
Faster Compression of Patterns to Rectangle Rule Lists

Ian Albuquerque Raymundo Da Silva ∗ Gruia Calinescu † Nathan De Graaf ‡

August 5, 2019

Abstract

Access Control Lists (ACLs) are an essential security component in network routers. ACLs can be geometri-

cally modeled as a two-dimensional black and white grid; our interest is in the most efficient way to represent such

a grid. The more general problem is that of Rectangle Rule Lists (RRLs) minimization, which is finding the least

number of rectangles needed to generate a given pattern. The scope of this paper focuses on a restricted version of

RRLs minimization in which only rectangles that span the length or width of the grid are considered. Applegate

et al.’s paper “Compressing Rectilinear Pictures and Minimizing Access Control Lists” gives an algorithm for

finding an optimal solutions for strip-rule RRLs minimization in O(n3) time, where n is the total number of rows

and columns in the grid. Following the structure of Applegate et al.’s algorithm, we simplify the solution, remove

redundancies in data structures, and exploit overlapping sub-problems in order to achieve an optimal solution for

strip-rule RRLs minimization in O(n2 log n) time.

1 Introduction

We consider the following problem of generating patterns by drawing rectangles. A target pattern is given as a

grid of black and white cells. We begin with a white grid and place solid black or white rectangles, each rectangle

covering any previously placed rectangles. Placing arbitrary sized rectangles makes the problem NP-hard, so we

consider only placing rectangles that extend either the full height or width of the grid. Our goal is to find the

smallest number of rectangles required to create the target pattern.

1.1 Problem definition

Define a pattern P to be an nR by nC grid of black and white squares. Let n = nR+nC. See Fig. 1 for an example of

a pattern. A rectangle strip-rule on P is either a black or white rectangle that extends from one side of the pattern to

Figure 1: An example of a black and white pattern

the opposite side. Precisely, a rectangle in P is either a set of contiguous rows of P or a set of contiguous columns

of P.

A rectangle strip-rule list (a RSRL) that generates P is an ordered list of rectangle strip-rules, that when applied

in order to a blank (white) grid the size of P creates the target pattern. See Fig. 2 for an example of a pattern

generated by a RSRL.
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Figure 2: A pattern generated by a RSRL of 3 elements.

We say a pattern P is a strip-rule pattern if there is a RSRL that generates P. Note that not every pattern P is a

strip-rule pattern. See Fig. 3 for an example of a pattern that is not a strip-rule pattern.

Figure 3: The 2× 2 checkerboard: an example of a pattern that is not a strip-rule pattern.

An RSRL is considered optimal if it has the minimum number of rectangle strip-rules of any RSRL that

generates P.

1.2 Problem background

1.2.1 Rectilinear pictures and access control lists.

The method of stacking rectangles to create patterns has applications in both graphics and network routers. A

common method for drawing graphics is to allow the user to repeatedly apply a rectangle tool to a blank canvas

(see Xfig or PowerPoint). Each rectangle is of a solid color and covers everything in a defined rectangular region.

This sequence of drawn rectangles can be represented by a rectangle rule list (RRL). The problem of finding the

minimum length RRL needed to create a given pattern is a generalization of the RSRL minimization problem that

we explore.

Alternatively, instead of being given an nR by nC grid as input, one can start with the numbers nR and nC,

and a list of m rules. The goal is to find a shortest list that gives the same pattern as the input list. As shown in

an extended version of Applegate et al. [1] available on some of the paper authors’ homepages, it is possible to

construct the nR by nC grid in time O(nR ·nC +m2).
One important application of RRLs is in access routers. An internet service provider might use access control

lists (ACLs) on network router line cards in order to choose whether to forward or drop a packet based on the

sending or receiving IP address. This decision could be answered by checking a two-dimensional Boolean array

based on the sender and receiver IP addresses. This problem can be translated into a restricted version of the

RRL minimization problem (as explained below). An in-depth discussion of this translation and its properties is

provided in detail in Applegate et al.’s paper [1]. Briefly, the idea in ACL minimization is to construct a given grid

of size 2w by 2w, indexed by binary strings from 0w to 1w. Rectangles allowed on this grid are defined by a pair of

binary strings (y,z) and cover any squares whose indices have y and z as a prefix respectively.

Unfortunately, the general problem of finding minimum length RRLs has been shown to be NP-hard by Apple-

gate et al. [1]. Instead, we work on a restricted version of the problem in which any rectangle rules applied must

extend either the height or width of the original pattern and only black or white rectangles are allowed. This 2-color

strip-rule problem was originally posed in [1], where an optimal solution is given in O(n3)-time. Applegate et al.

[1] obtains an optimal solution to the strip-rule version of the ACL problem with a similar (but more complicated)

O(wn3)-time algorithm. A 1.5 ratio approximation algorithm is given for the problem in O(n2)-time. While there

exist numerous results related to various other restricted problems regarding RRLs, we know of no other work

related to this 2-color strip-rule problem.
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1.2.2 Related work.

ACLs can be used in firewalls [10]. Kang et al. [10] introduces axioms with the goal of creating and analyzing

algorithms for optimizing the rewriting of rules in Software Defined Networks. Liu et al. [17] considers classifiers

in dimensions higher than two, which reduce to either ACL or RRL lists in dimension two. They propose and

experimentally evaluate heuristics without performance guarantees, as well as relate these classifiers to the Firewall

Decision Diagrams of Gouda and Liu [8]. See also [3]. Pao and Lu [23], and Comerford et al. [4] also consider

higher dimensional classification based on rectangle rules. Kang et al. [9] and Zhang et al. [31] introduce more

general rule-minimization problems. Sun and Kim [27] uses rule minimization as a start for a solution to an

extended problem. Efficiently removing redundant rules has been proposed by Liu and Gouda in [15] and [16], by

Liu et al. in [14], and by Sun and Kim [28].

Lam. et al. [12] consider the problem of changing the rules such that the chance of getting a “hit” in the first N

rules (point in one of the last N rectangle, in our terminology) is maximized. They propose a heuristic and present

simulation results. Demianiuk et al. [6] allow approximate packet classifiers, where in order to limit the length of

the ACL one does not have to obtain exactly the given pattern.

Sanger et al. [26] discusses a methodology (and algorithms) of checking if two rule sets are equivalent, which

in our terminology, means that they generate the same pattern. Architectures for packet classification that use

modifications of ACLs have been proposed by [18], [20], and [25]. Compacting ACLs on multiple switches has

been studied by [24], [19], [30], and [13].

Giroire et al. [7] study a problem related to RRL optimization in which the rectangles are either a column, a

row, or a cell, and there may be more than two colors. This paper proves this problem to be NP-hard, answering

an open question of [29], and provides approximation algorithms.

The complexity of finding minimum length ACLs in two dimensions is still unknown, but with an arbitrary

number of dimensions, this problem is NP-hard according to Kang et al. [11]. Applegate et al. [1] gives a

O(min(m1/3,OPT1/2))-approximation algorithm for finding minimum length RRLs, where m is the length of the

input RRL. This is still the best published ratio.

Daly et al. [5] provides heuristics for higher-dimensional ACL and RRL minimization (reference [5] calls

the ACLs minimization prefix-ACL, while range-ACL is their terminology for finding minimum length RRLs),

on the way improving the approximation ratios provided by Applegate et al. [1] for ACLs minimization. The

approximation algorithms of [5] and [1] use as a subroutine the strip-rule version that we study.

1.3 Our results

Using the structure defined in Applegate et al.’s [1] O(n3) exact algorithm for 2-color RSRL minimization, we give

an improved O(n2 log n) exact algorithm for the RSRL minimization problem. Given the similar structures of the

RRL and ACL optimal solutions given by [1], we expect our solution can be extended to improve the running time

of an exact algorithm for the strip-rule ACL problem from O(wn3) to O(wn2 log n). As strip-rule ACLs occur

in a high percentage of ACL minimization cases [1], this is one reason to study RSRL minimization. Another

two reasons are: we believe RSRL minimization is a natural problem, and RSRL minimization is used in the

approximation algorithms for RRL minimization.

