
T-joins in Strongly Connected Hypergraphs

G. Calinescu ∗

Abstract

Given an edge-weighted undirected hypergraph K = (VK , EK) and an even-sized set of

vertices R ⊆ VK , a T-cut is a partition of VK into two parts Q and Q̄ := VK \Q such that |Q∩R|
is odd. A T-join in K for R is a set of hyperedges M ⊆ EK such that for every T-cut (Q, Q̄) there

is a hyperedge e ∈ M intersecting both Q and Q̄.

A directed hypergraph has for every hyperedge exactly one vertex, called the head, and several

vertices, that are tails. A directed hypergraph is strongly connected if there exists at least one

directed path between any two vertices of the hypergraph, where a directed path is defined to

be a sequence of vertices and hyperedges for which each hyperedge has as one of its tails the

vertex preceding it and as its head the vertex following it in the sequence. Orienting an undirected

hypergraph means choosing a head for each hyperedge.

We prove that every edge-weighted undirected hypergraph that admits a strongly connected

orientation has a T-Join of total weight at most 7/8 times the total weight of all the edges of the

hypergraph, and sketch an improvement to 4/5. We also exhibit a series of example showing that

one cannot improve the constant above to 2/3 − ǫ.

keywords: weighted hypergraph, directed hypergraph, T-join, T-cut

1 Introduction

Given an edge-weighted hypergraph K = (VK , EK) and an even-sized set of vertices R ⊆ VK , a

T-cut is a partition of VK into two parts Q and Q̄ := VK \ Q such that |Q ∩ R| is odd. A T-join in K
for R is a set of hyperedges M ⊆ EK such that for every T-cut (Q, Q̄) there is a hyperedge e ∈ M
intersecting both Q and Q̄; such an hyperedge is said to cross the T-cut. See Figure 1 for intuition.

A minimum-weight T-join can be computed in polynomial-time if K is a graph (Chapter 29 of

[9]). The generalization of Minimum Weight Graph T-join to hypergraphs, which we call Hypergraph

T-join, is however NP-hard (Section 2).

A directed hypergraph has for every hyperedge exactly one vertex, called the tail, and several

vertices, that are heads (to avoid having to rewrite most of the paper, we reverse the standard tail-

head notation from the abstract above or from [5]; this reversal does not affect the results). A directed

hypergraph is strongly connected if there exists at least one directed path between any two vertices

∗Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616, USA.
calinescu@iit.edu. Research supported in part by NSF grants CCF-0515088 and NeTS-0916743. Based

on results from an extended abstract published in Springer LNCS 6520: Proc. 13th International Workshop on

Approximation Algorithms for Combinatorial Optimization Problems, 67–80 (APPROX 2010).

1

x

y0 y1 y2

z0 z1

z2
u1u2

Figure 1: An example of a hypergraph T-join. R is given by the solid dark nodes. Another example

appears later in Figure 3.

of the hypergraph, where a directed path between vertices u and v is defined to be an alternating

sequence of vertices and hyperedges, starting with u and ending with v and such that each hyperedge

has as tail the vertex preceding it and as one of its heads the vertex following it in the sequence.

Orienting an undirected hypergraph means choosing a tail for each hyperedge. [5] characterizes the

undirected hypergraphs that admit strongly connected orientations.

We study the supremum, over classes of hypergraphs and all possible R, of the minimum weight

T-join divided by the weight of (all hyperedges in) the hypergraph. For (the class of) two-edge-

connected graphs, this T-ratio is known (and not too hard to prove) to be 1/2 [4].

Let K = (VK , EK) be an undirected hypergraph. A path in a hypergraph consists of an alternating

sequence of vertices and hyperedges for which each hyperedge contains the two vertices which pre-

cede and follow it in the sequence. Two vertices of K are in the same connected component if there

exists a path with the two vertices as endpoints. It is easy to see that M is a T-join in K for R if and

only if every connected component of the hypergraph (VK ,M) has an even number of vertices of R.

A hypergraph is two-edge-connected if there exist two hyperedge-disjoint paths between any two

vertices. Note that Menger’s theorem holds for hypergraphs and a hypergraph is two-edge-connected

if and only if the removal of any single hyperedge does not disconnect the graph. It is not true [5]

that every two-edge-connected hypergraph admits a strongly connected orientation (for graphs, this

property holds and is known since at least 1939 [8]). However it is easy to prove that the undirected

version of a strongly connected hypergraph is two-edge-connected.

In this paper we prove that for the class of edge-weighted undirected hypergraph that admit a

strongly connected orientation, the T-ratio is at most 7/8, and sketch an improvement to 4/5. We also

exhibit a series of example showing that the T-ratio is at least 2/3. For the class of edge-weighted

undirected hypergraphs that are two-edge-connected, we show that the T-ratio is 1.

The T-ratio for hypergraphs that admit strongly connected orientations was used by [2] to improve

the approximation ratio for a power assignment problem, described below. A submitted journal ver-

sion has an improved ratio (for the same algorithm) without using the T-ratio. In the first analysis of

this algorithm, the T-ratio plays a similar role to the often used Steiner ratio [10, 1] for Steiner Tree.

This paper still uses power assignment notation in addition to hypergraphs.

2

1.1 Power Assignment and Min-Power Strong Connectivity

Power Assignment problems take as input a directed simple graph G = (V,E) and a cost function

c : E → R+. The power of a vertex u in a directed spanning simple subgraph H of G is given

by pH(u) = maxuv∈E(H) c(uv), and corresponds to the energy consumption required for wireless

node u to transmit to all nodes v with uv ∈ E(H). The power (or total power) of H is given by

p(H) =
∑

u∈V pH(u).
The study of Power Assignment was started by Chen and Huang [3], which consider, as we do, the

case when E is bidirected, (that is, uv ∈ E if and only if vu ∈ E, and if weighted, the two edge have

the same cost; this case was sometimes called “symmetric” or “undirected” in the literature) while

H is required to be strongly connected. See also [7]. We call this problem MIN-POWER STRONG

CONNECTIVITY. We use with the same name both the (bi)directed and the undirected version of

G. Hypergraphs arise naturally for MIN-POWER STRONG CONNECTIVITY (more so than for Steiner

Tree), see Figure 2 for intuition.

x

y z

v

u

Figure 2: The arrows present a directed graph H . The rounded rectangles show an undirected hyper-

graph, obtained from H , by having a hyperedge (a subset of vertices) consisting of a vertex v ∈ V and

all u ∈ V with vu ∈ H , with the weight of a hyperedge typically being pH(v). Thus in this example,

the weights w({x, y, z}) = max(c(xy), c(xz)) and w({u, v}) = c(uv).

2 Preliminaries

In directed graphs, we use arc to denote a directed edge. In a directed graph K, an incoming arbores-

cence rooted at x ∈ V (K) is a spanning subgraph T of K such that the underlying undirected graph

of T is a tree and every vertex of T other than x has exactly one outgoing arc in T . Given an arc xy,

its undirected version is the undirected edge with endpoints x and y.

An alternative definition of MIN-POWER STRONG CONNECTIVITY (how it was originally posed)

is: we are given a simple undirected graph G = (V,E) and a cost function c : E → R+. A power

assignment is a function p : V → R+, and it induces a simple directed graph H(p) on vertex set

V given by xy being an arc of H(p) if and only if {x, y} ∈ E and p(x) ≥ c({x, y}). The problem

is to minimize
∑

u∈V p(u) subject to H(p) being strongly connected. To see the equivalence of

the definition, given directed spanning subgraph H , define for each u ∈ V the power assignment

p(u) = pH(u).
While it may be already known, it is easy to check that Hypergraph T-join is indeed NP-hard, by

a reduction from 4-D Matching (which asks if a 4-regular hypergraph K with V (K) a multiple of 4,

3

contains a perfect matching, that is, a set of disjoint hyperedges containing every vertex of the input

hypergraph; see Garey and Johnson [6] problem SP1). It is easy to check that for R = V (K), a T-join

of size at most |V (K)|/4 must be a perfect matching.

