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Abstract

In this paper we study the problem of assigning transmissamges to the nodes of a static ad hoc wireless
network so as to minimize the total power consumed underdhstraint that enough power is provided to the nodes
to ensure that the network is connected. We focus on the-ROWER SYMMETRIC CONNECTIVITY problem, in
which the bidirectional links established by the transimissanges are required to form a connected graph.

Implicit in previous work on transmission range assignmerder asymmetric connectivity requirements is the
proof that MN-POWER SYMMETRIC CONNECTIVITY is NP-hard and that the MST algorithm has a performance
ratio of 2. In this paper we make the following contributiof) we show that the related IM-POWER SYMMETRIC
UNICAST problem can be solved efficiently by a shortest-path contjputén an appropriately constructed auxiliary
graph; (2) we give an exact branch and cut algorithm based mewainteger linear program formulation solving
instances with up to 35-40 nodes in 1 hour; (3) we establighstmilarity between WMN-POWER SYMMETRIC
CONNECTIVITY and the classic 82INER TREE problem in graphs, and use this similarity to give a polyralrtime
approximation scheme with performance ratio approachjfigas well as a more practical approximation algorithm
with approximation factor 11/6; and (4) we give the resufta gomprehensive experimental study comparing new
and previously proposed heuristics with the above exactapdoximation algorithms.

This version has minor corrections compared to the WINET63®per. One should also check out the improve-
ment of Grandoni in ESA 2012.

*Preliminary versions of the results in this paper have aguoka [1, 12].
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1 Introduction

Ad hoc wireless networks have received significant attenitiorecent years due to their potential applications in
battlefield, emergency disaster relief, and other apptinadcenarios (see, e.g., [3, 9, 10, 17, 19, 23, 27, 31, 30]).
Unlike wired networks or cellular networks, no wired backbanfrastructure is installed in ad hoc wireless networks.
A communication session is achieved either through sihgletransmission if the recipient is within the transmiasio
range of the source node, or by relaying through intermediatdes otherwise. We assume that omnidirectional
antennas are used by all nodes to transmit and receive sighalis, a transmission made by a node can be received
by all nodes within its transmission range. This featureissnely useful for energy-efficient multicast and broadca
communications.

For the purpose of energy conservation, each node can ghodghamically) adjust its transmitting power, based
on the distance to the receiving node and the background.noishe most common power-attenuation model [24], the
signal power falls ask- wherer is the distance from the transmitter antenna amsla realconstanitdependent on the
wireless environment, typically betwee@rand4. Assume that all receivers have the same power threshokigoal
detection, which is typically normalized to one. With thésamption, the power required to supporta link between two
nodes separated by a distande . A crucial issue is how to find a route with minimum total enecgnsumption
for a given communication session. This problem is refeteedsMinimum-Energy Routingn [27, 31]. Having
every link established in both directions simplifies the-tno@ transmission protocols by allowing acknowledgment
messages to be sent back for every packet (see, for exangj)e [Bhis motivates the study of the IM-POWER
SYMMETRIC CONNECTIVITY problem, where alink is established only if both nodes hesgsimission range at least
as big as the distance between them, and we must ensure tilalisted links form a connected network. Like in
[3], in this paper the objective is to minimize the total powssigned to the nodes; previous research on symmetric
connectivity has also addressed the objective of minirgigie maximum node power [19, 23].

Formally, given a set of pointg (representing the nodes in the network)A# (the two-dimensional Euclidean
space) or inE? (the three-dimensional Euclidean spaceyaasmission range assignmefor range assignmenfor
short) is afunctiom : V. — R,. A unidirectional linkfrom nodeu to nodev is established under the range assignment
rif r(u) > |luv||, where|juv|| denotes the Euclidean distance betweesndv. This model was first considered
by Chen and Huang [6]. Aidirectional link uv is established under the range assignmeifitr(v) > ||uv| and
r(v) > |luwv|. Let B(r) denote the set of all bidirectional links established betwpairs of nodes i under the

range assignment In this paper we study the following problem:

MIN-POWER SYMMETRIC CONNECTIVITY: Given a set of nodeg andx > 1, find a transmission range assignment

r:V — Ry minimizing)_ . 7(v)" subject to the constraint that the graf¥f) B(r)) is connected.