Our result is obtained by digging deeper into the structure of the dynamic programming of Applegate et al.

[1] combined with the use of geometric data structures to speed up the process. We use fast two-dimensional

orthogonal range queries, using existing data structures (a time bound of O(logn) time per query being textbook

material [2]).

1.3.1 Flowchart of the paper.

We start the next section with an algorithm, the Pick-Up-Sticks algorithm, which finds a RSRL for the given pattern

if one RSRL exists. In fact these “sticks” are equivalent in some sense with RSRL and to minimize the RSRL one

can instead minimize the number of sticks that are picked up. A fair number of properties are used to get the

equivalence; these are from [1]. If [1] omitted proofs for lack of space. we provide our own proofs. We also

introduce some new properties which we use in the algorithm.

Finding the best sticks to pick up, and in which order, is reduced by [1] to finding a shortest path in a directed

acyclic graph, the “segment graph” described in the second subsection of the next section. [1] proves that only

O(n2) vertices of the segment graph need to be visited to find a shortest path. These vertices are generated from
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previous vertices. The graph distance is computed as part of the vertex generation. Our contribution consists of

reducing the time for generating a new vertex to O(logn).
Section 3 describes our algorithm: we use the same segment graph but group the nodes in “S-groups” and then

process all the nodes in a group together. The complexity of the algorithm is analyzed in Section 4. We conclude

in Section 5.

2 Preliminaries

We begin by exploring the strategies and tools for finding an optimal RSRL. The Pick-Up-Sticks algorithm will

detail the basic structure used to find an RSRL, but not necessarily an optimal RSRL. Then we will explain the

concept of equivalence classes, which can be grouped into “segments”. All of these concepts will be put together

in our algorithm for finding an optimal solution.

2.1 The Maximal Pick-Up-Sticks (MPUS) algorithm

As proposed by Applegate et al.’s paper, we can build an algorithm for finding whether a pattern is a strip-rule

pattern and, if so, finding an RSRL that generates it.

2.1.1 The Pick-Up-Sticks (PUS) algorithm.

The Pick-Up-Sticks algorithm of Applegate et al. [1] is an algorithm for generating a RSRL of a pattern P if such a

list exists. The idea is to pick up monochromatic rows and columns in order to build the RSRL backwards. Every

time we pick a row or column, we color it gray.

Let P be a black and white pattern. We define a column or row in P as being pseudo-monochromatic if it is

composed of only gray and white cells or of only black and gray cells. Note that monochromatic columns and

rows are also pseudo-monochromatic. Moreover, we use pseudo-black or pseudo-white for a row or column whose

cells are only black and gray, or only white and gray respectively. The Pick-Up-Sticks algorithm builds an RSRL

as follows:

While there are still black cells, choose a pseudo-monochromatic column or row and color all its cells gray.

After a row or column is colored gray, add a rectangle that corresponds to covering that row or column with

whatever non-gray color was left in that row or column to the beginning of our RSRL. Note that, in our problem

definition, we begin applying RSRLs with a white grid, so we can stop picking up sticks when no black cells exist.

If, on the other hand, we modify the problem to begin with a grid of some fourth color, then we would only stop

picking up sticks when all cells are gray. There may be a difference of one rule between the optimum solutions to

these two problems (white initial grid or some fourth color initial grid) with the same target pattern. For the sake of

symmetry, from now on we use this modified version of the problem. The method works with minor modifications

for the original version.

The algorithm may not succeed, as it may not find a pseudo-monochromatic column or row. If the algorithm

does end in an all-gray grid, then the algorithm has ”picked up” the rectangles of the RSRL in reverse order. Fig. 4

gives a representation of one possible execution of the Pick-Up-Sticks algorithm and Fig. 5 shows the generation

of the original pattern from the resultant RSRL.

The Pick-Up-Sticks algorithm is guaranteed to generate an RSRL if one exists (see below), but it is not neces-

sarily an optimal RSRL of minimum length. At any stage of the algorithm there could be more than one option on

which row or column to pick up. Different choices can lead to different sizes of RSRLs. In the next sections we

will discuss on how Applegate et al.’s paper narrows down the number of choices for each stage in order to find an

optimal RSRL.

Theorem 1 (part of Theorem 3.1 of Applegate et al. [1]) A black and white pattern P is a strip-rule pattern if

and only if the Pick-Up-Sticks algorithm results in a grid with all of its cells gray. In that case, the reverse list of

picked up rows and columns is an RSRL for P.

Since Theorem 3.1 of [1] is not proven in their conference version, we include a proof for the sake of com-

pleteness.

Proof. Let us separate the proof into the two following parts:
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Figure 4: The execution of the Pick-Up-Sticks algorithm on a strip-rule pattern.

Figure 5: The RSRL generated by the execution of the PUS algorithm on the pattern of the Fig. 4.

• (P is a strip-rule pattern) → (The Pick-Up-Sticks algorithm results in an all-gray grid)

Suppose P is a pattern that can be generated by an RSRL S = (s1,s2, · · · ,sm) of size m. Suppose we have

picked up some sticks. Let si is the highest-index rule from S that still has a row/column c such that c is not

all-gray. If there is no such si, then we must have picked up everything. For every integer j, i < j ≤ m, all the

rows/columns of s j must have already been entirely colored gray. That means that all cells of c that belong

to a rule s j, with i < j ≤ m, are gray. The cells of c that are not gray must have the same color as the rule

si, as they will not be overwritten by any rule s j with i < j ≤ m. Hence, c must be pseudo-monochromatic

and then the Pick-Up-Sticks may proceed. As a result, the algorithm never gets stuck until the all-gray grid

is reached.

• (The Pick-Up-Sticks algorithm results in an all-gray grid) → (P is a strip-rule pattern)

The reverse list of the picked-up rows and columns is a RSRL since on every iteration of the algorithm we

only pick up strips of P. If the Pick-Up-Sticks algorithm results in an all-gray grid, every row and column of

P has been picked up by the end of the algorithm. Hence, the reversed list of picked up rows and columns is

an RSRL that generates P, making P a strip-rule pattern.

This ends our proof.

The same proof works (the number of rules may differ by one) if the Pick-Up-Sticks algorithm results in a grid

with none of its cells black.

2.1.2 Improving by picking maximal sticks.

One important observation by Applegate et al.’s paper on the Pick-Up-Sticks (PUS) algorithm is that there can

be no harm in always using maximal strip-rules. A maximal strip-rule is a strip-rule that picks up a maximal

contiguous sequences of pseudo-monochromatic rows or columns. Following Applegate et al. [1], we call such a

contiguous sequence a block.
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This is possible because replacing a non-maximal strip-rule by the maximal one that contains it does not

adversely affect the pseudo-monochromaticity of any later rule. Hence, we may always use the Maximal Pick-Up-

Sticks (MPUS) algorithm instead of the Pick-Up-Sticks (PUS) algorithm. In this new algorithm, once we choose

the pseudo-monochromaticcolumn (or row) to pick, we pick the maximal contiguous set of pseudo-monochromatic

columns (or rows, respectively) that contains it.

2.2 Equivalence classes

We now introduce the concept of equivalence classes of rows, as used by Applegate et al.’s paper. This definition

will allow us to give structure on the order in which columns and rows should be picked up during an execution of

MPUS in order to find an optimal RSRL.

2.2.1 Definition and properties.

Given a pattern P, we define two rows or columns as being in the same equivalence class if and only if they are

both of the same type (row or column) and their cells have the exact same colors in P, in the same order; that is,

they are identical.

We will denote a column equivalence class in a pattern P as being Cx, where x is the number of black cells

in the original pattern. Analogously, we will denote Ry as being the row class with y black cells in the original

pattern. See Fig. 6 for an example of a pattern and its equivalence classes. It follows from the monotonicity

property (Theorem 2 below) that all the columns in Cx are identical in all positions, for all x, and the same property

holds for all the rows of Ry, for all y. See figures 7 and 8 for intuition on understanding the monotonicity property.