For u ∈ V and r ∈ {c(uv) | uv ∈ E}, let S(u, r) be the directed star with center u containing all

the arcs uv with c(uv) ≤ r; note that r is the power of S. For a directed star S, let E(S) be its set of

arcs and V (S) be its set of vertices. The vertices of the star other than the center are also called leafs.

For a collection A of directed stars S(ui, ri), define w(A) =
∑

S(ui,ri)∈A
ri, the total power used by

the stars in A.

Let (Sv)v∈V be the directed stars of OPT , with Sv centered at v, where OPT is the optimum

feasible solution to a MIN-POWER STRONG CONNECTIVITY instance. As an aside, this and next

section only use that OPT is feasible. Let A be collection of the stars of OPT . Let K = (VK , EK)
be the (undirected) hypergraph defined by VK = V and EK = {V (S) | S ∈ A}. Define the weight

of an hyperedge to be the power of the corresponding directed star. Recall from the introduction that,

with given R ⊆ V with |R| even, a T-cut is a partition of V into two parts Q and Q̄ := V \ Q such

that |Q ∩ R| is odd. A T-join in K for R is a set of hyperedges M ⊆ EK such that for every T-cut

(Q, Q̄) there is a hyperedge e ∈ M intersecting both Q and Q̄.

3 T-ratio in Hypergraphs that Admit Strongly Connected Orien-

tation

Before the proof of our main result, Theorem 1 below, it is instructive to see why we cannot get

a T-ratio of 1/2, as it would be if we were dealing with graphs rather than hypergraphs. Below

is a 3/5 small example: (obtained from a Power Assignment instance, see Figure 3) nine vertices

x, y0, y1, y2, z0, z1, z2, u1, u2, edges of cost 2: xy0 and xz0, edges of cost 1: y1y2, z1z2, and u1u2, and

edges of cost 0: y0y1, z0z1, y2u1, z2u1, and u2x. OPT has power 5: x has power 2 and y1, z1, and

u1 each have power 1. Thus K, obtained from OPT as above, has hyperedges of weight 0: {u2, x},

{y0, y1}, {z0, z1}, {y2, u1}, and {z2, u1}, of weight 1: {u1, u2}, {y1, y2}, and {z1, z2}, and of weight

2: {x, y0, z0}. One can check by inspection that any T-join in K for R = {x, y0, z0, u1} has weight at

least 3.

A series of examples where the ratio approaches 2/3 is given in Subsection 5.1, in the appendix.

The theorem below is proved for K obtained from OPT as at the end of the previous section.

However, the proof below never uses that OPT is an optimum. To get the theorem for an arbitrary

hypergraph K ′ that admits a strongly connected orientation, construct from K ′ a strongly connected

graph H as follows: VH = VK ′ ∪ EK ′ , and for any oriented hyperedge e of K ′, put in H arcs from e
to all of e’s heads, each with cost w(e). Also. for any vertex v of K ′, put in H arcs of cost 0 from v
to all e ∈ EK ′ such that v is the tail of e.

Use H as OPT (notice that H is strongly connected), and obtain K from OPT . Use the same

R ⊆ VK ′; this is possible since VK ′ ⊂ VK . Note that w(EK) = w(EK ′). If one takes M to be a T-join

for R in K, removes from M the hyperedges with tail a vertex of VK ′, and replaces every hyperedge

of M with tail a hyperedge e ∈ EK ′ by e, then one obtains a T-join for R in K ′ of the same weight, as

it can be easily checked. Viceversa, if one starts with a T-join for R in K ′ (which we call M ′) then one

can obtain a T-join M for R in K of the same weight as follows: put in M all the hyperedges of K
corresponding to stars of power 0 in H , and all the hyperedges of K corresponding to stars centered

4

0 1

0 1

1

0
2

2
0

0

PSfrag

x

y0 y1 y2

z0 z1

z2
u1

u2

Figure 3: All edges have their cost written: thinnest edges have cost 0, medium thick have cost 1,

and thickest edges have cost 2. Arrows indicate the optimum power assignment solution. Solid edges

give the minimum spanning tree, and its vertices of odd degree are dark solid and form the set R. An

example of a hypergraph T-join for R is given by the hyperedges represented by the three rounded

shapes.

at vertices of H that are also hyperedges e ∈ M ′, with power w(e). One can check that indeed any

connected component of the hypergraph (VK ,M) has an even number of vertices of R.

Theorem 1 For K the hypergraph obtained from strongly connected graph OPT and for arbitrary

R ⊆ V , there is a T-join in K with weight at most (7/8)w(K).

Proof. Recall that (Sv)v∈V are the directed stars of OPT , with Sv centered at v, and A is the

collection of these stars. K = (VK , EK) is the (undirected) hypergraph defined by VK = V and

EK = {V (S) | S ∈ A}. The weight of an hyperedge is the power of the corresponding directed

star. For technical reasons reset in OPT costs as follows: c(e) := p(Sv) if e has tail v. This does not

change powers or weights, since for any v, pOPT (Sv) does not change.

We do the following ear-decomposition of OPT (see Figure 4 for an illustration): start with one

arbitrary directed cycle (graph) H1 inside OPT . We will construct strongly connected Hi+1 out

of Hi, stopping only when V (Hi) = V , as follows: Since OPT is strongly connected, there exist

xi ∈ V (Hi) such that V (Sxi
) contains vertices not in Hi. Let S̃i be the maximal substar of Sxi

whose leafs are not in Hi. Let u1, u2, . . . , uki be the vertices of V (S̃i) \ {xi}. For j = 1 to ki, find a

minimal path P i
j in OPT from uj to either a vertex in Hi or a vertex on some P i

q with q < j. (strong

connectivity guarantees the existence of these paths. Intuitively, the nice thing about these paths (and

arborescences) is that their power equals their cost.) Add S̃i and Bi := ∪jP
i
j to Hi to make Hi+1. Let

ī be such that V (Hī) = V , our last subgraph H .

We have that Hi is a subgraph of OPT , but not necessarily Hi is exactly the subgraph of OPT

induced by V (Hi), as for example some uj may have two arcs of OPT going to vertices of Hi, and

only one is included in Hi+1.

Note that a vertex v has outdegree one when it joins its first Hi; we call ev the unique arc out of v
in this Hi. Also note that a v can appear as an xi at most once above (v is not used twice in this role

in the ear decomposition). Let ei be exi
(also depicted in Figure 4). For such an xi, let Ŝi = Ŝxi

be

the star that contains ei and all the arcs of S̃i.

5

u1

u2

u3

u4

ei

xi

Hi

Figure 4: The vertices of Hi, a strongly connected subgraph, are in the ellipse. We select xi to con-

struct Hi+1. S̃i is represented by thick arcs, with four leafs u1, u2, u3, u4. The path P1 is represented

by dashed arrows, P2 and P4 use solid arrows, while P3 uses dash-dots arrows. Altogether, S̃i and

these paths are added to Hi to make Hi+1.

Let Ki be the following hypergraph: V (Ki) = V (Hi) and E(Ki) consists of the undirected

version of the arcs of E(Hi) and, if i > 1, the hyperedges V (Ŝj), for 1 ≤ j ≤ i− 1.