Implicit in the work of Clementi, Penna, and Silvestri [18]a proof that MN-POWER SYMMETRIC CONNEC-
TIVITY in E? is NP-Hard (radio “bridges” in canonical form gadgets, sesifition 3 on page 10 of [10], can be

made to be bidirectional links). Also implicit in [10] is theroof that, inE3 and in the graph model, M-POWER



SYMMETRIC CONNECTIVITY is APX-complete, and therefore, unleBs= N P, does not admit a polynomial-time
approximation scheme. Thus, we search for polynomial-tiorestant approximation factor algorithms for this prob-
lem. Theapproximation factoror performance ratipof approximation algorithmi for a minimization problem is
the supremum, over all possible instanéesf the ratio between the cost of the outputbivhen running orf and the
cost of an optimal solution faf (the smaller the performance ratio, the better). We sayAhatan«-approximation
algorithmif its performance ratio is at most A fully polynomiala-approximation schemie a family of algorithms
A, such that, for every > 0, algorithmA. (1) has performance ratio at mastt+ ¢, and (2) runs in time polynomial
in the size of the instance ande.

Kirousis, Kranakis, Krizanc, and Pelc [17] Chen and Huariggf8e a minimum spanning tree (MST) based 2-
approximation algorithm for MN-POWER SYMMETRIC CONNECTIVITY (their algorithm is actually designed for a
related problem, which we discuss in Section 2); this athariwas rediscovered by Kirousis, Kranakis, Krizanc, and
Pelc [17]. In this paper we improve the performance ratioeurlby exploiting similarities between IM-POWER
SYMMETRIC CONNECTIVITY and the classic 8INER TREE problem: given an edge-weighted gra@h= (V, E, w)
and a sefl” C V of terminals find a minimum weighSteiner tredor 7', i.e., a minimum weight connected subgraph
of G which containgl". It is well known that computing an MST in the complete grapt¥owith edge-weights equal
to the minimum distance i& between corresponding terminals gives a 2-approximatgorighm for STEINER TREE
[7, 18]. Zelikovsky [32] gave the first algorithm with perfoance ratio less than 2: he used 3-restricted Steiner trees
and the concept afainto obtain a performance ratio o1 /6. Promel and Steger [22] extend the results of Camerini,
Galbiati, and Maffioli [5] and give a polynomial tim&/3-approximation scheme forrf&INER TREE, by finding an
almost optimal 3-restricted Steiner tree.

We show that similar concepts can be used for approximating-ROWER SYMMETRIC CONNECTIVITY. In
particular, we show that the algorithms of [22], [32], [2hda[33] can be modified to give similar performance ratios
for MIN-POWER SYMMETRIC CONNECTIVITY. Our main results are a fully polynomia}3 approximation scheme
based on [22], and a more practical algorithm with approxiomefactor of 11/6 [32].

Our algorithms have the same approximation guarantees wésvork nodes are located 3. In fact, since
they work on a graph model of the network, our algorithms carapplied to more general problem formulations,
e.g., observing given upper-bounds on the transmissiageraheach node and/or taking into account obstacles that
completely block the communication between certain pairarfes.

The rest of the paper is organized as follows. In Section 2 iseuds several connectivity problems under both
symmetric and asymmetric connectivity models. In pardcule show that the Mi-POWER SYMMETRIC UNICAST
problem (which, for given source and destination nodes,c V, asks for a sequenag = s,v1,...,v; = t Of
nodes and transmission ranges;), i = 0, ..., k, under which all bidirectional links;v;; are established) can
be solved efficiently by a shortest-path computation in gor@griately constructed auxiliary graph. In Section 3 we
give a new integer program formulation for thaMAPOWER SYMMETRIC CONNECTIVITY problem, and describe an

exact branch and cut algorithm based on this formulatiopeEimental results show that the branch and cut algorithm