Figure 6: Equivalence classes of a black and white pattern P.

Theorem 2 (part of Theorem 3.1 of Applegate et al. [1]) (Monotonicity Property) Let P be a black and white

pattern. P is a strip-rule pattern if and only if the two equivalent properties hold:

(i) For any color c ∈ {black,white}, the rows of P are hierarchical: given any two rows of P, the set of columns

where c is present in the first row either contains or is contained in the set of columns where c is present in

the second.

(ii) The same property of item (i) holds with the roles of row and column switched.

This theorem will allow us to order the columns and rows of a strip-rule pattern P in a non-decreasing sequence

with respect to the number of black cells. Once the i-th black cell is achieved in the sequence, that i-th cell will

remain black until the end of the sequence.

Since Theorem 3.1 of [1] is not proven in their conference version, we include a proof for the sake of com-

pleteness.

Proof.

Let us begin our proof by verifying that items (i) and (ii) of the Monotonicity Property are equivalent.

I.) (i)↔ (ii)
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Figure 7: A pattern that follows the Monotonicity Property

Figure 8: A pattern that does not follow the Monotonicity Property

Let us start by proving that ¬(i)→¬(ii). Suppose (i) does not hold. Then, given c ∈ {black,white}, there are

two rows A and B , A 6= B, of P that do no follow the property mentioned above. Without loss of generality, let’s

say c = black. Since one set is not contained into each other, it must be the case where both sets contains a element

that the other set does not have.

This implies that both of the following are true at the same time:

(a) There is a column that has a black cell on row A and a white cell on row B.

(b) There is a column that has a black cell on row B and a white cell on row A.

For reference, let’s call this case a checkerboard case; Fig. 9 provides an example.

Figure 9: Example of a checkerboard case, where (i) does not hold.

Let X and Y be one of those columns described in (a) and (b) respectively. The set of rows where black is

present in X has A as one of its rows and the set of rows where black is present in Y has B as one of its rows.

Hence, those sets are not contained into each other. As a result, (ii) does not hold. Thus it must be true that (ii)

implies (i). ((ii)→ (i))
The same argument can be made with the roles of rows and columns switched, leading to a conclusion that (i)

implies (ii). ((i)→ (ii)) Then it must be true that (i) and (ii) are equivalent.
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Let us continue with the equivalence of P being a strip-rule pattern and the Monotonicity property. Let us

divide the proof into two steps:

• (P is a strip-rule pattern) → (Monotonicity Property)

We will prove that ¬(Monotonicity Property) → ¬(P is a strip-rule pattern). Suppose the Monotonicity

property does not hold true. By contradiction, suppose that P is a strip-rule pattern and let S be a strip-rule

RSRL of size m that generates P such that S = (s1,s2, · · · ,sm).

Since the Monotonicity property does not hold true, the same argument as before for the checkerboard case

can be made. Let si be the last rule of S that includes one of the rows or columns of the checkerboard case.

Since si is the last rule that they appear, no other rule after si could have changed the intersection of the rows

A,B and columns X ,Y of the checkerboard case. Then, because of si, either A, B, X or Y must have same

color cells in the checkerboard. However, if that happens, the checkerboard case does not hold anymore - a

contradiction. Hence, P is not a strip-rule pattern and (P is a strip-rule pattern) → (Monotonicity Property)

must hold true.

• (Monotonicity Property) → (P is a strip-rule pattern)

Suppose that the Monotonicity property holds. By contradiction, suppose that P is not a strip-rule pattern.

By Theorem 1, the MPUS algorithm will not stop with a all-gray grid. Then it must have been stuck at a

grid with no pseudo-monochromatic row or column.

Let A be the row with the largest number of cells colored black. Since this row is not monochromatic, there

must be a column Y which intersection with A is a white cell. Y must also not be pseudo-monochromatic.

So there must a row B that intersects Y with a black cell. Since B has a black cell in a column that A does

not have, than it must be true that the black columns of A are a subset of the black columns of B because of

the Monotonicity property. Note also that those sets must not be equal.

Hence, the number of black cells in B is higher than A, a contradiction. As a conclusion, (Monotonicity

Property) → (P is a strip-rule pattern) must hold, which concludes our proof.

In conclusion, we have shown that patterns generated by RSRLs and patterns that satisfy monotonicity are

equivalent. This allows us to label the row and column classes by the number of black cells they contain. For

example, every row that has exactly 4 black cells will be identical and can be grouped into the class named R4. Our

algorithm uses this principle to organize and determine the order of classes to be removed. The fact that RSRL

patterns have all the properties of monotonicity will be helpful in a number of following proofs.

Note that every row and column belongs to exactly one equivalence class. Also, if two columns belong to an

equivalence class in the beginning of the MPUS algorithm, then they will remain of the same class until one of

them is picked up by the algorithm, and at that moment, the other column is also available to be picked up. This is

since picking up other columns does not change these two columns at all, while picking up rows modify these two

columns in exactly the same way. The same property holds for two rows that belong to an equivalence class.

Moreover, if two columns start in different equivalence classes and they are not pseudo-monochromatic during

the execution of MPUS, then they have different numbers on non-gray cells. Indeed, if the two columns differ in a

row, this row cannot be picked up by MPUS before at least one of the column is picked up, as the row would not be

pseudo-monochromatic. The same property holds for two rows that do not belong to the same equivalence class.

We also define an equivalence class as being active during the execution of the MPUS algorithm if some

member of that class is pseudo-monochromatic but not all gray. As argued above, all the rows/columns of a

class that have not been picked up yet are identical. Therefore, we have classes that are active for white (its the

rows/columns are pseudo-white) and classes that are active for black (its the rows/columns are pseudo-black) and

We will use the next proposition.

Proposition 3 (Applegate et al. [1], Observation 6. on page 1070) During the execution of the MPUS algorithm

on a black and white strip-rule pattern, there are always exactly two active classes at any given time. The two active

classes are either a row and a column class of the same color or both classes of the same kind (rows or columns),

being one of each color.
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The intuition on why this happens is that in order for a new class to become active, all the members of an old

active class need to be picked up. Since Observation 6 of [1] is not proven in their conference version, we include

a proof for the sake of completeness.

Proof. Let A be a row with the largest number of white cells and B be a row with the largest number of black

cells. Let X be a column with the largest number of white cells and Y be a column with the largest number of black

cells. Note that the intersections of A and B with X and Y cannot be gray as neither of these rows and columns

have been picked up.

If the intersection of A and X is black, then A does not have and white cells. Indeed, if X ′ is a column that

intersects A in a white cell, than, by the monotonicity property, X ′ starts with more white cells than X . As argued

above, X ′ still has more white cells than X , contradicting the choice of X . With A not having white cells, it follows

that no white cells exist in the current pattern. Then A and B have the same number of black cells, since we cannot

have a column X ′ with the intersection of X ′ and A gray and the intersection of X ′ and B black (X ′ was not picked up

earlier, so the intersection of X ′ and A cannot be gray). Thus all rows are in the same equivalence class, and all are

available for pickup. The symmetric argument with the roles of rows and column reversed shows that X and Y and

all the other non-gray columns are also in the same equivalence class, and all pseudo-monochromatic. Thus there

are exactly two active classes, one a row class and one a column class, and their members are all pseudo-black.

A symmetric argument, with black and white reversed, holds when the intersection of B and Y is white. In this

case, the two active classes are one a row class and one a column class, and their members are all pseudo-white.

Now assume we are in the case where the intersection of A and X is white and the intersection of B and Y is

black. Consider the subcase where the intersection of A and Y is white and the intersection of B and X is black.

We claim that the classes of A and B are active, one with pseudo-white rows and the other with pseudo-black rows.