We use recursion to obtain a T-join Jī in Kī, and an accounting scheme to prove that Jī has low

weight. When processing Hi, we are given the set Ri for which we must find a T-join Ji in hypergraph

Ki, and costs ci on the arcs of Hi; for Hī, Rī := R and cī := c. Costs ci give power function pi on

Hi, and as we will see when we set up the recursion, ci may differ from c only on arcs ej for j ≥ i,
for which ci may be 0; if the recursion picks one such an arc e of cost ci(e) = 0, then the proof (later)

makes sure that e will be removed at some point and not used in the final T-join; moreover e does not

appear in any star of Hi with more than e as arcs (as e = ev for some v).

Moreover, vertices v of V (Hi)) can each have debt: debt i(v), where debt ī(v) = 0 for all v ∈ V .

For Ki, the weight wi of a hyperedge is obtained with respect to cost function ci. If i = 1, we will

obtain (later):

w(J1) +
∑

v∈V (H1)

debt1(v) ≤ (7/8)p1(H1) (1)

For i > 1, we will carefully (later) select Ri−1 and ci−1, and recourse. Then we will construct Ji, a

6

T-join in Ki for Ri from Ji−1 and some hyperedges of E(Ki) \ E(Ki−1) to satisfy:

wi(Ji)− wi−1(Ji−1) +
∑

v∈V (Hi)\V (Hi−1)

debt i(v) (2)

≤ (7/8) (pi(Hi)− pi−1(Hi−1)) +
∑

v∈V (Hi−1)

(debt i−1(v)− debti(v)) . (3)

By summing up Inequations (1) and (3), one gets for all i:

wi(Ji) +
∑

v∈V (Hi)

debt i(v) ≤ (7/8)pi(Hi), (4)

which is exactly what we need once we plug in i = ī. What actually happens when we look at the

cases later is that only for v = xi−1, we can have debt i−1(v) 6= debt i(v), so one can also think as

“xi−1 gets into debt for the operation (reduction in size) and for retiring the debt of those nodes in

Hi but not Hi−1”. This way of thinking is also correct since xi 6= xj for i 6= j, so xi−1 had no

debt before we recourse from Hi to Hi−1. Thus we think, when doing a recursive step, that we have

(7/8) (pi(Hi)− pi−1(Hi−1)) cash in hand, to pay for the operation and retiring the debt of those nodes

in V (Hi) \ V (Hi−1); if this cash is not enough we borrow from (or, in other words, place a debt on)

xi−1.

We will prove that our recursion also maintains the following invariant: vertices have no debt

except for those v ∈ V (Hi) (for some i) such that v = xj for some j ≥ i, for which

debt i(v) ≤
1

8
ci(ev), (5)

where recall that ev is the unique arc out of v in Hi, i.e. if v = xj , ev = ej .
If v is added in Hī (v ∈ V (Hī) \ V (Hī−1), is in our last “ear”), then as implied before, v carries

no debt. Also, recall that cī(e) = c(e) for every arc e. For the maintenance of these invariants and the

definition of ci, we look at three cases.

In the first case, i = 1, and we deal with H1, which is a directed cycle. We have (7/8)p1(H1) =
(7/8)c1(H1) cash (with outdegree 1 for every vertex, its power equals the cost of the outgoing arc).

Exactly as in Christofides’ analysis, the arcs of H1 are partitioned into two T-joins, D0 and F0 of K1:

go around the cycle and change T-join whenever meeting a vertex of R1. That is, start with an arc

arbitrarily and put it in D0, and then process each e arc of C as follows: if the preceding arc e′ ∈ D0

and the tail of e is not in R1, put e ∈ D0; if e′ ∈ D0 and the tail of e is in R1, put e ∈ F0; if e′ ∈ F0

and the tail of e is in R1, put e ∈ D0; if e′ ∈ F0 and the tail of e is not in R1, put e ∈ F0.

We use for our T-join: D0 if c1(D0) ≤ c1(F0); otherwise we use F0. Our cash pays for the

hyperedges we use as well for retiring the debt of all v ∈ V (H1): indeed this debt does not exceed

(1/8)(c1(D0) + c1(F0)) provided the invariant is maintained. In other words, we get Inequation (1)

using Invariant (5).

In the second case, i > 1 and pi(Ŝi−1) ≥ 2(ci(Bi−1)). We pick Ji, the T-join in Ki for Ri, as

follows: all the hyperedges of Ki obtained from Bi−1 and all the hyperedges of Ji−1, a recursively-

obtained a T-join in Ki−1 for Ri−1 ⊆ V (Ki−1), where Ri−1 is constructed as follows: We set Ri−1 =
Ri, but then we modify it below, keeping in mind we must at the end have Ri−1 ⊆ V (Hi−1) and

7

|Ri−1| even. Bi−1 consists of a collection of vertex-disjoint incoming arborescences Aj
i−1, each with

its own distinct root rji−1 in V (Hi−1). If Aj
i−1 has, including its root, an odd number of vertices of Ri,

remove those vertices from Ri−1 and add rji−1 in Ri−1. If Aj
i−1 has, including its root, an even number

of vertices of Ri, remove those vertices from Ri−1. Both transformation keep Ri−1 even-sized. Also,

the final Ri−1 is a subset of V (Hi−1).
Moreover, the union of Bi−1 and a T-join in Ki−1 for this Ri−1 is indeed a T-join in Ki for Ri, as

we argue below. An arbitrary T-cut (Q, Q̄) in Ki for Ri is crossed by (one of the arcs of) Bi−1 unless,

for each index j, Q contains all the arborescence Aj
i−1 or Q̄ contains all the arborescence Aj

i−1. If the

T-cut (Q, Q̄) has this property, then replacing Ri by Ri−1 does not change the parity of Q∩Ri−1. Thus
(

Q ∩ V (Ki−1), Q̄ ∩ V (Ki−1)
)

is a T-cut in Ki−1 for Ri−1, and is therefore crossed by the recursively

constructed T-join in Ki−1 for Ri−1.

Also, in this second case, we keep ci−1(e) = ci(e) for every e ∈ E(Hi−1), and in particular

ci−1(ei−1) = c(ei−1), as ei−1 was not considered for a costs modification before this recursive step.

We need to pay for the hyperedges obtained from the arcs of Bi−1 as well as debt accumulated by the

vertices of V (Hi) \ V (Hi−1). The total payment is, using Invariant (5), at most (9/8)ci(Bi−1).
Our cash in hand is (7/8) (pi(Hi)− pi−1(Hi−1)) = (7/8)ci(Bi−1). We also put on xi−1 a debt of

(1/8)c(ei−1) (thus satisfying Invariant (5)), and use this amount for the payment.

Using the fact that in this (second) case, pi(Ŝi−1) ≥ 2(ci(Bi−1)), and that pi(Ŝi−1) = ci−1(ei−1) =
c(ei−1) (the first equality follows from the fact that we reset the costs such that all the arcs leaving a

vertex have the same cost c), we can immediately verify that that the cash in hand plus the one taken

as a loan from the debt on xi−1 is enough to do the payment. Precisely, we verified that:

9

8
ci(Bi−1) ≤

7

8
ci(Bi−1) +

1

8
c(ei−1), (6)

or in other words Inequation (3) holds.

In the third case, i > 1 and pi(Ŝi−1) < 2ci(Bi−1). In this case we plan to use Ŝi−1 as well

as some arcs from Bi−1 in addition to a T-join in Ki−1 for carefully defined Ri−1 and cost ci−1, as

described below. We set Ri−1 = Ri, but then we modify it below, keeping in mind we must at the

end have Ri−1 ⊆ V (Hi−1) and |Ri−1| even. Consider, one by one the vertex-disjoint arborescences

in Bi−1, that is, for each j, Aj
i−1, and let Rj

i−1 = Ri ∩ V (Aj
i−1). Make Aj

i−1 undirected, and add to it,

if rji−1 6= xi−1, the vertex xi−1 and the edge of weight 0: rji−1xi−1. For an edge/arc of Aj
i−1, have its

weight equal its cost ci. Add to Aj
i−1 the undirected version of the arcs of the star S̃i−1 with head in

Aj
i−1 (tail is xi−1 for all such arcs), each with weight 0.