solves instances with 25 nodes in less than one minute atashoes with up to 35-40 nodes in 1 hour. In Section 4 we
show that the MST algorithm has a tight approximation faof@ for the MIN-POWER SYMMETRIC CONNECTIVITY
problem, and discuss modifications of the MST algorithm famdiing given bounds on node transmission ranges. In
Section 5 we give a number of approximation algorithms fanMPOWER SYMMETRIC CONNECTIVITY based on
the concept ok-restricted decomposition and the similarity to computingestricted Steiner trees. In Section 6 we
present the results of a comprehensive experimental studparing new and previously proposed heuristics with the
above exact and approximation algorithms. The results shatbest performing algorithms give an average of 5-6%
reduction in power consumption compared to the simple MSSebtaolution. We conclude in Section 7 with open

problems and directions for future research.

2 Symmetric vs. Asymmetric Connectivity Problem Formulatons

Several problems have been previously studied under thtedasymmetricconnectivity model, in which unidirec-
tional links give raise to a directed graph &n In this section we discuss these formulations and compera tvith

the corresponding symmetric connectivity variants.

2.1 Complete Network Connectivity

In the MIN-POWER ASYMMETRIC CONNECTIVITY problem (also referred to as the complete range assignment
problem) the objective is establishing a strongly conriestéograph of/. Kirousis, Kranakis, Krizanc, and Pelc [17]
prove that MN-POWER ASYMMETRIC CONNECTIVITY in E3 is NP-Hard and, based on the minimum spanning tree,
give a 2-approximation algorithm. As opposed to the\MPOWER ASYMMETRIC BROADCAST approximation of
[30], the MIN-POWER ASYMMETRIC CONNECTIVITY approximation of [17] is valid in arbitrary graphs (thattise
distance between two points could be arbitrary, not nedésgaiclidean). Clementi, Penna, and Silvestri [10] give
an elaborate reduction proving that M POWER ASYMMETRIC CONNECTIVITY in E? is also NP-Hard.

The power for the NN-POWER ASYMMETRIC CONNECTIVITY can be half the power for Mi-POWER SyM-
METRIC CONNECTIVITY as illustrated by the following example in whiegh= 2. The terminal set (see Figure 1)
consists ofn groups ofn + 1 points each, located on the sides of a reg@taigon. Each group has 2 terminals in
distance 1 of each other (represented as thick circles mr&itj) and: — 1 equally spaced points (dashes in Figure 1)
on the line segment between them. It is easy to see that thienmimrange assignment ensuring asymmetric connec-
tivity assigns a power of 1 to the one thick terminal in eaatugrand a power of? = (1/n)? to all other points in
the group. The total power then equals- 1. For symmetric connectivity it is necessary to assign pafdrto all

but two of the thick points, and af to the remaining points, which results in total poweeof— 1 — 1/n + 2/n?.
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Figure 1: Total power for the Mi-POWER ASYMMETRIC CONNECTIVITY can be half the total power for M-
POWER SYMMETRIC CONNECTIVITY (k = 2). (a) Minimum range assignment ensuring asymmetric cdivityc
has total powen + n?e? = n + nQ# = n+ 1. (b) Minimum range assignment ensuring symmetric conviéctias

the total powe(2n — 2) + (n? —n+2)e? =2n—1-1 4 2

n2-

2.2 Unicast

The MIN-POWER ASYMMETRIC UNICAST problem requires establishing a minimum power directeth fratm a
sources to a destination, and is easily solved in polynomial time by shortest-pagfoethms. Below we reformulate
MIN-POWER SYMMETRIC UNICAST as a graph problem, and then reduce the latter problem tgkesiource single-
sink shortest-path computation in an appropriately coegtd graph.

LetG = (V, E, ¢) be an edge-weighted graph amddenote the undirected edge between nadasdv. The cost
c(uv) of an edgewv € FE corresponds to the (symmetric) power requiremént v) = p(v, u). Thepower cosbf an
s—t pathP = (s = vg,v1,...,0x = t)iS p(P) = c(vov1) + c(vg—1vk) + Zi-:ll max (¢(v;—1v;), ¢(v;, viy1)). The
MIN-POWER SYMMETRIC UNICAST can thus be reformulated as follows: Given a grépk= (V, E, ¢) with costs
on edges a sourcec V and a destination< V, find ans— path inG of the minimum power-cost.

