q1, q2, ..., qk〉 be a path with q1 = u1, k = m, and let Q =
〈q′1, q

′
2, ..., q

′
k〉 be a path with 1 ≤ k ≤ m, q′k = vk, then path P exists or path Q ex-

ists. Moreover, path Q with length k (if exists) can be computed in O(k) operations, and
path P (if exists) can be computed in O(m) operations.

Proof. Consider the process of constructing a path with q1 = u1, let k be the largest
integer with 1 ≤ k ≤ m such that ∀1 ≤ i < k, qi ∈ (vi − h

+
i , vi], qi+1 = (qi − (vi − h

+
i)) ·

h−i /h
+
i . If qk ∈ (vk − h

+
k , vk], we have k = m as otherwise k is not the largest integer as

defined, therefore, we take path P to be 〈q1, q2, ..., qk〉 and it is properly defined. If qk ≤
vk−h

+
k , then path P exists as the next term qk+1 equals 0 according to Definition 12, and

we could always extend the path by adding zero terms. Otherwise, qk > vk. Obviously,

we have 1 ≤ i < k, h−i > 0, h+i > 0 as qk > 0. Consider path 〈q′1, q
′
2, . . . , q

′
k〉 where

∀1 ≤ i ≤ k, q′i = qi − (qk − vk)
∏k−1

i′=i h
+
i′ /h

−
i′ (the product, as usually, is taken to be

1 when i = k). Note that ∀1 ≤ i < k, q′i+1 − qi+1 = (q′i − qi) · h
−
i /h

+
i < 0, and also

q′i+1 = (q′i − (vi − h+i)) · h
−
i /h

+
i . As a result, path 〈q′1, q

′
2, ..., q

′
k〉 is a valid path and

q′k = vk, hence we take it as path Q. As a consequence, path P can be computed in O(m)
operations, and path Q can be computed in O(k) operations.

In the generalized rounding scheme, if path P exists, we take Option 1 from Defini-
tion 8, otherwise path Q exists, we take Option 2 from Definition 8, with value k. We
prove in lemmas 5 and 6 that for both options, a feasible assignment exists. As an aside,
when m = 1, path P with q1 = u1 exists if u1 ≤ v1, and path Q exists otherwise. The
options taken are not the same as those in Algorithm 1, but are closely related and one
can reprove Lemma 2 with both of these options.

Fact 13. Given a path 〈q1, q2, ..., qk〉, we have qi ≥ qi+1, ∀1 ≤ i < k.

12

Algorithm 2 Generalized Rounding Scheme

1: Open all time slots in Γ
2: Γs ← collection of singletons
3: C ← collection of critical doubleton chains
4: for t ∈ Γs do

5: Assign fractional workload ỹ(Bt) into slot t.
6: end for

7: for C ∈ C do ⊲ doubleton chain C
8: while C 6= ∅ do
9: C ← AssignmentPath(C)
10: end while

11: end for

12: procedure AssignmentPath(C = {t1, t2, ..., tm})
13: if Path P exists then ⊲ Lemma 4
14: Open time slots {t1 + 1, t2 + 1, ..., tm + 1}
15: Do assignment(P) ⊲ Definition 14
16: Return ∅
17: else

18: Obtain Path Q = 〈q1, q2, ..., qk〉. ⊲ Lemma 4
19: Open time slots {t1 − 1, t2 − 1, ..., tk − 1}
20: Do assignment(Q) ⊲ Definition 15
21: Return {tk+1, tk+2, ..., tm}
22: end if

23: end procedure

13

Proof. ∀1 ≤ i < k, if h+i = 0, we have qi− (vi−h
+
i) ≤ 0, i.e. qi+1 = 0. Hence, if qi+1 > 0,

there must be qi− (vi−h
+
i) > 0 and h+i > 0. Therefore, qi+1 = (qi− (vi−h

+
i)) ·h

−
i /h

+
i ≤

qi − (vi − h
+
i) ≤ qi due to h−i ≤ h+i in Fact 10 (recall also that ḧ+i ⊆ v̈i and therefore

h+i ≤ vi).

The following definition is used as a procedure in Algorithm 2. Recall that I = (s1, s2]
is the union of blocks of the m doubletons (see also Figure 2).

Definition 14. Given path P = 〈q1, q2, ..., qk〉 with q1 = u1 and k = m, we open time
slots {t | t1 ≤ t ≤ tm + 1, t ∈ N} and let assignment(P) be the assignment of fractional
workload ỹ(I) obtained by applying the following process on the LP solution.

i. For each ti, i ∈ [1, m], we move zi amount of fractional workload of jobs v̈i \ ḧ
+
i

from time slot ti into time slot ti + 1 where zi = min{qi, vi − h
+
i }.

ii. For each ti, i ∈ [1, m), for each bad job j ∈ ḧi, apply the forward shifting process

with parameter ωi where ωi =
qi−(vi−h+

i)

h+

i

if qi− (vi−h
+
i) > 0, and otherwise ωi = 0.