This way we create a two-edge-connected undirected graph Zj
i−1. Indeed, there are two edge-

disjoint paths between any two vertices of Zj
i−1, as explained in the remainder of this paragraph. If

one vertex is the ancestor of the other in Aj
i−1, one path is in Aj

i−1, and the other goes from the lower

of the two vertices to a leaf of Aj
i−1 to xi−1 to rji−1 to the highest of the two vertices. If none is

the ancestor of the other, one path is obtained by going up from both vertices in Aj
i−1 until the least

common ancestor, the other path by going down to leafs of Aj
i−1 and passing through xi−1.

If |Rj
i−1| is even, let R̂j

i−1 = Rj
i−1, else R̂j

i−1 = Rj
i−1⊗rji−1. In all cases, R̂j

i−1 is even-sized. There

exists a minimal T-join Y j
i−1 in Zj

i−1 for R̂j
i−1 of weight at most 1

2
w(E(Zj

i−1)). If this Y j
i−1 contains the

edge (of weight 0) rji−1xi−1, then set Ŷ j
i−1 be Y j

i−1 without this edge; otherwise Ŷ j
i−1 := Y j

i−1. Also

8

take out of Ŷ j
i−1 the edges/arcs of S̃i−1; we are left only with the undirected version of some of the

arcs of Aj
i−1, a subgraph of Bi−1. Also, modify Ri−1 as indicated in the four subcases below.

In Subcase 1, |Rj
i−1| is even, and Y j

i−1 contains the edge (of weight 0) rji−1xi−1 (so xi−1 6= ri−1
j);

then set Ri−1 =
(

Ri−1 \R
j
i−1

)

⊗ {xi−1} ∪ {rji−1}. Note that whether rji−1 ∈ Rj
i−1 or not, Ri−1 stays

even-sized.

In Subcase 2, |Rj
i−1| is even and Y j

i−1 does not contain the edge (of weight 0) rji−1xi−1 (this is

also the case when rji−1 = xi−1) ; then set Ri−1 = Ri−1 \R
j
i−1. Note that Ri−1 stays even-sized.

In Subcase 3, |Rj
i−1| is odd and Y j

i−1 contains the edge (of weight 0) rji−1xi−1 (so xi−1 6= ri−1
j);

then set Ri−1 =
(

Ri−1 \R
j
i−1

)

⊗{xi−1}. Note that whether rji−1 ∈ Rj
i−1 or not, Ri−1 stays even-sized.

In Subcase 4, |Rj
i−1| is odd and Y i−1

j does not contain the edge (of weight 0) rji−1xi−1, (this is also

the case when rji−1 = xi−1); then set Ri−1 =
(

Ri−1 \R
j
i−1

)

∪ {rji−1}. Note that whether rji−1 ∈ Rj
i−1

or not, Ri−1 stays even-sized.

In all four (sub)cases, the vertices of Aj
i−1 other than rji−1, are removed from Ri−1. Thus the final

Ri−1 ⊆ V (Hi−1). After we finish this for all j (xi−1 may enter and exit Ri−1 several times), set

ci−1(ei−1) = 0 (for all the other arcs e, keep ci−1(e) = ci(e)). Thus the final Ri−1 ⊆ V (Hi−1).
Recourse in Ki−1, obtaining T-join Ji−1. Now we construct Ji, our desired (but not proven yet to

be one) T-join in Ki for Ri, as follows: Ji = (Ji−1 \ {ei−1}) ∪ {Ŝi−1} ∪
(

∪j Ŷ
j
i−1

)

. That is, we use

the whole star of xi−1, and if recursion uses the arc out of xi−1 of cost ci−1 zero, we give it up (since

it is included in the star anyway). Note that in the end, all the arcs selected at artificial (reduced by

the procedure) cost 0 are removed and replaced by a bigger star/hyperedge.

We need the following fact, for which we could only find a very long proof by case analysis despite

the fact that this fact may be intuitively clear to the reader. Again, it makes sense to delay reading the

proof.

Claim 1 In all cases, Ji is a T-join in Ki for Ri.

Proof. If ei−1 ∈ Ji−1, we used Ŝi−1 in Ji instead of ei−1 and S̃i−1. However, with hyperedges ei−1

and S̃i−1 sharing vertex xi−1, using Ŝi−1 is equivalent, for crossing T-cuts, to using ei−1 and S̃i−1.

Let us look again at the construction of Ri−1. We started with Ri−1(0) = Ri (please do not confuse

Ri−1(k) with Rk
i−1, they are not the same set). We processed one by one the arborescences Aj

i−1, for

j = 1, 2, . . . , q (for some q = qi), constructing set of edges Y j
i−1, and Ri−1(j) from Ri−1(j − 1), until

Ri−1 = Ri−1(q) is the subset of V (Hi−1) used for the T-join Ji−1 in Ki−1.

Thus it is enough to show that Ji = Ji−1 ∪ {S̃i−1} ∪
(

∪j Ŷ
j
i−1

)

is a T-join in Ki for Ri (since,

if ei−1 6∈ Ji−1, we make the proof with S̃i−1 instead of the larger set Ŝi−1 as a hyperedge). Let

Ml := Ji−1 ∪ {S̃i−1} ∪
(

∪q
j=q−l+1Ŷ

j
i−1

)

(with M0 := Ji−1 ∪ {S̃i−1}), and note that we need to prove

that Mq is a T-join in Ki for Ri. We prove by induction on l that: Ml is a T-join for Ri−1(q− l) in Ki.

Applying this with l = q yields the claim.

For the base case (l = 0), let (Q, Q̄) be an arbitrary T-cut for Ri−1(q) = Ri−1. Then
(

Q ∩ V (Hi−1), Q̄ ∩ V (Hi−1)
)

is a T-cut for Ri−1 in Ki−1, and therefore a hyperedge of the T-join

Ji−1 crosses this T-cut, and it crosses (Q, Q̄) in Ki as well. Thus M0 is a T-join in Ki for Ri−1(q−0).

For the inductive case, proving for l + 1 assuming it holds for l, we must look at how Y q−l
i−1 and

Ri−1(q − l) are constructed from Aq−l
i−1 and Ri−1(q − l − 1). To simplify notation, in the rest of the

9

proof, let x := xi−1, r := rq−l
i−1, Z := Zq−l

i−1 , R := Ri−1(q − l− 1), R′ := Ri−1(q − l), and Y := Y q−l
i−1 ,

the minimal T-join in Z for R̂q−l
i−1. To prove below that Ml+1 is a T-join for R in Ki, we use that Ml is

a T-join for R′ in Ki.

To further simplify notation let S̃ := S̃i−1, R̂ := R̂q−l
i−1, R̃ := Rq−l

i−1 \ {r}, and Ŷ := Ŷ q−l
i−1 . Note

that Ml+1 = Ml ∪ Ŷ , that R̃ = R ∩ (V (Z) \ {x, r}), that R̂ = R̃ or R̂ = R̃ ∪ {r} (whichever makes

|R̂| even), and that in all four subcases, R′ ⊆ (R ∪ {x, r}) \ R̃.

Let (Q, Q̄) be an arbitrary T-cut for R, that is, a partition of VHi
such that |Q ∩ R| has odd size.