The following example in the Euclidean plane shows thatagititforward application of Dijkstra’s algorithm does
not work, i.e., a minimum cost+¢ path does not always have minimum power-cost. Consideneonietonsisting of
three nodess = (0, 3), t = (4,0), andxz = (0,0) (see Figure 2). Ik = 2, then the twos—t paths, namelys, t) and
(s,v,t), have the same cost of 25 but different power-costs: the poo& of(s, t) is 25+25=50 while the power-cost
of (s,v,t) is 9+16+16=41.

Our solution of MN-POWER SYMMETRIC UNICAST first constructs an auxiliary directed gragh= (V', E’, ¢/)
from the given grapli = (V, E, ¢) and then runs Dijkstra’s algorithm @ . The construction o+’ is as follows.

Put in V"’ all the vertices ofl/. Also, for each edgéu,v) of G we add toG’ two vertices|u, v] and [v, u]
and connect them by the two ar€k:, v], [v,u]) and ([v, u], [v,u]), both of coste(u,v). Every vertexv of G

is also preserved id’. For every suchy, we sort the vertices adjacent to it @, say{us,...,ux}, such that



25

25

() (b)

Figure 2: An example of two paths with the same cost and diffepower-costs. (a) The path, ¢) assigns powers

25tos and tot. (b) The path(s, v, t) assigns powers 9 toand 16 tov andt.
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Figure 3: (a) A vertex adjacent tdk verticesus, . . . , ux via edges of costy, co, . . ., ¢ and a gadget replacingwith
a bidirectional path. The solid edges of the path[v, u1], [v, uz], ..., [v, uk—1], [v, ug]) have costy, ca — ¢y, .. .,

cr — ci_1, respectively. The dashed edges have zero cost, on both §ijerhe grapld’ for the example in Figure

2. Thick edges belong to the shortest path correspondirgetpath(s, v, t) in G.



c(v,u;) < e(v,u;41) for everyl < i < k. Furthermore, we connect all vertics u;)'s by two directed paths,
P = (v, [v,u1], ..., [v,up—1], [v,ux]) @and Pa = ([v, ug], [v, ug—1], ..., [v,u1],u), see Figure 3(a). The costs of the
arcs on pathP; are set tax(v, uy), c(v, u2) — c(v,u1), ..., c(v,ur) — c(v, up—1), respectively, while the costs of all
arcs on pathP, are set to zero. Figure 3(b) shows the gré&fifior the example in Figure 2.

We claim that every directes— path P in G corresponds to as— path P’ in G’ whose cost is equal to the
power-cost ofP. Indeed, consider a directed path= (s = w1, ws,...,w; = t) in G. By construction, there exists

a directed pattP’ of G’ visiting, in order, verticesvy, [w1, wa], [wa, w1, .. ., [wi—1,w;], [w;, w;—1], w;, such that
e The cost of the arc connecting to [w, ws] in P’ is c(wy, we);

e The cost of the arc connectifg;_1, w;] to [w;, w;—1] in P’ plus the cost of the subpath connectjag, w;_1]

to [w;, wi11] in P’ is equal tomax{c(w;_1, w;), c(w;, w;+1)} for every2 < i < ;
e The cost of the arc connecting; 1, w;] to [w;, w;—1] is ¢(w;—1, w;); and
e The cost of the subpath connectipg, w;—1] to w; is 0.

Therefore, the cost oP’ equals the power-cost d@?. It is not difficult to see that minimum power-cost pathsGn
are necessarily mapped by this correspondence to shoathstipG’ and thus MN-POWER SYMMETRIC UNICAST
reduces to computing a shortest patld:in

Using the Fibonacci heaps implementation of Dijkstra'slpm [11] to compute a shortestt path inG’, and
observing thatV’| = O(|V| + |E|) = O(|E|) and|E’| = O(|E|), we obtain the following:

Theorem 1 MIN-POWER SYMMETRIC UNICAST is solvable in time&) (| E| log |V ).