Indeed, if there is a column Y ′ whose intersection with A is black, then Y ′ ends up with more black cells than Y ,

contradicting the choice of Y . Thus A is pseudo-white. Similarly, if there is a column X ′ whose intersection with B

is white, then X ′ ends up with more white cells than X , contradicting the choice of X . Thus B is pseudo-black. We

continue to argue that no other equivalence classes can be active. First, let A′ be a row that was not picked up and is

in neither the class of A nor in the class of B. Then A′ must have a black cell, in a column where A has a white cell.

Also, A′ must have a white cell, in a column where B has a black cell. A′ is not pseudo-monochromatic. Second, let

X ′ be any column that was not picked up. X ′ has a white cell at its intersection with row A (A being pseudo-white)

and a black cell at its intersection with row B (B being pseudo-black), and thus X ′ is not pseudo-monochromatic.

In conclusion, in this subcase there are exactly two active classes, and one has pseudo-white rows and the other

pseudo-black rows.

We continue the case where the intersection of A and X is white and the intersection of B and Y is black. The

subcase where the intersection of A and Y is black and the intersection of B and X is white is symmetric with the

subcase above, with columns instead of rows. In this subcase there are exactly two active classes, and one has

pseudo-white columns (including X) and the other pseudo-black columns (including Y ) .

We continue the case where the intersection of A and X is white and the intersection of B and Y is black.

Consider the subcase subcase where the intersection of A and Y is black and the intersection of B and X is also

black. We claim that the classes of B and Y are both active, both with pseudo-black rows/columns. Indeed, if there

is a row A′ whose intersection with Y is white, then A′ ends up with more white cells than A, contradicting the

choice of A. Thus Y is pseudo-black. Similarly, if there is a column X ′ whose intersection with B is white, then

X ′ ends up with more white cells than X , contradicting the choice of X . Thus B is pseudo-black. We continue to

argue that no other equivalence classes can be active. First, let A′ be a row that was not picked up and is not in

the class of B (A′ may be A). A′ intersection with Y cannot be white, as otherwise A′ ends up with more white

cells than A, contradicting the choice of A. Thus A′ has a black cell. As A′ is in not in the same class as B, it

must have a white cell. Thus A′ is not pseudo-monochromatic. Second, let X ′ be a column that was not picked up

and is not in the class of Y (X ′ may be A). we can use a symmetric argument to obtain that X ′ has a black cell at

the intersection with B and a white cell elsewhere, and therefore X ′ is not pseudo-monochromatic. Thus there are

exactly two active classes, one a row class and one a column class, and their members are all pseudo-black.

We continue the case where the intersection of A and X is white and the intersection of B and Y is black. Con-

sider the subcase subcase where the intersection of A and Y is white and the intersection of B and X is also white.

By a symmetric argument with the previous subcase (X and Y , A and B, and white and black are interchanged) we

obtained that the only active classes are those of A and X , both with pseudo-white rows/columns. This is the last

case.
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2.2.2 Ordering of equivalence classes.

As we pick up all the members of a column class, we change the rows of the pattern. Since the other columns

remain intact, the new class to become active must be a row class. By using the same argument for row classes, we

see that whenever we pick up all the members of a class, the next class to become active is of the opposite type.

This is formally stated below.

Proposition 4 (Implicit in Applegate et al. [1]) While executing MPUS for a pattern of two colors, if one picks

up all columns of an active class and does not make all the grid gray, then a row class for the opposite color

becomes active. If one picks up all rows of an active class and does not make all the grid gray, then a column class

for the opposite color becomes active.

Proof. From Proposition 3, we know that there are always two active classes at a time. Picking up a (monochro-

matic) column active class will not change the monochromatic property of any other column class. Hence, the

class that will become monochromatic needs to be a row class. The same thing holds with the roles of rows and

columns switched.

Also, the new active class must be of the opposite color because if it was not, the class becoming active would

need to be already active before, since the color being removed is the same as the other cells of that class, which

means that it would need to be monochromatic already.

Let NC be the number of column equivalence classes, and NR be the number of row equivalence classes. We

can order the equivalence classes of both rows and columns in a given pattern P by the number of black cells on

it. In that ordering, we can see from the proposition below that all the rows that two consecutive column classes

differ form exactly an equivalence class. This holds analogously for columns.

Proposition 5 (Implicit in Applegate et al. [1]) Let i be such that 1 ≤ i < NC and j be such that 1 ≤ j < NR. Let

xi be the number of black cells in each column from the ith column equivalence class and let y j be the number of

black cells in each row from the jth row equivalence class.

a) Let Si be the set of rows that have white cells on the intersections of the columns of Cxi
and black cells in the

intersection of the columns of Cxi+1
. Then Si is a row class.

b) Let S j be the set of columns that have white cells on the intersections of the rows of Ry j
and black cells in the

intersection of the columns of Ry j+1
. Then S j is a column class.

Proof. [Proof of item (a)] Let i be such that 1 ≤ i < NC and Si be the set of rows described in the statement of the

proposition. Let α, β ∈ S. By contradiction, suppose α and β differ from each other. Let γ be one of the columns

that they differ and k ∈N
∗ be such that Cxk

is the class of γ. Without loss of generality, assume Cxk
has a black cell

on the row α and a white cell on the row β.

Because of monotonicity, the fact that Cxk
has a black cell on α and Cxi

has a white cell on α implies that xk > xi

must hold true. At the same time, the fact that Cxk
has a white cell on β and Cxi+1

has a black cell on β implies that

xk < xi+1 must hold true. Hence, xi < xk < xi+1. However, xi < xk < xi+1 implies that i < k < i+ 1, which is a

contradiction because k ∈N
∗.

Hence, α and β do not differ from each other, which implies that all the rows of Si are in the same row class.

And if we take another row from the same class, we can see it belongs to Si. Thus Si is a row class.

The proof of item (b) follows analogously with the roles of rows and columns switched.

Proposition 5 can be used to prove:

Proposition 6 The number of row classes and the number of column classes differ by at most one; that is |NR −
NC| ≤ 1.

Proof. Let A = max(NR,NC) and B = min(NR,NC). Note that |NR −NC| = A−B. If NR = NC, we have that

|NR −NC|= |0|= 0 ≤ 1.

Now, suppose NR 6= NC. Assume A = NC. It follows that B = NR.

Let i1 be such that 1 ≤ i1 < NC. Let Si1 be the set of rows that have white cells on the intersections of the

columns of Cxi1
and black cells on intersection of the columns of Cxi1+1

. According to Proposition 5 we have that

Si1 is a row class.
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Let i2 be such that 1 ≤ i2 < NC and i2 6= i1. Let Si2 be the set of rows that have white cells on the intersections

of the columns of Cxi2
and black cells on intersection of the columns of Cxi2+1

. According to Proposition 5(a) we

have that Si2 is a row class.

If i2 < i1, we have that xi2+1 ≤ xi1 , which means that the rows of Si2 must have a black cell on its intersections

with Cxi1
due to monotonicity. This implies that Si2 6= Si1 because they differ on Cxi1

.

If i2 > i1, we have that xi2 ≥ xi1+1, which means that the rows of Si2 must have a white cell on its intersections

with Cxi1+1
due to monotonicity. This implies that Si2 6= Si1 because they differ on Cxi1+1

.

Thus, for every i such that 1 ≤ i < NC we have a different Si that is a row class. From that, we have that

NR ≥ NC − 1, since NC − 1 is the number of different possibilities for i. Hence, NC −NR = A−B ≤ 1.

Now assume A = NR. It follows that B = NC. Using the same reasoning with Proposition 5(b), we have that

NR ≥ NC − 1. Hence, NR −NC = A−B ≤ 1.

Therefore, it is true for any case that |NR −NC| ≤ 1.

Using that information, we can set up the following ordering for the equivalence classes:

1. Start with the column class with only white cells. If this class does not exist, then start with the row class

with only black cells (the existence of this row class follows immediately from the monotonicity property –

Theorem 2).

2. Alternate columns and rows, putting the columns in ascending order of black cells and the rows in descending

order of black cells.