We need to find a hyperedge of Ml+1 crossing the T-cut. First, we switch Q and Q̄ if necessary such

that r ∈ Q. If R′ ∩ Q is odd, Ml has a hyperedge crossing (Q, Q̄) and therefore Ml+1 also has a

hyperedge crossing (Q, Q̄). So, from now on we assume |R′ ∩Q| is even (and so is |R′ ∩ Q̄|).

We have, unfortunately, 16 cases based on whether x ∈ R or not, r ∈ R or not, |R̃| even or not,

and Y contains xr or not. One could combine cases, but for checking correctness one needs to split

them again. In all cases, we find a hyperedge of Ml+1 that crosses (Q, Q̄): either S̃ or an edge of Ŷ .

To do so, it is enough to find an edge e of Y , other than xr, crossing
(

Q ∩ V (Z), Q̄ ∩ V (Z)
)

. Indeed,

Ŷ is obtained from Y by removing the edges incident to x (if any), and all such edges other than xr
are contained in the hyperedge S̃; so if e is incident to x, S̃ also crosses (Q, Q̄). To find e, one reduces

the 16 cases to one of the following three arguments:

Argument I. If Y does not contain xr and Q∩ R̂ is odd-sized, then Y , being a T-join for R̂ in Z, has

an edge e of Y crossing in Z the cut
(

Q ∩ V (Z), Q̄ ∩ V (Z)
)

; note that e 6= xr as xr 6∈ Y , and

we are done.

Argument II. If Y contains xr, x ∈ Q, and |Q ∩ R̂| odd, then Y , being a T-join for R̂ in Z, has an

edge e of Y crossing in Z the cut
(

Q ∩ V (Z), Q̄ ∩ V (Z)
)

; note that e 6= xr since both x and r
are in Q, and we are done.

Argument III. If Y contains xr, x 6∈ Q, and |Q ∩ R̂| even, then we argue as follows. Recall that

Y is a minimal T-join in the graph Z for R̂. Let D be the connected component of (V (Z), Y)
containing both x and r, and split D in components Dr and Dx by removing the edge rx, which

belongs to Y . Then both |Dr ∩ R̂| and |Dx ∩ R̂| are odd (or else, Y \ {xr} would have an even

number of elements of R̂ in each connected component, and thus would also be a T-join for R̂,

contradicting the minimality of Y).

If Dr 6⊆ Q, using that r ∈ Q ∩ Dr, we get that an edge of Y other than xr crosses
(

Q ∩ V (Z), Q̄ ∩ V (Z)
)

, since Dr is connected and contains only edges of Y \ {xr}. Now

assume that Q contains Dr. Using that |Dr ∩ R̂| is odd, we get that R̂ ∩ ((Q ∩ V (Z)) \Dr)

is an odd-sized subset of R̂, and thus Y , being a T-join for R̂ in Z, has an edge e cross-

ing from ((Q ∩ V (Z)) \Dr). e cannot have x and r as endpoints, as neither of x, r is

in ((Q ∩ V (Z)) \Dr) (recall that x 6∈ Q and r ∈ Dr). The endpoint of e not in

((Q ∩ V (Z)) \Dr) cannot be in Dr by the maximality of the connected component Dr; in-

deed the only edge of Y crossing Dr is xr and we ruled out e = xr. Therefore Y \ {xr} has

the edge e crossing
(

Q ∩ V (Z), Q̄ ∩ V (Z)
)

, and we are done.

Here are the 16 cases:

10

1. x ∈ R, r ∈ R, |R̃| even, Y contains xr (so x 6= r). Then R̂ = R̃, we are in Subcase 3, and

R′ = R \ V (Z). If x ∈ Q, then in order to have |Q ∩ R| odd, we must have |Q ∩ R̃| odd (as

we assumed |R′ ∩Q| is even, and x, r ∈ R ∩Q). Argument II applies. If x 6∈ Q, then in order

to have |Q ∩ R| odd, we must have |Q ∩ R̃| even (as we assumed |R′ ∩Q| is even, and r ∈ Q,

x 6∈ Q). Argument III applies

2. x ∈ R, r ∈ R, |R̃| even, Y does not contain xr. It does not matter below whether x ∈ Q (x = r

is possible) or x 6∈ Q (so x 6= r). Then R̂ = R̃, we are in Subcase 4, and R′ = R \ R̂. In order

to have |Q ∩R| odd, we must have |Q ∩ R̃| odd (as we assumed |R′ ∩Q| is even). Argument I

applies.

3. x ∈ R, r ∈ R, |R̃| odd, Y contains xr (so x 6= r). Then R̂ = R̃∪{r}, we are in Subcase 1, and

R′ = (R \ V (Z)) ∪ {r} =
(

R \ R̃
)

\ {x}. If x ∈ Q, then in order to have |Q ∩ R| odd, we

must have |Q ∩ R̃| even (as we assumed |R′ ∩Q| is even, and x ∈ Q), and therefore |Q∩ R̂| is

odd. Argument II applies. If x 6∈ Q, then in order to have |Q ∩ R| odd, we must have |Q ∩ R̃|

odd (as we assumed |R′ ∩Q| is even, and x 6∈ Q); thus |Q ∩ R̂| is even. Argument III applies.

4. x ∈ R, r ∈ R, |R̃| odd, Y does not contain xr. It does not matter below whether x ∈ Q (x = r

is possible) or x 6∈ Q (so x 6= r). Then R̂ = R̃ ∪ {r}, we are in Subcase 2, and R′ = R \ R̂.

In order to have |Q ∩ R| odd, we must have |Q ∩ R̂| odd (as we assumed |R′ ∩ Q| is even).

Argument I applies.

5. x ∈ R, r 6∈ R (so x 6= r), |R̃| even, Y contains xr. Then R̂ = R̃, we are in Subcase 1, and

R′ = (R \ V (Z)) ∪ {r} =
(

(R \ R̃) \ {x}
)

∪ {r}. If x ∈ Q, then in order to have |Q ∩ R|

odd, we must have |Q∩ R̂| odd (as we assumed |R′ ∩Q| is even, and using that x ∈ Q∩R and

r ∈ (Q ∩ R′) \R). Argument II applies. If x 6∈ Q, then in order to have |Q ∩ R| odd, we must

have |Q∩R̂| even (as we assumed |R′∩Q| is even, and using that x 6∈ Q and r ∈ (Q ∩ R′)\R).

Argument III applies.

6. x ∈ R, r 6∈ R (so x 6= r), |R̃| even, Y does not contains xr. It does not matter below whether

x ∈ Q or x 6∈ Q. Then R̂ = R̃, we are in Subcase 2, and R′ = R \ R̃. In order to have |Q ∩R|

odd, we must have |Q ∩ R̂| odd (as we assumed |R′ ∩Q| is even). Argument I applies.

7. x ∈ R, r 6∈ R (so x 6= r), |R̃| odd, Y contains xr. Then R̂ = R̃ ∪ {r}, we are in Subcase 3,

and R′ = (R \ V (Z)). If x ∈ Q, then in order to have |Q∩R| odd, we must have |Q∩ R̃| even

(as we assumed |R′ ∩ Q| is even, and also x ∈ Q ∩ R and r 6∈ (R ∪ R′)). With r ∈ Q, we get

|Q ∩ R̂| odd and Argument II applies. If x 6∈ Q, in order to have |Q ∩ R| odd, we must have

|Q ∩ R̃| odd (as we assumed |R′ ∩ Q| is even, and using that x 6∈ Q and r 6∈ (R ∪ R′)). Then

|Q ∩ R̂| is even, and Argument III applies.