Even in E2, we have example where the auxiliary graph is not planar,vemdio not know faster methods to
compute shortest paths in this auxiliary graph. When edgéscare integers we can use Thorup’s single-source
shortest path algorithm [29], reducing the runtimex@V’| + |E’|) = O(|E|).

2.3 Broadcast and Multicast

The MIN-POWER ASYMMETRIC BROADCAST problem [27, 31] requires establishing a minimum power sebo
cence rooted at a given vertexClementi et al. [9] prove that M-POWER ASYMMETRIC BROADCASTis NP-Hard
when the nodes are iB2. The best known approximation algorithm fonitPOWER ASYMMETRIC BROADCAST
[30], based on computing a minimum spanning tree, has pagoce ratio of at most 12 when the nodes are in
E?. We remark that, due to the need of establishing bidireatioannections, Mi-POWER SYMMETRIC BROAD-
CAST and MIN-POWER SYMMETRIC CONNECTIVITY are the same problem. Implicit in the work of Kirousis,
Kranakis, Krizanc, and Pelc [17] is the result that compy@ém MST gives a 2-approximation for IM-POWER

SYMMETRIC CONNECTIVITY, even in its graph formulation (see Theorem 2). In contréme, graph version of



MIN-POWER ASYMMETRIC BROADCAST cannot be approximated within a factor better tian- o(1)) lnn unless
NP C TIME (n©Ucglogn)) [15],

In MIN-POWER ASYMMETRIC MULTICAST, one is given a root and a set of terminalg’, and the goal is to
establish a minimum-power branching rooted athich reaches all vertices @f. As a generalization of Mi-POWER
ASYMMETRIC BROADCAST, MIN-POWER ASYMMETRIC MULTICAST is also NP-Hard, and the same method as in
[30] implies that an approximate minimum Steiner tree giwegrformance ratio af2p, wherep is the approximation
for Steiner tree in graphs (the best result known at this rmapgéven in [25], isp = 1 + % In3+¢).

No previous results have been published for the multicagtlpm under the symmetric connectivity model. An
immediate consequence of Theorem 2 is thatapproximate minimum Steiner tree gives a performance t2p

for MIN-POWER SYMMETRIC MULTICAST.

3 Integer Linear Program Formulation

In this section we give an integer linear program (ILP) folation for MiIN-POWER SYMMETRIC CONNECTIVITY
and describe a branch and cut algorithm based on it. Thetsésubection 6 show that the algorithm is practical for
instances with up to 35-40 nodes.

We begin by reformulating Mi-POWER SYMMETRIC CONNECTIVITY in graph theoretical terms. L&t =
(V, E, ¢) be an edge-weighted graph amddenote the undirected edge between nadasdv. The costc(uv) of an
edgeuv € E corresponds to the (symmetric) power requiremént v) = p(v, ). For a node: € V and a spanning
treeT of G, letuur be the maximum cost edge incidenttdn 7', i.e.,uur € T andc(uur) > c(uwv) for all uv € T.

Thepower cosbf a spanning tre&’ is

(1) =Y cluur)

ueV
Since every connected graph contains a spanning tree, araks formulation of MN-POWER SYMMETRIC CON-

NECTIVITY is to ask for a spanning tree with minimum power-cost in th@plete graph oV’ with edge costs given
by c(uv) = ||uv|”. Thus, MN-POWER SYMMETRIC CONNECTIVITY can be reformulated as follows: Given a
connected edge-weighted graph= (V, E, ¢), find a spanning tre€ of G with minimum power-cost.

To formulate the problem as a linear integer program, wewseeytpes of binary decision variables:

e 1, foralluv € F; z,, is set to 1 ifuv belongs to the selected spanning tfeand to 0 otherwise. We call

these variables thieee variablesand

e yrforalww € E = {uv,vu | uv € E}; yzz is setto 1 ifur = v (i.e., if uv € T andc(uv) > c(uw) for all

uw € T') and to 0 otherwise. We call these variablesrdngge variables

Note that there argF| tree variables anly| = 2|F| range variables. Le$T be set of the incidence vectors of all

spanning trees af (viewed as subsets @). Our ILP formulation is as follows.