Note that ωi ≤ 1 since qi ≤ vi in Definition 12.

iii. assign u1 → t1, y
′([s1, t1 − 1])− u1 − a1 → t1 + 1, y′([tm, s2])→ tm + 1 . Here y′()

excludes from y() the fractional workload of y(I) that does not count for ỹ(I).

Lemma 5. If path P exists, in assignment(P) the fractional workload ỹ(I) − a1 is
feasibly assigned into time slots {t | t1 ≤ t ≤ tm + 1, t ∈ N}.

Proof. Recall that we ignore any job j such that C ∩ Ij = ∅, yj(I) > 0, as such a job does
not contribute to ỹ(I). Due to the fact that jobs in ü1 and ä1 have the same deadline
t1, any job j that contributes to the fractional workload y′([s1, t1 − 1]) − u1 − a1 must
have deadline larger than t1, hence j can be assigned into time slot t1+1. Also note that
q1 = u1 ≤ x([s1, t1 − 1]) · g ≤ 0.5g by Fact 7.

We claim that the total workload assigned to each time slot ti, i ∈ [1, m] remains the
same. According to the first two steps in Definition 14, the workload shifted out of time
slot ti equals zi + ωi · h

+
i ∀i ∈ [1, m], which equals qi. Moreover, the workload shifted

into time slot ti+1, ∀i ∈ [1, m) equals ωi · h
−
i , which equals qi+1 by the definition of path

P . Combining with the fact that q1 = u1 is the amount of workload shifted into time
slot t1, the total amount of workload that is shifted in and out of time slot ti equals qi,
∀i ∈ [1, m], hence, the claim is true.

Next we claim that for each additional time slot ti + 1, i ∈ [1, m], the total workload
assigned in ti + 1 is no more than g (thus fulfilling the LP constraints 2). For time slot
t1 + 1, as argued earlier the total workload shifted from time slot t1 into t1 +1 equals q1,
which equals u1. Moreover, in the last step in Definition 14, we assign at most y′([s1, t1−
1])−u1−a1 workload into time slot t1+1. Hence in total the workload assigned into time
slot t1+1 is at most y′([s1, t1−1])−a1+y([t1, t1+1]) ≤ g ·x([s1, t1−1])+g ·x([t1, t1+1]) ≤ g
due to Fact 7. Moreover, note that we have qi+1 ≤ qi, i ∈ [1, m) (Fact 13). Therefore,
the increase of workload during time slot ti + 1, ∀i ∈ (1, m] is no more than q1, which is
at most 0.5g. Then we conclude that the total workload assigned in each additional time
slot ti + 1, i ∈ [1, m] is at most g.

14

Finally, using the definition of the forward shifting process (precisely, Equation (8)
and the discussion that follows it), and the fact that jobs in v̈i \ ḧ

+
i have processing time

at most 1, for each job j ∈ J , for each time slot t, t1 ≤ t ≤ tm + 1, the total workload of
job j that is assigned into t is at most 1. With this, the lemma is proved.

Now we consider the opposite case where path Q as in Lemma 4 exists. The following
definition is used as a procedure in Algorithm 2.

Definition 15. Given path Q = 〈q′1, q
′
2, ..., q

′
k〉 with 1 ≤ k ≤ m, q′k = vk, let vector

Q̂ = 〈q̂1, q̂2, ..., q̂k〉 where q̂i = 0, ∀1 ≤ i ≤ k if vk = 0, otherwise

q̂k = vk
q̂i = q̂i+1 · h

+
i /h

−
i , ∀1 ≤ i < k

We open time slots {t | t1− 1 ≤ t ≤ tk, t ∈ N} and let assignment(Q) be the assignment
for fractional workload ỹ(I ′) obtained by applying the following process on the LP solution
where I ′ = (s1, tk + 1].

i. For time slot t1, we move q̂1 amount of fractional workload of jobs ü1 from time
slot t1 into time slot t1 − 1.

ii. For each ti, i ∈ [1, k), for each bad job j ∈ ḧi, apply the backward shifting process
with parameter ωi where ωi =

q̂i+1

h−

i

. We prove that ωi ≤ 1 after the definition.

iii. assign vk → tk, y(tk+1)−vk− bk → tk−1, y′([s1, t1−1])→ t1−1. Here, as before,
y′() excludes from y() the fractional load of y(I) that does not count for ỹ(I).