8. x ∈ R, r 6∈ R (so x 6= r), |R̃| odd, Y does not contains xr. It does not matter below whether

x ∈ Q or x 6∈ Q. Then R̂ = R̃ ∪ {r}, we are in Subcase 4, and R′ =
(

R \ R̃
)

∪ {r}. In order

11

to have |Q ∩ R| odd, we must have |Q ∩ R̃| even (as we assumed |R′ ∩ Q| is even, and using

that r ∈ R′ \R). As (Q ∩ R̂) = (Q ∩ R̃) ∪ {r}, |Q ∩ R̂| is odd, an Argument I applies.

9. x 6∈ R, r ∈ R (so x 6= r), |R̃| even, Y contains xr. Then R̂ = R̃, we are in Subcase 3, and

R′ = (R \ V (Z))∪{x}. If x ∈ Q, then in order to have |Q∩R| odd, we must have |Q∩ R̃| odd

(as we assumed |R′ ∩Q| is even, and using that r ∈ R \ R′ and x ∈ (R′ ∩Q) \ R). Therefore

|Q ∩ R̂| is odd and Argument II applies. If x 6∈ Q, then in order to have |Q ∩ R| odd, we must

have |Q∩ R̃| even (as we assumed |R′ ∩Q| is even, and using that r ∈ R \R′ and x ∈ R′ \Q).

Therefore |Q ∩ R̂| is even, x 6∈ Q, and Argument III applies.

10. x 6∈ R, r ∈ R (so x 6= r), |R̃| even, Y does not contains xr. It does not matter below whether

x ∈ Q or x 6∈ Q. Then R̂ = R̃, we are in Subcase 4, and R′ = (R \ V (Z)) ∪ {r} = R \ R̃. In

order to have |Q ∩ R| odd, we must have |Q ∩ R̃| odd (as we assumed |R′ ∩Q| is even). With

Q ∩ R̂ = Q ∩ R̃, Argument I applies.

11. x 6∈ R, r ∈ R (so x 6= r), |R̃| odd, Y contains xr. Then R̂ = R̃ ∪ {r}, we are in Subcase 1,

and R′ = (R \ V (Z)) ∪ {r, x}. If x ∈ Q, then in order to have |Q ∩ R| odd, we must have

|Q ∩ R̃| even (as we assumed |R′ ∩ Q| is even, and using that x ∈ Q \ R) and thus |Q ∩ R̂|

odd. Argument II applies. If x 6∈ Q, then in order to have |Q ∩ R| odd, we must have |Q ∩ R̃|

odd (as we assumed |R′ ∩ Q| is even, and using that x 6∈ Q ∩ R), and therefore |Q ∩ R̂| even.

Argument III applies.

12. x 6∈ R, r ∈ R (so x 6= r), |R̃| odd, Y does not contains xr. It does not matter below whether

x ∈ Q or x 6∈ Q. Then R̂ = R̃ ∪ {r}, we are in Subcase 2, and R′ = R \ R̂. In order to have

|Q∩R| odd, we must have |Q∩ R̂| odd (as we assumed |R′ ∩Q| is even). Argument I applies.

13. x 6∈ R, r 6∈ R, |R̃| even, Y contains xr (so x 6= r). Then R̂ = R̃, we are in Subcase 1, and

R′ = (R \ V (Z)) ∪ {r, x}. If x ∈ Q, then in order to have |Q ∩R| odd, we must have |Q ∩ R̃|

odd (as we assumed |R′ ∩ Q| is even, and using that {r, x} ⊆ ((R′ \R) ∩Q)). With R̂ = R̃

and |Q ∩ R̃| odd, Argument II applies. If x 6∈ Q, then in order to have |Q ∩ R| odd, we must

have |Q ∩ R̃| even (as we assumed |R′ ∩ Q| is even, and using that r ∈ (R′ \ R) ∩ Q and

x ∈ (R′ \R) \Q). With R̂ = R̃ and |Q ∩ R̃| even and x 6∈ Q, Argument III applies.

14. x 6∈ R, r 6∈ R, |R̃| even, Y does not contain xr. It does not matter below whether x ∈ Q (x = r

is possible) or x 6∈ Q (so x 6= r). Then R̂ = R̃, we are in Subcase 2, and R′ = R \ R̂. In order

to have |Q ∩R| odd, we must have |Q ∩ R̂| odd (as we assumed |R′ ∩Q| is even). Argument I

applies.

15. x 6∈ R, r 6∈ R, |R̃| odd, Y contains xr (so x 6= r). Then R̂ = R̃∪{r}, we are in Subcase 3, and

R′ = (R \ V (Z))∪{x} =
(

R \ R̃
)

∪{x}. If x ∈ Q, then in order to have |Q∩R| odd, we must

have |Q ∩ R̃| even (as we assumed |R′ ∩Q| is even, and using that x ∈ ((R′ \R) ∩Q)). Then

|Q∩ R̂| is odd (as r ∈ Q), and Argument II applies. If x 6∈ Q, in order to have |Q∩R| odd, we

12

must have |Q ∩ R̃| odd, (as we assumed |R′ ∩ Q| is even, and using that x ∈ ((R′ \R) \Q)).

Then |Q ∩ R̂| is even (as r ∈ Q), and Argument III applies.

16. x 6∈ R, r 6∈ R, |R̃| odd, Y does not contain xr. It does not matter below whether x ∈ Q

(x = r is possible) or x 6∈ Q (so x 6= r). Then R̂ = R̃ ∪ {r}, we are in Subcase 4, and

R′ =
(

R \ R̃
)

∪{r}. To have |Q∩R| odd, we must have |Q∩R̃| even (as we assumed |R′∩Q|

is even, and using that r ∈ Q ∩ (R′ \R)). Then |Q ∩ R̂| is odd, and Argument I applies.

This was the last case of the claim.

We resume the proof of Theorem 1 (we are in the third case). We must pay for wi(Ji)−wi−1(Ji−1),

which is at most 1
2
ci(Bi−1) + pi(Ŝi−1), since ci(Ŷ

j
i−1) ≤

1
2
ci(A

j
i−1) for all j. We must also retire debt

accumulated by the vertices v ∈ V (Hi)\V (Hi−1) (recall that each such vertex has ev ∈ Bi−1), which

is at most (1/8)ci(Bi−1). Keep in mind that xi−1 does not contribute by going in debt (the only way to

accumulate debt is the second case); here ci−1(ei−1) = 0 and debt i−1(xi−1) = 0, maintaining Invariant

(5), as indeed for any vertex v ∈ V (Hi−1) \ {xi−1}, debt i−1(v) = debt i(v) and ci−1(ev) = ci(ev).

The cash in hand is (7/8)(pi(Hi) − pi−1(Hi−1)) = (7/8)(ci(Bi−1) + p(Ŝi−1)), keeping in mind

that ci(ei−1) = c(ei−1) = p(Ŝi−1) = pi(Ŝi−1) and ci−1(ei−1) = 0. Therefore to maintain the debt

invariant we need the inequality:

1

2
ci(Bi−1) + pi(Ŝi−1) +

1

8
ci(Bi−1) ≤ (7/8)

(

ci(Bi−1) + p(Ŝi−1)
)

, (7)

which is true since in this (third) case pi(Ŝi−1) < 2ci(Bi−1). In other words, Inequality (3) holds.

This is the last case of the recursion, finishing the proof of Theorem 1.

4 Conclusions

We proved that for the class of edge-weighted undirected hypergraph that admit a strongly connected

orientation, the T-ratio (the supremum, over a class of hypergraphs and all possible R, of the minimum

weight T-join divided by the weight of the hypergraph) is at most 7/8.