min Z c(uv)yms

weE
s.t. > ymw=1, Yu eV (1)

veV|wweE

Ty < > Yow, VWEE )
TwEE|c(uw)>c(uv)

x € conv(ST) 3)

z e {0,1}F

y € {0,1}/F

The constraints (1) enforce that we select exactly one reagable for every node € V, i.e., we properly define
the range of each node. The constraints (2) enforce thatgenedis included in the tree only if the range of each
endpoint is at least the cost of the edge. The constraintsnf®yce that the tree variables indeed form a spanning
tree. There are several well known linear descriptions 8r (We use the following, most famous formulation:
z € conv(ST) & x> 0,3 cpze = V[ —land}’ . 5z <|S| —1forallS C E, wherey(S) is the set of
edges ofF with both ends inS.

To solve the ILP we use branch and cut, i.e., we drop the ialidgiconstraints and solve the corresponding LP
relaxation. If the solution of the LP is integral, we haveriduhe optimal solution, otherwise we select a variable with
a fractional value and split the problem into two subprotddapsetting the variable tband1 in the subproblems. We
solve the subproblems recursively and disregard a sulgmoiblits LP bound is worse than the best known solution.

Since there are an exponential number of inequalities sfthimulation of spanning trees, we can not solve the
LP directly. Instead, we start with a small subset of thesgirlities and algorithmically test whether the LP solutio
violates an inequality which is not in the current LP. If s& add the inequality to the LP, otherwise we have found
the solution of the LP with the exponential number of inediga. The inequalities added to the LP if needed are
calledcutting planesalgorithms that find violated cutting planes are caliedaration algorithms

In our case, the initial LP consists of the constraints (1) @), the constraint ., z. = |[V'| — 1, and the bound
constraints, i.e., the constrairits< « < 1 and0 < y < 1. The only constraints added on demand are the constraints
2 een(s) Te < [S|—1forall S C E. A separation algorithm for these inequalities is due toeagland Wolsey [21].

The running time of a branch and cut algorithm can be imprdwetightening the LP relaxation, i.e., by finding
additional inequalities which are valid for all integer pt, but may be violated by solutions to the LP relaxation
(Figure 4 shows an example). We use the following class dfl vakqualities. LetS C V. For everyu € S let

ug € V'\ S sothate(uus) < c(uwv) forallv € V' \ S. The inequality

> > Yar > 1 4

u€S veV|c(uv)>c(uug)



Figure 4: Letz. = 1/2 for all edges in the picturer¢ = 1, if there are two parallel edges). Letrange variables
be equal to 1/2 fov = w4, u3, and to 0 otherwise. Then constraints of type (1) and (2)satisfied, but the constraint

(4) is violated forS = {uq, us}.

is valid for the problem above. We can argue as follows. Tl least one edge in the spanning tféerossing
the cutS. Letuwv be such an edge and e S. Thenc(uv) > c(uug) and the range of; is at leastc(uv). Thus
2o veV|e(un)>e(uus) Yaw 1S ONe and the inequality is valid.

Since we do not have a separation algorithm for these indigsalve use the following heuristic to separate some
of them. We chose an arbitrary nodeFor every node € V' \ {u}, we compute the minimal directed cut franto
v and fromw to u, where the capacity of an edgg is given by (.. > c(zy) Yow- FOr all computed cuts, we test

whether the corresponding inequality is violated.

4 Analysis of the MST Algorithm

In this section we show that computing an MST gives a 2-appration for MIN-POWER SYMMETRIC CONNEC-
TIVITY ; this result is implicit in the work of Kirousis, Kranakis,rkanc, and Pelc [17]. Then we give an example
showing that the approximation factor of 2 is tight, and d&cmodifications of the MST algorithm for handling given

bounds on node transmission ranges.
Theorem 2 LetG = (V, E, ¢) be an edge-weighted graph. Computing an MST with respedites a 2-approximation

for MIN-POWER SYMMETRIC CONNECTIVITY.