Note that indeed ωi ≤ 1, since as shown in the next lemma, q̂i ≤ q′i, ∀1 ≤ i ≤ k, and

if q′i+1 > 0, then (from Definition 12) q′i+1 = (q′i − (vi − h
+
i)) · h

−
i /h

+
i . Now, q

′
i ≤ vi (also

from Definition 12) and therefore (q′i − (vi − h
+
i)) · h

−
i /h

+
i ≤ h−i . Finally, h−i ≤ h−i from

Fact 10. We conclude that q̂i+1 ≤ h−i , and therefore ωi ≤ 1.

Lemma 6. If path Q exists, in assignment(Q) the fractional workload ỹ(I ′) − bk is
feasibly assigned into time slots {t | t1 − 1 ≤ t ≤ tk, t ∈ N} where I ′ = (s1, tk + 1].

Proof. First, we claim that q̂i ≤ q′i, ∀1 ≤ i ≤ k. Indeed, for path Q, it follows from
Fact 13 that q′i ≥ q′i+1, ∀1 ≤ i < k. If vk = 0, then vk = 0 by Property P(ii) and therefore
q̂i = 0 for 1 ≤ i ≤ k, and the claim follows. Otherwise, vk > 0 and therefore q′k > 0.
Since q′k > 0, we have ḧi 6= ∅, ∀i ∈ [1, k) as otherwise q′i+1 = 0 by the definition of path

Q. In path Q̂, we have q̂i ≤ q̂i+1, ∀1 ≤ i < k due to h+i ≤ h−i from Fact 10. Moreover, in
time slot tk, we have q̂k = vk ≤ vk = q′k due to vk ≤ vk. Therefore, the claim is true. As
a result, we have q̂1 ≤ q′1 ≤ u1 ≤ u1.

Then we claim that the total workload assigned to each time slot ti, i ∈ [1, k] remains
the same. According to the second step in Definition 15, for each i ∈ [1, k), the workload
shifted out of time slot ti+1 equals ωi · h

−
i during the backward shifting process, which

equals q̂i+1. Moreover, the workload shifted into time slot ti equals ωi · h
+
i , which equals

q̂i by definition of vector Q̂. Therefore, the total amount of workload that is shifted in
and out of time slot ti equals q̂i, ∀i ∈ [1, k]. Hence, the claim is true.

15

Finally, using q̂i ≤ q′i ≤ q′1 ≤ u1 ≤ 0.5g, a similar argument as in the proof of Lemma 5
could be constructed to show that the fractional workload ỹ(I ′)− bk is feasibly assigned
into time slots {t | t1 − 1 ≤ t ≤ tk, t ∈ N}.

As a consequence, the recursive rounding scheme either assigns the workload ỹ(I)−bm
or ỹ(I)− a1 into the opened time slots.

Lemma 7. For each job j ∈ J , all the fractional workload of j is assigned in the gener-
alized rounding scheme (Algorithm 2).

Proof. Suppose for a contradiction that interval I ′ is the biggest interval such that there
exists a job j ∈ J and the positive workload yj(I

′) is not assigned at all. Then combining
with Lemma 5 and 6, the interval I ′ must be the gap between two consecutive time slots
from Γ, i.e. I ′ = (t′1, t

′
2 − 1] where time slots t′1 ∈ Γ, t′2 ∈ Γ and t′2 − t

′
1 > 1 (the cases

t′1 = 0 or t′2 − 1 = T are handled by the same arguments). We have rj < t′2 − 1 and
dj > t′1. If dj > t′2, the workload yj(I

′) must be assigned when we process the time slot
t′2 since rj < t′2 − 1 < t′2 < dj, either in the process of a doubleton chain containing t′2
or in the process of a singleton t′2. Therefore, we have dj ≤ t′2. A symmetric argument
can be constructed to show that rj ≥ t′1 − 1. Note the fact that x(I ′) ≤ 0.5. Hence, if
rj > t′1 − 1 we have dj = t′2 and if dj < t′2 we have rj = t′1 − 1, in either case yj(I

′) must
be assigned, since in this scenario job j will not be categorized into job set ä (resp. b̈).

Then we discuss the final case where rj = t′1 − 1, dj = t′2. If either t′1 or t′2 is a
singleton, yj(I

′) must be assigned in Step 4 of Algorithm 2. Otherwise if both t′1 and t′2
are doubletons, then job j is a unlucky job. We have shown in the generalized rounding
scheme that the split jobs of an unlucky job are categorized into job set v̈ (resp. ü) when
the rounding scheme processes the doubleton t′1 (resp. t′2), and hence yj(I

′) is assigned,
which is a contraction.