A series of examples where the ratio approaches 2/3 is given in the appendix. The appendix also

sketches the following: hypergraphs that admit a strongly connected orientation have a T-ratio of at

most 4/5, and for the class of two-edge-connected hypergraphs, the supremum of T-ratios converges

to 1 as the number of hyperedges increases.

References

[1] A. Borchers and D.-Z. Du. The k-Steiner ratio in graphs. SIAM Journal on Computing,

26(3):857–869, 1997.

[2] G. Calinescu. Min-power strong connectivity. In M. Serna, K. Jansen, and J. Rolin, editors,

Proceedings of the International Workshop on Approximation Algorithms for Combinatorial

Optimization, number 6302 in Lecture Notes in Computer Science, pages 67–80. Springer, 2010.

13

[3] W.T. Chen and N.F. Huang. The strongly connecting problem on multihop packet radio net-

works. IEEE Transactions on Communications, 37(3):293–295, 1989.

[4] Jack Edmonds and Ellis L. Johnson. Matching, Euler tours and the Chinese postman. Mathe-

matical Programming, 5(1):88–124, 1973.

[5] András Frank, Tamás Király, and Zoltán Király. On the orientation of graphs and hypergraphs.

Discrete Applied Mathematics, 131(2):385 – 400, 2003.

[6] M. R. Garey and D. S. Johnson. Computers and Intractability. W.H. Freeman and Co., NY,

1979.

[7] L. M. Kirousis, E. Kranakis, D. Krizanc, and A. Pelc. Power consumption in packet radio

networks. Theoretical Computer Science, 243:289–305, 2000.

[8] H.E. Robbins. A theorem on graphs with an application to a problem of traffic control. Amer.

Math. Monthly, 46:81–83, 1939.

[9] A. Schrijver. Combinatorial Optimization. Springer, 2003.

[10] A. Zelikovsky. An 11/6-approximation algorithm for the network Steiner problem. Algorith-

mica, 9:463–470, 1993.

5 Appendix

5.1 Lower bound for the T-ratio

For a series of examples where the T-ratio approaches 2/3, start (see Figure 5 for an illustration) with

a complete binary tree of height h with nodes i, 1 ≤ i ≤ 2h+1− 1 (as in a binary heap, the children of

node j, with j < 2h, are 2j and 2j + 1).

Replace each node i with nodes yi, zi, connected by an edge of cost 0, and, for i < 2h, add edges

of cost 2: ziy2i and ziy2i+1. Call the resulting tree B; assume it is rooted at y1, and for each yi, let Bi

be (the vertex set of) the subtree of B consisting of yi and all its descendants. Add vertex u and edge

of cost 1 uy1. Add another 2h vertices x1, . . . , x2h and edges of cost 1: xizi+2h−1 and edges of cost 0:

xiu.

For this MIN-POWER STRONG CONNECTIVITY instance, OPT has, for i = 1, 2, . . . , 2h − 1,

p(zi) = 2, for i = 2h, . . . , 2h+1 − 1, p(zi) = 1, and p(u) = 1, with all the other vertices having power

0. The total power of this solution is 2 · (2h − 1) + 2h + 1 = 3 · 2h − 1.

As an aside, we prove that OPT is indeed an optimum feasible solution, as its power is only 2
more than the cost of minimum spanning tree cost, described below, and one has, for every input graph

and any feasible solution FS , that given the most costly edge e of the MST (the minimum spanning

tree of G), p(FS) ≥ c(MST) + c(e), as proved in the remaining of this paragraph. Let U,W be the

partition of the vertex set defined by MST after removing e. Since FS is strongly connected, there

must exist an arc a = (u, w) in E(FS) with u ∈ U and w ∈ W and such e is not the undirected

version of a. If pE(FS)(u) < c(e) then c(a) ≤ pE(FS)(u) < c(e), so the tree T ′ = (MST \ e) ∪ a
is cheaper than MST , a contradiction. Hence pE(FS)(u) ≥ c(e). Using u as the root of a spanning

14

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

y13

y14

z15

y16

y17

y18

y19

y20

y21

y22

y23

y24

y25

y26

y27

y28

y29

y30

y31

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

z11

z12

z13

z14

y15

z16

z17

z18

z19

z20

z21

z22

z23

z24

z25

z26

z27

z28

z29

z30

z31

u

Figure 5: Thinnest edges have cost 0, medium thick have their cost written: 1, and thickest edges

have cost 2. Arrows indicate the optimum power assignment solution. Solid edges give the minimum

spanning tree, and its vertices of odd degree are solid and form the set R. Here h = 4.

in-arborescence inside FS , we obtain that for all v ∈ V \ {u}, pFS (v) is at least the cost of the arc

connecting v to its parent in this incoming arborescence, whose total cost is at least the cost of an

undirected minimum spanning tree of G. Thus
∑

v∈V \{u} pE(FS)(v) ≥ c(MST).
One minimum spanning tree T includes all the edges of cost 1 and 0, as well as the edges of cost

2 except the last level of the complete binary tree, that is T contains the edges ziy2i and ziy2i+1, for

i < 2h−1. We choose R to be the set of vertices of odd degree of the MST (this set was important in

MIN-POWER STRONG CONNECTIVITY algorithms). Here, R consists of u, zi, for i < 2h, and yi, for

2h ≤ i < 2h+1.

Now we show that every T-join M for R has weight at least 2(2h − 1). Assume that for some i
1 ≤ i < 2h, M does not use the star with power 2 rooted at zi (or else, we are done). Look at the

subtrees B = B2i and B′ = B2i+1, each having an odd number of vertices of R. Now apply to B the

following “pruning” procedure: if some zj ∈ B and j < 2h also is such that M does not use the star

with power 2 rooted at zj , then remove from B the vertices of (Bj \ {yj, zj}); note that B continues

to have an odd number of vertices of R, since Bj has an odd number of vertices of R, and therefore

Bj \ {yj, zj} had an even number of vertices of R. After doing this for all possible j, B still has an

odd number of vertices of R and thus a hyperedge of K must have an endpoint in B and one outside

- this cannot be the star rooted at zi or some pruned zj (it must be the edge zkxk−2h+1 for some k with

15

zk descendant of i in B), and this hyperedge must have weight at least 1. Similarly, after pruning,

another hyperedge of weight at least 1 is obtained crossing B′; associate these two hyperedges to

zi. Notice that for j 6= i, we cannot associate the same hyperedge to both zi and zj since such an

(hyper)edge zkxk−2h+1 will have zk as descendant in B of both zi and zj - but then pruning will make

sure that the higher (in B) of zi and zj cannot use zkxk−2h+1.

Thus whenever M does not use the star with power 2 rooted at zi, for some 1 ≤ i < 2h, it must

use two (hyper)edges of weight 1, not shared with another i. We conclude that indeed w(M) ≥
2(2h − 1) ≥ (2/3 − ǫ)opt. Note that this 2/3 lower bound holds for the T-ratio in hypergraphs that

admit strongly connected orientations.

5.2 Upper bound on the T-ratio

Theorem 2 There exists a collection of stars B with f(B) = c(T) and w(B) ≤ (4/5)opt , where opt

is the power of the optimum solution.

Proof sketch. The proof is as in Theorem 1 before the charging/accounting scheme. However, we

allow debt debt i(v) ≤ (1/5)ci(ev) instead of (1/8)ci(ev), and we recourse in a similar but more

complicated way.

The base case needs to pay (1/2)c1(H1) + (1/5)c1(H1) for the T-join J1 and retiring the debt of

all vertices, using cash of (4/5)p1(H1), which is enough.