Let Cx0
,Cx1

, . . . ,Cx(NC−1)
,CxNC

be the ascending ordering of column classes by the number of black cells. Let

Ry0
,Ry1

, . . . ,Ry(NR−1)
,RyNR

be the ascending ordering of row classes by the number of black cells. Using the rules

above, we should get an ordering such as Cx0
,RyNR

,Cx1
,Ry(NR−1)

, . . . ,Ry1
,Cx(NC−1)

,Ry0
,CxNC

(alternating row and

column classes). This array may start and/or end with row equivalence classes, instead of columns as above (four

possibilities in total; for example, the array can be Cx0
,RyNR

,Cx1
,Ry(NR−1)

, . . . ,Ry1
,Cx(NC)

,Ry0
). Let N = NC +NR.

Proposition 7 There is an array E1, E2, . . ., EN of equivalence classes that respect the following property: Given

a and b such that 1 ≤ a < b ≤ N, if Ea and Eb are the active classes at some moment during the execution of

the MPUS algorithm, then for every c such that 1 ≤ c < a or b < c ≤ N, Ec has already been picked up. Also, if

b = a+1, then either Ea ∈ R and Eb ∈C or Ea ∈C and Eb ∈ R. Moreover, none of the columns/rows of a class Ec

for a < c < b are pseudo-monochromatic.

Proof. We know from Proposition 3 that there are always exactly two active classes during an execution of PUS.

We combine this idea with the concept of monotonicity in order to create an organization on the possible orders

the classes are picked up in. For the original pattern, let A and B be the two original active classes. If A,B are both

column classes, we must have that one is white and the other is black. Assume without loss of generality that A

is white and B is black. Then we have that A =Cx1
=C0 and B =CxNC

=CnR
. To build the array, we will assign

E1 = A =Cx1
and EN = B =CxNC

since A and B need to be on both ends of the array because both are active even

if no other classes have been picked. If we pick up Cx1
, a row class will need to become active. Also, this class will

need to be the row class with the largest number of black cells due to monotonicity and Proposition 5. Hence, we

should assign E2 = RyNR
. Following the same reasoning, the next member will need to be the column class with

the lowest number of black cells after Cx1
. Hence, we should assign E3 = Cx2

. Analogously, if we pick up CxNC
,

the row class with the least amount of black cells will become available, this being Ry1
. Hence, we should assign

EN−1 = Ry1
, EN−2 =CxNC−1

and so on.

Therefore we can build this array assigning E2i−1 =Cxi
and E2 j = RyNR− j+1

for every 1≤ i≤NC and 1≤ j ≤NR

with EN = CxNC
. Given a and b such that 1 ≤ a < b ≤ N, we have that if Ea and Eb are the active classes, every

class that comes before Ea or after Eb must have already been picked up. Also, note that two consecutive elements

of the array are not of the same type of equivalence classes (row/column). Note also that that E2NC−1 =CxNC
= EN ,

which means that N = NR +NC = 2NC − 1 and NR + 1 = NC, which agrees with Proposition 6.

If A,B are both row classes, we may build this array analogously assigning E2 j−1 = Ry j
and E2i =CxNC−i+1

for

every 1 ≤ i ≤ NC and 1 ≤ j ≤ NR and EN = RyNR
. For this case, NC + 1 = NR.

For A and B being of different types, let’s assume the color of the active classes, which is the same, is white. We

can build this array assigning E2i−1 =Cxi
and E2 j = RyNR− j+1

for every 1 ≤ i ≤ NC and 1 ≤ j ≤ NR with EN = Ry1
.

For this case, E2NR
= Ry1

= EN and N =NR+NC = 2NR and NR =NC, which agrees with Proposition 6. If the color

is black, we can build this array assigning E2 j−1 = Ry j
and E2i = CxNC−i+1

for every 1 ≤ i ≤ NC and 1 ≤ j ≤ NR
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with EN =CxNC
. For this case, E2NC

=CxNC
= EN and N = NR +NC = 2NC and NR = NC. By construction it is easy

to see that a column/row of a class Ec must not be monochromatic while the two active classes are Ea and Eb for

a < c < b. From our construction and definitions, the only way for a class to become active, is to have either the

class immediately to its left or right in the hierarchical array already removed. This therefore cannot be true while

a < c < b since we know the only classes removed are those that come before a or come after b.

We will call this ordering the hierarchical array of the pattern P. The hierarchical array is a useful extension

of Observation 5 on page 1070 of Applegate et al. [1].

We will also refer to this ordering of equivalence classes as E1,E2, . . . ,EN . That is, if the hierarchical array

starts with a column, then E1 =Cx0
, E2 = RyNR

, E3 =Cx1
, and so on, and if the hierarchical array starts with a row,

then E1 = RyNR
, E2 =Cx0

, E3 = Ry(NR−1)
, and so on. Note that NC, the number of column classes, is at most nC, the

number of columns, and the same property holds for rows.

2.2.3 Embedded rows and columns.

We can start improving the MPUS algorithm by introducing the concept described by Applegate et al.’s paper as

embedded rows and columns. This will allow us to pick up more rows and columns using the same number of

rectangles.

First, we will define the concept of an embedded column or row at a given stage of the MPUS algorithm. Given

a point during the execution of the MPUS algorithm, let b be a column of an active equivalence class B. Let a1 be

the first column to the left of b that does not belong to B and has not yet been picked up. Similarly, let a2 be the

first column to the right of b that does not belong to B and has not yet been picked up. We say that b is embedded

in equivalence class A if both a1 and a2 belong to that class A. The definition is analogous for rows. Note that

columns can be embedded only in column classes and rows only in row classes. See Fig. 10 for an example.

Figure 10: Example of a pattern P where one member of C0, the second column, is embedded in C2.

If during the execution of the MPUS algorithm we have the option to pick up two column-blocks that embed

a set of columns of another active class, then we can pick up the two column-blocks that embed the third one

with two rectangles and then the embedded one, totaling three rectangles. However, it is never worse to pick the

embedded block first with one rectangle, and then pick the two blocks that were previously embedding it with only

one rectangle, thus using a total of two rectangles for the same set of columns. As an example, in Fig. 10, one

cannot benefit by picking up the first and the third column, when one can pick up first the second column, followed

by picking up the block of the first three columns.

2.3 Segments

During MPUS, there are always two active classes. A “segment” succinctly represents the blocks that are available

for pick up while a certain pair of classes are active. These segments can be translated into nodes of a graph

(the segment graph that is discussed in detail later), that can be used for finding an optimal solution, as described

below. Note that our representation of segments is a slightly condensed version of the one described in the original

Applegate et al.’s paper [1]. The difference is that the original definition is a five tuple with two redundant elements.

2.3.1 Definition and properties.

Whenever a new class becomes active during the execution of the MPUS algorithm on a pattern P, we will define

a segment S as being a tuple of three elements (Ex,Ey,U), where Ex and Ey are the active equivalence classes and

U is the subset of members (rows or columns) left unpicked of Ey (U ⊆ Ey).

Proposition 8 Let E1, E2, . . ., EN be the hierarchical array of a pattern. Given a and b such that 1 ≤ a < b ≤ N it

is possible to know what colors correspond to each active class of {Ea,Eb}.
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Proof. Let a and b be such that 1 ≤ a < b ≤ N. There are four possible cases for the hierarchical array (it can

start with a row class or a column class, and it can end with a row class or a column class). In all cases, the number

of black cells in columns is increasing and the number of black cells in rows is decreasing.

When we pick from either sides, the color alternates for each item picked up as well as its type. Hence, the

color of Ea will always match the color of E1 if they have the same type and differ if they are from different types.

The same will happen with Eb and EN . So in all cases, if Ea is a column class, then Ea’s columns are pseudo-white

and if Ea is a row class, then Ea’s rows are pseudo-black. For Eb, it is reversed: if Eb is a column class, then Eb’s

columns are pseudo-black and if Eb is a row class, then Eb’s rows are pseudo-white.