Running Time Analysis We assume there are efficient algorithms to obtain the opti-
mal LP solution, in this part we only discuss the running time of the rounding algorithm
(Algorithm 2). We will only focus on the necessary operations to open the time slots,
while the final job assignment can be obtained by applying max-flow algorithm over the
active time slots. The job assignment in the algorithm is only for analysis of correctness
and feasibility.

It takes O(T) operations to identify all time marks, singletons, doubletons, blocks,
critical doubleton chains. It takes O(1) operations to identify whether a job is an unlucky
job and split an unlucky job, and it takes O(n) time to identify jobs ü, v̈ for all doubletons
since for all these jobs either their release times or deadlines are equal to the endpoints
of a doubleton. Job sets ä, b̈, c̈, ë can be ignored as they does not affect the decision
of opening time slots. Moreover, for each set ü, it takes O(|ü|) operations to compute
the values u and u (analogous for job sets v̈), where for each job in ü it takes O(1)
operations correspondingly. For each critical doubleton chain with m time slots, it takes
O(k) operations to obtain a path Q with length k < m (if exists) and O(m) operations
to obtain a path P (if exists), that is to say, it takes O(m) operations in total to identify
all paths Q. Therefore, each critical doubleton chain needs O(m) operations.

In conclusion, the rounding algorithm takes O(n + T) operations to obtain active
time slots. As a comparison, the algorithm needs to invoke max-flow algorithm only once

16

to get job assignment, while the previous algorithm [4] needs to invoke many times of
max-flow algorithm, depending on the active time slots. Also, our rounding algorithm
can be easily parallelized since the rounding scheme for each block of singleton or critical
doubleton chain is independent of another, while in the previous method the decision at
time slot t relies on the decision of earlier time slots.

The algorithm is indeed a 2-approximation algorithm due to the fact that we open at
most as many time slots as the total number of time marks.

New Linear Programming Formulation In this part, we show a new linear pro-
gramming formulation by adding extra necessary constraints in the original LP rounding
formulation.

Definition 16. Given an interval I = (t1, t2] with t1 ∈ T , t2 ∈ T , for each job j ∈ J , let
pj(I) = max{0, pj − |(rj , dj] \ I|}, where |(rj, dj] \ I| indicates the length of (rj, dj] \ I (if
nonempty, the set (rj , dj] \ I consists of one or two intervals).

The value pj(I) indicates the minimum amount of workload of job j that has to be
assigned during interval I in a feasible schedule, providing that every time slot outside I
is already active. Then we add the following constraints (valid for any integral solution)
into the existing LP formulation and obtain a new LP formulation:

∑t2

t=t1+1
xt ≥

⌈

∑

j∈J pj(I)

g

⌉

, I = (t1, t2], t2 > t1, ∀t1 ∈ T , ∀t2 ∈ T

We conjecture that the new LP formulation has integrality gap 5
3
, while the existing

LP is known to have an integrality gap that converges to 2 for large g and |J |.
In the following, we give an example achieving integrality gap 5

3+2/g
. Consider the

set of jobs where we have g jobs with release time 0, deadline 2 and processing time 1,
another g jobs with release time 5, deadline 7 and processing time 1 and finally one job
with release time 1, deadline 6 and processing time 3. One relaxed linear programming
solution is x2 = x4 = x6 = 1 and x1 = x7 = 1/g. One can verify that the integer
linear programming solution has to open 5 time slots, therefore the lower bound on the
integrality gap is 5

3+2/g
.

References

[1] Hrishikesh Amur, James Cipar, Varun Gupta, Gregory R Ganger, Michael A Kozuch,
and Karsten Schwan. Robust and flexible power-proportional storage. In Proceedings

of the 1st ACM symposium on Cloud computing, pages 217–228. ACM, 2010.

[2] Gruia Calinescu, Chenchen Fu, Minming Li, Kai Wang, and Chun Jason Xue. En-
ergy optimal task scheduling with normally-off local memory and sleep-aware shared
memory with access conflict. IEEE Transactions on Computers, (1):1–1, 2018.

[3] Jessica Chang, Harold N. Gabow, and Samir Khuller. A model for minimizing active
processor time. Algorithmica, 70(3):368–405, 2014.

17

[4] Jessica Chang, Samir Khuller, and Koyel Mukherjee. LP rounding and combinatorial
algorithms for minimizing active and busy time. J. Scheduling, 20(6):657–680, 2017.

[5] Lester Randolph Ford and Delbert R Fulkerson. Maximal flow through a network.
Canadian journal of Mathematics, 8:399–404, 1956.

[6] Saurabh Kumar and Samir Khuller. Brief announcement: A greedy 2 approximation
for the active time problem. 2018.

18

	Introduction
	Formulation
	LP Rounding
	Generalized Rounding Scheme