For the recursion, as before, we have Hi, and follow the third case of the proof of Theorem 1. We

construct Zj
i−1 as there, but then instead of settling for one Y j

i−1 of weight at most 1
2
w(Zj

i−1), find (next

paragraph) two T-joins Ỹ j
i−1 and Ȳ j

i−1 such that Ỹ j
i−1 contains rji−1xi−1 (assuming this edge exists, i.e.

rji−1 6= xi−1) and Ȳ j
i−1 does not contain rji−1xi−1 and such that w

(

Ȳ j
i−1

)

+w
(

Ỹ j
i−1

)

≤ w
(

Zj
i−1

)

; this

is indeed possible as argued below.

If the edge rji−1xi−1 does not exist (that is, if rji−1 = xi−1) then set Ȳ j
i−1 = Ỹ j

i−1 = Y j
i−1, where

Y j
i−1 comes from the proof of Theorem 1. Otherwise, do an ear decomposition of Zj

i−1 with the first

cycle containing the edge rji−1xi−1. For every ear other than the first cycle, traverse it changing sides

each time you meet a vertex of R̂j
i−1 - then pick the cheapest of the two edge sets. Set up recursion

R - like in the Theorem 1, but simpler; we pay half of the cost reduction when we recourse. Finally,

in the last cycle, partition it into two sets of edges as in the base case of Theorem 1, making sure the

edge rji−1xi−1 is in Ỹ j
i−1 and not Ȳ j

i−1.

Let B′ = ∪j Ȳ
j
i−1 and B′′ = Ỹ j

i−1; thus w(B′) + w(B′′) ≤ ci(Bi). Edges of B′ and B′′ come from

either arcs of Bi−1 or arcs of S̃i−1 or are of type rji−1xi−1 for some j, with all edges of this later type

in B′′. Let B̄′ be the arcs of Bi−1 which give rise to edges of B′, and B̄′′ be the arcs of Bi−1 which

give rise to edges of B′′. We do not have that B̄′′ and B̄′ are disjoint but we do have

ci(B̄
′) + ci(B̄

′′) ≤ ci(Bi−1). (8)

In a first case, pi(Ŝi−1) ≤ ci(B̄
′′). Then we proceed as in the third case of Theorem 1. The

cash in hand is (4/5)
(

pi(Ŝi−1) + ci(Bi−1)
)

. We use it to pay pi(Ŝi−1) + min
(

ci(B̄
′), ci(B̄

′′)
)

, the

cost of upgrading Ji−1 to Ji, and another (1/5)ci(Bi−1) to pay for retiring the debt of vertices in

16

V (Hi) \ v(Hi−1). Thus to maintain the credit invariant it will be enough if

3

5
ci(Bi−1) ≥

1

5
ci(B̄

′′) + min
(

ci(B̄
′), ci(B̄

′′)
)

, (9)

where we used pi(Ŝi−1) ≤ ci(B̄
′′). Then, if ci(B

′′) ≤ ci(B̄
′), then the inequality above becomes

3
5
ci(Bi−1) ≥

1
5
ci(B̄

′′)+ci(B̄
′′), which is indeed true in this subcase, using Inequation (8). If ci(B̄

′′) >
ci(B̄

′), then Inequality (9) becomes 3
5
ci(Bi−1) ≥ 1

5
ci(B̄

′′) + ci(B̄
′), which is, using Inequation (8),

true in this second subcase.

So from now we assume pi(Ŝi−1) > ci(B
′′). Also, if

3

5
ci(Bi−1) ≥

1

5
pi(Ŝi−1) + ci(B

′′) (10)

then we proceed as above, and the credit invariant is maintained.

So from now on, Inequality (10) does not hold, and pi(Ŝi−1) > ci(B̄
′′). Set ci−1(ei−1) = ci(ei−1)−

ci(B
′′); recall that ci(ei−1) = pi(Ŝi−1). Set Ri−1 as in the third case in the proof of Theorem 1 using

for each j, Ȳ j
i−1 instead of Y j

i−1. We are either in Subcase 2 (with Rj
i−1 even-sized) or Subcase 4 (when

on can check that rji−1 is in the final Ri−1). It is important to observe that Ri−1 is reset the same way

as in the second case of the proof of Theorem 1. We recourse in Hi−1 with cost ci−1, obtaining T-join

Ji−1 in Ki−1 for Ri−1. If Ji−1 does not contain ei−1, we set Ji = Ji−1 ∪ Bi−1, which is indeed a

T-join in Ki for Ri as argued in the second case of the proof of Theorem 1. Otherwise, Ji−1 contains

ei−1, we set Ji = Ji−1 \ {ei−1} ∪ {Ŝi−1} ∪ B̄′, which is indeed a T-join in Ki for Ri as argued in

the third case (Subcases 2 and 4, see Claim 1) of the proof of Theorem 1. Note that in the end, all

the arcs selected at artificial (reduced by the procedure) cost are removed and replaced by a bigger

star/hyperedge, with its original cost.

In both subcases, we have:

wi(Ji)− wi−1(Ji−1) ≤ ci(Bi−1), (11)

using in the second subcase that ci−1(ei−1) = ci(ei−1) − ci(B̄
′′) = pi(Ŝi−1) − ci(B̄

′′) and Inequality

(8).

Thus we need to pay at most (6/5)ci(Bi−1) for the operation, including retiring the debt

of the vertices of V (Hi) \ V (Hi−1). The cash in hand is (4/5) (pi(Hi)− pi−1(Hi−1)) =
(4/5)

(

ci(Bi−1) + ci(B̄
′′)
)

. In addition, we put a debt of (1/5)ci−1(ei−1) on xi−1 (previously, debt-

free). Thus, to maintain the credit invariant, it is enough that

6

5
ci(Bi−1) ≤

4

5

(

ci(Bi−1) + ci(B̄
′′)
)

+
1

5

(

pi(Ŝi−1)− ci(B̄
′′)
)

. (12)

This is equivalent to
2

5
ci(Bi−1) ≤

1

5
pi(Ŝi−1) +

3

5
ci(B̄

′′). (13)

17

Since Equation 10 does not hold in this subcase, we obtain:

2

5
ci(Bi−1) =

2

3
·
3

5
ci(Bi−1)

<
2

3

(

1

5
pi(Ŝi−1) + ci(B̄

′′)

)

≤
2

15
pi(Ŝi−1) +

2

3
ci(B̄

′′)

<
2

15
pi(Ŝi−1) +

2

3
ci(B̄

′′) +
1

15
pi(Ŝi−1)−

1

15
ci(B̄

′′)

=
1

5
pi(Ŝi−1) +

3

5
ci(B̄

′′),

with the last inequality holding since we are in the case pi(Ŝi−1) > ci(B̄
′′). Thus there is enough cash

to maintain the credit invariant and pay for the operation.

5.3 T-ratio in two-edge-connected hypergraphs

For the class of two-edge-connected hypergraphs, the supremum of T-ratios converges to 1 as the

number of hyperedges increases, as we see in the following series of examples. For integer k mul-

tiple of 8, have
(

k

2

)

vertices uij , where 1 ≤ i < j ≤ k. The k hyperedges are e1, e2, . . . , ek (all

with weight 1), and ei contains, for all j with 1 ≤ j < i, uji, and for all j with i < j ≤ k,

uij . This hypergraph is two-edge-connected: two edge-disjoint paths connecting u12 and u34

are u12, e1, u13, e3, u34 and u12, e2, u24, e4, u34, two edge-disjoint paths connecting u12 and u13 are

u12, e1, u13 and u12, e2, u23, e3, u13, with all the other pairs of vertices being connected in a cases sym-

metric to one of these two cases. With R given by V , missing any two hyperedges (say, ei and ej with

i < j) results in an isolated vertex (uij), and then the T-cut with this vertex on one side is not crossed;

thus any T-join has size/weight at least k − 1.

18