It is a consequence of this proposition the fact that having a segment S = (Ek1
,ck1

,Ek2
,ck2

,U), U ⊂ Ek2
, is

redundant. We may start referring to a segment as only S = (Ek1
,Ek2

,U), U ⊂ Ek2
.

We can represent the sequence of actions of the MPUS execution as a sequence of segments, as described

in this paragraph. Given the pick-up order obtained through the execution of the MPUS, let’s create a segment

(E0,EN ,EN) for the starting state of pattern P and a segment (Ex,Ey,U), U ⊆ Ey, for every time a new class Ex

becomes active; we say that the RSRL passes through the segment whenever such a segment becomes active during

the MPUS execution corresponding to the RSRL.

Since Ex is the new class, all of the members of Ex are still in the pattern. Ey, in the other hand, is a class

that was already active. It may have some of its members already picked up. We store that information in U by

maintaining the members that have not been picked up yet. Note also that any classes that are between Ex and Ey

in the hierarchical array of P have not become active yet, resulting in the fact that all of their members are still

there. At the same time, members that come before and after the interval delimited by Ex and Ey have all been

picked up. Hence, for each one of those segments that are created whenever a class becomes active it is possible

to reconstruct the pattern at that moment of the execution of the MPUS algorithm.

2.3.2 Segment branching.

Applegate et al.’s paper [1] shows that if we are looking for an optimal solution, then we can narrow down the

number of segments significantly by reducing the number of options into which a segment can “branch” to two.

By branching we mean, given a segment, find the other nodes in the segment graph that can be reached by traversing

one edge.

Suppose that a minimum-length RSRL for a strip-rule pattern P passes through the segment S = (Ex,Ey,U)
and that to get in MPUS to the next segment, if it exists, we pick up all members of Ex (possibly picking up some

members of U ⊆ Ey) while at least one member of U remains active.

• If U ⊆ Ey has a member that is not embedded in Ex, then there exists a minimum-length RSRL that passes

through the segment S = (Ex,Ey,U) and that to get to the next segment you first pick up (in maximal blocks)

all the members of U ⊆ Ey that are embedded in Ex, followed by picking up (in maximal blocks) all members

of Ex.

• If all members of U ⊆ Ey are embedded in Ex, then there exists another minimum-length RSRL that passes

through the segment S = (Ex,Ey,U) and that to get to the next segment you pick up all the members of

U ⊆ Ey (thus, finishing picking up every member of Ey in the pattern). Note that in this case, one gets to the

next segment by picking up all the members of U ⊆ Ey before picking up all the members of Ex; in other

words Ey is picked first.

The property above follows Proposition 9 below. The same property holds with the roles of Ex and U switched.

In this case, we assume the next segment from S, if it exists, is originally reached by picking up all members of

U ⊆ Ey.

Intuitively, this property happens because we can always pick embedded members at no extra cost, if one is to

pick all the blocks of the embedding class. Note that, if all members of U ⊆ Ey are embedded in Ex, we completely

pick up Ey before Ex and we can apply the property with roles of Ex and U switched, resulting in all the members

of Ex embedded in Ey being picked up first, in maximal blocks, followed by picking up in maximal blocks all the

members of U .

Proposition 9 (statement 2(a) of Lemma 4.2 of Applegate et al. [1]) Suppose we have two sets Ux and Uy of ac-

tive blocks of the two active classes Ex and Ey. Suppose there is an optimal solution that completely picks up Ex

before completely picking up Ey. Then there also exists an optimal solution that picks up all members of Uy

embedded in Ex before completely picking up Ex.
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Since Lemma 4.2 of [1] is not proven in their conference version, we include a proof for the sake of complete-

ness.

Proof. This follows closely from the definition of embedded members, which can be effectively picked up at

zero net cost along with the blocks embedding them. This is easy to observe in an example: consider the leftmost

three columns of Fig. 10. Here we see a member of C0 (the white column) embedded in two blocks of C2. We

could pick up the embedding blocks using two rules, or we could first pick up the embedded block followed by

picking up both embedding blocks using only one wider rule. The overall result is still two rules which pick up all

members of the embedding class. This is, without loss of generality, either a helpful or irrelevant action. So in our

solution we will always choose to remove the embedded blocks before the embedding blocks.

Moreover, suppose we have two sets Ux and Uy of active blocks of the two active classes Ex and Ey. To finish

picking up blocks (except at the very end), we must reach the situation that either Ex or Ey are not active anymore;

say Ex becomes not active, while Ey is still active. Picking up any block from the class Ey that is not embedded in

Ex can be done, without loss of optimality, later. So we can assume that only the members of Uy that are embedded

in Ex are picked up while Ex is active.

Note also that for every segment we can pick the latest class that became active or the oldest, a total of two

options. We can then say that every segment will branch into two other segments. In both cases, we can determine

the next segment reached by eliminating every embedded member of the class not being picked up, followed by

eliminating every member of the class being picked up. The only exception to this occurs when all members of

Ux are embedded in Ey or all members of Uy are embedded in Ex. In the former exception case, based on the

discussion above, we can assume an optimal solution picks up all in maximal sticks Ux, and in the latter case we

can assume an optimal solution picks up all in maximal sticks Uy. In both exception cases, the original segment

gives rise to only one segment, instead of branching into two segments.

Note that there could be a segment that does not have any next segment. In this case, the segment is a segment

at the very end of MPUS execution. If we pick up any of either class, then we will obtain an all-gray grid and the

algorithm will be over. Also, note that for this to happen we must have that Ex and Ey are next to each other in the

hierarchy array, and picking-up one of them will also result in picking-up the other one.

2.3.3 Segment graph.

We build a “segment graph” using the segments as nodes, as described by the following structure proposed by

Applegate et al. [1]:

• Start with the segment (E0,EN ,EN), that represents the grid as it is in the very beginning of the MPUS

algorithm. This will be the starting node.

• For every node (segment) in the graph, generate the two segments (possibly one, as described in the previous

subsection) that it branches into and add a directed edge from it to the new generated nodes. There will

be one segment for each of the two options of picking up the newest or the oldest of the two classes in the

segment. In both cases, we can determine the next segment reached by eliminating every embedded member

of the class not being picked up, followed by eliminating every member of the class being picked up.

• Define the cost for each edge as the number of rules in the MPUS algorithm used to go from one segment to

another.

• Create an artificial node corresponds to an all-gray grid. This will be the end node of the graph. Every time

a segment has its two classes adjacent to each other in the hierarchy array, create an edge from it to this

all-gray grid node. This edge should have cost one (since we solve the modified version); if we were to solve

the original version, then this edge should have cost zero if the members of the classes of the segment were

white and one otherwise.

Because of what was discussed in Subsection 2.3.2, at least one of the paths from the starting node to the end

node of the graph will be a minimum-length RSRL. Note that having (EN ,E0,E0) as the starting node will lead to

a graph that represents the same possible steps for the MPUS because it also represents the same starting pattern.

Note also that some nodes may be reached by more than one node. Every node will only branch into nodes that

correspond to patterns with a smaller number of total of columns and rows. This implies that there are no cycles

in this graph.
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We say that one segment reaches another if there is a path in this graph from that segment to the other one. The

distance from one segment to another is the sum of the costs of the edges that compose the path between them, if

such a path exists. One very important property of this graph is that if two segments (Ex,Ey,U) and (Ex,Ey,U
′)

are reachable from the starting node of the graph, then either U ⊆U ′ or U ′ ⊆U .

Lemma 10 (Containment Lemma – Lemma 4.3 of Applegate et al. [1]) Let S and S′ be two segments on the

same equivalence classes (in the same order). Then either U ⊆U ′ or U ′ ⊆U.

Intuitively, this follows from the fact that we have a strict ordering on the equivalence classes that could embed

columns in U . See Applegate et al.’s paper [1] for a rigorous inductive proof of this lemma. We will see (and it

was proven in [1]) that this implies that the number of nodes in this graph is O(n2), where n is the number of rows

and columns in the original pattern.

3 Algorithm

The flow of our algorithm closely follows that of the O(n3) algorithm given by Applegate et al. We similarly create

a segment graph of the reachable states in a MPUS of the pattern. However, we create this graph faster by grouping

similar segments into S-groups, which can be processed together.

3.1 Setup

We begin by reading the input pattern into an equivalence class list and creating the first node in our segment graph.

3.1.1 List of equivalence classes.

We are given as input an nR × nC grid of black and white cells. Assign each of the rows an index from 1 to nR

from top to bottom, similarly each column, an index from 1 to nC from left to right. Group rows and columns into

equivalence classes and order the classes by number of black cells as previously described in the Subsection 2.2.

Precisely, construct the hierarchical array:

Cx0
,RyNR

,Cx1
,Ry(NR−1)

, . . . ,Ry1
,Cx(NC−1)

,Ry0
,CxNC

(this array may start and/or end with row equivalence classes, instead of columns as above).

We will need to determine from a range of column indexes if there are columns also in a range of equivalence

classes, and the similar question with rows instead of columns. A data structure such as an orthogonal range tree [2]

accomplishes these queries in O(log n) time with O(n logn) space and setup time. We call this data data structure

column range tree, and we also keep a similar row range tree.

3.1.2 S-groups.

Define an S-group (E1,E2) (for equivalence classes E1 and E2, where the order of E1 and E2 in the tuple above

matters) to be a collection of all segments {C1,C2,U
′} such that C1 = E1 and C2 = E2. To completely represent

each of these segments, an S-group (E1,E2) maintains a list of segments S and a master list U . This list U will

be used to keep track of all the individual lists of all the segments of this S-group (the list U ′ of each segment),

as described below. This allows each segment to be stored in constant space, while the S-group gets stored in

O(|E1|+ |E2|) space.

The list U contains the index of every member of E2 ordered such that for every segment {E1,E2,U
′} in the

S-group, the first |U ′| members of U comprise the same set as U ′. Such an ordering is guaranteed to exist by the

Containment Lemma 10. We generate this ordering by noting that indexes appearing in more segments appear

earlier in the list U .

The list S of segments maintained by the S-group, keeps these segments ordered by the size of their set U ′.

Each segment si will have three values, u(si), d(si), and p(si). Set u(si) = |U ′|. The field d gives the minimum

number of sticks required to reach the state of segment starting from the original pattern. We want to maintain the

shortest path to each node, so we use the value p to store a reference to the segment right before this one on this

path.
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3.1.3 Origin S-group.

We begin with the S-group (E1,E2) with U = Ẽ2 and S comprised of a single segment (u,d, p) = (|Ẽ2|,0,null),
where Ẽ represents the set of all the members of equivalence class E . The classes E1 and E2 are the first and

last members of the hierarchical array. We will explore outwards from this S-group in a breadth-first fashion,

enumerating all reachable segments. The graph on the S-groups is guaranteed to be acyclic because the number of

picked up classes is strictly increasing along each edge. This graph with S-groups implicitly stores all the useful

information of the segment graph.

3.2 Finding the next S-group

Suppose we have some S-group (E1,E2) with associated lists U and S. Without loss of generality we will assume

E1 to be a column class. We wish to generate all S-groups reachable from this S-group. The two S-groups

immediately reachable from this S-group correspond to completely removing either class E1 or E2.

To determine the cost of removing a class Ei from a segment s j, we count how many members of E3−i can

be picked up for free, as described in detail later. If two members of Ei may be picked up with the same stick

assuming we had E1 and E2 as active classes and all the members of E3−i have been picked up, then we will call

the two members contiguous. It follows from Proposition 7 that a pair of columns is contiguous in an S-group

(E1,E2) if every column between them is either already picked up or of type E1 or E2.

Before the class Ei can be removed from a segment (E1,E2,U
′) (all the members of the class being picked up),

we pick up every embedded member of E3−i. To determine the cost of moving to the next segment, we must count

how many of the embedded columns are also contiguous. Then any embedded columns must be removed from

either the set U ′ (if E1 is removed) or E1 (if U ′ is removed) in the next segment and, by doing this for all segments

of an S-group, in the next S-group. In fact, we process one S-group at a time, and obtain segments of another at

most two S-groups, as explained below.

Because E1 and E2 are not symmetric (E2 comes with its set U), we will describe the process of removing

classes E1 and E2 separately.

3.2.1 Remove E1.

Let E3 be the equivalence class adjacent to E1 in the equivalence class list, which has not yet been removed. The

S-group corresponding to the result of removing E1 will be (E3,E2) with lists Û and Ŝ (with their associated u(.),
d(.), and p(.) fields).

Count Contiguous Consecutive Pairs of Columns of E1. To determine the distances to the segments of the next

S-group, we must count the number of contiguous E1 ranges.

To do so, we must determine the range of equivalence classes which have not yet been picked up. Let E1 be

the column class Ca. If E2 is also a column class, then call it Cb. If E2 is a row class, then Cb is the column class

adjacent to E2 in the equivalence class list that has already been picked up. We assume a < b, with the other case

being symmetric. By Proposition 7, a column class Ci other than Ca has not been picked up if and only if i ∈ (a,b).
For each pair of adjacent members of E1 we check to see if they are contiguous. Precisely, for each member

ei ∈ E1, we query our column range tree for the existence of members in the range [a+ 1,b− 1] with index in the

range [ei,ei+1], where ei+1 is the column of Ei that has the smallest index among those with index higher than ei

(ei+1 is the next column of Ei after ei). Let c be the number of pairs of consecutive members of E1 which are also

contiguous. The value (|E1|− c) corresponds to the number of sticks required to completely remove E1 after any

embedded columns of E2 are picked up.

Get Embedded E2 Blocks. If E2 is also a column class, then we must count and remove any members of E2

embedded in E1. Similar to the way we checked that columns of E1 were contiguous, we will check if adjacent

columns of E1 are both contiguous and contain columns of E2. In order to accurately keep track of the cost

to remove these embedded columns we must give each embedded column a tag based on which two columns

surrounded the embedded column. Two members of E2 can be picked up with the same stick if and only if they

have the same tag.

When an embedded column is found, tag it with the index of the E1 column to its left. Then add this column to

a list, B, sorted by the column’s index. After we have found all of the embedded columns, we are ready to generate

Û and Ŝ (with their associated u(.), d(.), and p(.) fields).
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Build the Next S-group. Begin with Û as an empty list. We also need a set T to keep track of which tags have

been accounted for. Iterate through U , searching for each member m of U in the set of embedded columns, B. If

m 6∈ B, then append m to the end of Û . Otherwise add m’s tag value to the set T if it is not already there. Once we

have checked all of the members U ′ in a segment si (U ′ being the first u(si) elements of U) , add a new segment ŝi

to Ŝ with the following values:

u(ŝi) = |Û |,

d(ŝi) = d(si)+ |T |+ |E1|− c,

p(ŝi) = si

(note that |Û | and |T | are computed for the sets Û and T exactly when having finished processing the last element

of U ′ while iterating through U ; Û and T can change later on). If Ŝ already contains a segment ŝ j with u(ŝ j) = u(ŝi),
then keep only the segment with shorter distance d in the set Ŝ, and remove the other one. As an aside, one can

see that if we do not remove duplicates, if two segments from the same S-group si and s j have u(si) > u(s j), then

u(ŝi)≥ u(ŝ j), which is used in the proof of the Containment Lemma 10 of [1] (precisely, Case 2a).

3.2.2 Remove E2.

Let E3 be the equivalence class adjacent to E2 in the equivalence class list, which has not yet been removed. The

S-group corresponding to the result of removing E2 will be (E3,E1) with lists Û (whose elements are members of

the class E1) and Ŝ.

Count Contiguous Consecutive Pairs of Rows/Columns of E2. To count contiguous ranges of E2, we must

count the contiguous ranges within each segment separately. We use a counter c, initially set to 0. Fortunately, if

a pair of rows/columns is contiguous in one segment then it is also contiguous in all larger (with bigger value of

u) segments. For each index u j ∈ U , insert u j into a sorted list of indexes, I. Get the predecessor and successor

of u j in I and check if these ranges from u j to its neighbors are contiguous. If either of these ranges exists and is

contiguous (which we check with column range trees as in the previous subsection), then this column can be picked

up for free. If not, we increment our cost counter c. Once we have iterated over the first u(si) blocks, we save the

state of our counter in a value ci = c. This value corresponds to the cost to completely pick up the rows/columns in

the segment si after any embedded members of E1 have been picked up. Proceed (with c possibly increasing) until

we finish the list U .

Get Embedded E1 Blocks. If E2 is also a column class, then we must count and remove the embedded columns

of E1. Each segment could have a unique number of embedded columns, where the larger the segment, the more

columns of E1 can be embedded and the smaller the resulting segment will be in the next S-group. As an aside,

this is an argument used in the proof of the Containment Lemma 10 of [1] (precisely, Case 2b).

To generate the ordering of Û and the values in Ŝ and we must carefully count the embedded columns.

We iterate through the columns of U , keeping track of which columns of E1 are embedded and will get picked

up. To help us with this task, we start with a sorted list V of the indexes of the columns of E1, an empty list for Û ,

and a counter d, initialized to d = 0, to measure the number of required sticks. Also start with B, a set of columns

of E1, initialized as the empty set.

Similar to the way we counted contiguous blocks, for each column ui ∈ U we insert ui into a sorted list of

indexes I. Get the predecessor and successor of ui in I, called u j and uk respectively, if they exist (in which case

j < i and k < i). Use range search to check if u j and ui are contiguous, and if ui and uk are contiguous; if a pair

does not exist, then treat it as not being contiguous. If neither of these two pairs is contiguous, then do nothing. If

exactly one of these pairs is contiguous, then use binary search in V to obtain the set of columns of E1 embedded

between the pair, add this set to B, and increment d. If both of these pairs are contiguous, then use binary search to

determine if there are elements of Ẽ1 (defined earlier as all the columns of class E1) between u j and ui and between

ui and uk; in which case we increment d. After we have iterated through u(si) columns of U , it is time to add to Û

and create a new segment ŝi ∈ Ŝ with the following values:

u(ŝi) = |V |− |B|,

d(ŝi) = d(si)+ d+ ci,

p(ŝi) = si.
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Remove all of the members of B from V , then add all of these members to the beginning of Û . Reset B to be the

empty set. Continue iterating through U .

Once we have finished iterating through U , add the remaining elements in V to the beginning of Û . Notice that

now we have that u(si) is a decreasing as a function of i; we therefore invert the u(.) list and the associated d(.)
and p(.) fields.

Build the Next S-group. If E2 is a row class, then Û = Ẽ1 and Ŝ contains one segment ŝ. To find ŝ, we iterate

over each segment si ∈ S looking for the segment si with minimum value d(si)+ ci. ŝ has the following values:

u(ŝ) = |Ẽ1|,

d(ŝ) = d(si)+ ci,

p(ŝ) = si.

If E2 is a column class, Û and Ŝ were created while we found embedded columns.

3.3 Merging Identical S-groups

Once we have generated a new S-group (Ei,E j) we add it to a two-dimensional table, where the row is determined

by Ei’s index in the original list of equivalence classes, and the column similarly determined from E j’s index.

If an S-group (Ei,E j) already exists, then we must merge the two S-groups. Given two (Ei,E j) S-groups,

G1 = {U1,S1} and G2 = {U2,S2}, we will compute a new S-group, G3 = {U3,S3}, that encompasses both of these

S-groups which will then get stored in our table. We iterate through both G1 and G2 concurrently in order to create

G3, as described below. We start with U3 and S3 being empty.

Merge S1 and S2, maintaining the ordering based on u1 and u2. Iterate through each sk in this merged list. Let

Sq be the list which contains sk (q = 1 or q = 2). Remove elements from the start of Uq, adding them to the end of

U3 until |U3|= u(sk). (Do not add an element to U3 if it is already in U3.) This works because of the Containment

Lemma 10. (As an aside, the proof in Applegate et al. [1] of the Containment Lemma, precisely subcase 2c, relies

on proving the fact that all the values of u(s) with s ∈ S1 are at most the minimum of the values of u(s) with s ∈ S2,

or vice versa. So this merge procedure could be simplified) Add sk to S3. If G1 and G2 both have segments such

that u(sa) = u(sb), then choose the segment of smaller distance (field d(.)) to add to S3.

This merge can be done in O(|E2| logn) as one can use binary search trees to check which elements are in U3.

3.4 Finding an optimum RSRL

While we build the graph on S-groups, we keep track of the segment which is a valid endpoint of the smallest

distance. We define a valid endpoint to be a segment which is completely gray (this is since we solve the modified

version of the problem; for the original problem, we would have a segment which is completely white and gray).

A segment (E1,E2) is an endpoint if E1 = E2. (In the original version, we also have the case where E1 and E2 are

adjacent in the equivalence class list and the cell where E1 and E2 intersect is white in the original pattern.) Then

once the graph on S-groups is finished, we build a path to the valid endpoint using the values stored in p. This

path will give an optimal order to remove equivalence classes, which can then be translated into an optimal list of

rectangle strip-rules.

This algorithms returns an optimum solution, as follows from all the discussion above.

4 Time and Space Complexity

In this section we will show the time and space complexity of the previously defined algorithm is O(nN log n) and

O(nN) respectively – where N is defined earlier as the total number of equivalence classes and n is defined earlier

as the total number of rows and columns in the original pattern. The ideas of our proof are partially taken from a

more complete version of Applegate et al. [1], which showed the number of reachable segments to be in O(n2).
Indeed, our contribution is a faster way of processing a segment, cutting down this processing time down from

O(n) to O(logn).
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Following Applegate et al. [1], we will show that if the complexity for an S-group (Ea,Eb) is in O(|Ea|+ |Eb|),
then the overall complexity of all S-groups is O(nN). For each S-group, add the first term of its complexity,

O(|Ea|), to one two-dimensional array, and its second, O(|Eb|), to a second array – each at location (Ea,Eb).











E1 E1 . . . E1

E2 E2 . . . E2

...
...

. . .
...

EN EN . . . EN





















E1 E2 . . . EN

E1 E2 . . . EN

...
...

. . .
...

E1 E2 . . . EN











By noting that the sum of all members of all equivalence classes equals the total number of rows and columns,

we get ∑N
i=0 |Ei|= n. The sum of the columns in the first matrix and the sum of the rows in the second matrix both

equal n. The sum of all terms in both matrices is 2nN, so the complexity of all S-groups is in O(nN).
The space complexity of the algorithm is determined by the sizes of the lists storing the S-groups. Each S-group

maintains a list U , which holds members of Eb, and is therefore in O(|Eb|). The list S contains all segments. Each

segment is guaranteed to have a unique size u, and the values of u are positive values at most |Eb|. The complexity

of each segment is constant, so we again have O(|Eb|). As we have previously shown, since each segment is in

O(|Ea|+ |Eb|), the overall space complexity is O(nN).
Each operation we perform on an S-group (Ea,Eb) happens in time either O(|Ea| log n) or O(|Eb| log n), as

indeed every “check” from the algorithm’s description takes time O(logn), after O(n logn) initialization of the

range search data structure or the ordered list represented by a balanced binary tree. So the runtime for processing

the equivalence class list is O(nN log n).
Since reading the input takes O(n2) time and N is in O(n) (this follows immediately from Theorem 2), we relax

our bounds and say our space complexity is O(n2) and the overall runtime is O(n2 log n).

5 Conclusions

As noted in Norige et al. [21, 22], these solutions do not generalize to dimensions higher than two. This is the

most interesting open question, in our opinion.

We believe that range trees can be replaced by ad-hoc methods to obtain a O(n2) algorithm for exact RSRL

strip-rule minimization. The savings of O(logn) in running time comes at the expense of a more complicated

algorithm which we decided not to present.
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