Proof: Letc(T) =3, cpc(uv). Claim 2 of Theorem 3.2 in [17] is equivalent to

p(T) = max_c(uv) < Z Z c(uv) = 2¢(T) (5)

uluveF
14 veV u|luveF

Letu be a vertex incident to an edge of maximum cost. If we rootrbeT atu, and use’ to denote the parent of
in T', sincemax,,|,,e r c(uv) > c(vv') we conclude thap(T') > ¢(T'). Therefore, ifM ST is the minimum spanning

tree with respect te andOPT is the tree with minimum power-cost, we have

p(MST) < 2¢(MST) < 2¢(OPT) < 2p(OPT)

10
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Figure 5: Tight example for the performance ratio of the M&b&athm (x = 2). (a) The MST-based range assignment
needs total poweln. (b) Optimum range assignment has total pow@r+ ¢)? + (n — 1)e2 + 1 — n + 1.

The following example shows that the ratio of 2 given in Ther2 is tight. Conside2n points located on a
single line such that the distance between consecutivagailternates between 1 and< 1 (see Figure 5) and let
k = 2. Then the minimum spanning tree MST connects consecutighbers and has power-costM ST') = 2n.

On the other hand, the tréewith edges connecting each other node (see Figure 5(b))dvesricost equagh(T') =
n(l+¢)% + (n —1)e2 + 1. Whenn — oo ande — 0, we obtain thap(M ST) /p(T) — 2.

Our MIN-POWER SYMMETRIC CONNECTIVITY formulation assumes that node transmission ranges can be ar
bitrary non-negative numbers. In practice node specifietend upper-bounds on the transmission ranges may be
required. All the algorithms in this paper (including the M&lgorithm) apply to the graph version ofINFPOWER
SYMMETRIC CONNECTIVITY. Hence, they can easily handle upper-bounds on transmisaigges by assigning
infinity cost to edges that cannot be established as bididditks due to the imposed upper-bounds.

Handling the lower-bounds on transmission ranges is naiggttforward. We propose the following modification
of the MST algorithm.

1. Assign to each node the minimum allowed transmissiongang

2. Compute the connected components in the graph inducérblydonnected links established by the assignment

in Step 1.

3. For each two component$ and C’, compute a connection cost which is the minimum increaseoimep

necessary to establish a bidirectional link between somtex& C' and some vertex if”.
4. Construct a complete gragh with the connected components as vertices and connectsis as edge costs.

5. Increase power ranges according to the MST in the g@&ph

11



Theorem 3 The MST algorithm modified as above has an approximatiowfaxt2 for MIN-POWER SYMMETRIC

CONNECTIVITY problem with lower-bounds on transmission ranges.

5 k-Restricted Approach to Symmetric Min-Power Connectivity Approxi-
mation

We first give definitions ok-restricted decompositions and prove an upper bound onaWwerpcost of such decom-
positions. Then we will describe approximation algorithaigse approximation ratios follow from the performance

ratios of Steiner tree algorithms in graphs.

5.1 k-Restricted Decompositions

A k-restricted decompositia of an undirected tre€ is a partition ofl" into subtreed, 15, . . ., T}, each containing
at mostk vertices such that each edgelobelongs to exactly one subtr&g The power-cost(Q) of ) is defined to
be the sum of the power-costs of all of its elements, p€&)) = > 7. .o p(Ti). The tight example for Theorem 5 in
Figure 7 gives examples 8frestricted decompositions.

The following theorem and its proof are similar to the resaft[14, 4] on thé:-restricted Steiner ratio. Our current
theoretically best approximation algorithm does not maeaf this theorem, but we use the theorem to establish the

performance ratio of more practical algorithms derivearfi@, 33].

Theorem 4 For every weighted tre@ and everyk > 1, there is a2*-restricted decompositio® of 7' such that

p(Q) < (1+ 1/k)p(T).

Proof: Without loss of generality we can assume that all edge costsdlifferent. Let the endpointsands of the
heaviest edgé of T be therootsof T', which means that two subtrees®f- {h} are rooted at ands, respectively.
Then each vertex of T', except- ands, has a unique parent. We call the vertices adjacent tdher than the parent
of v (if defined), the children of. For each vertex of T', we sort the edges connectingo its children in increasing
order of their cost. For the most costly such edgee definenext(e) = f, wheref is the edge connectingto its
parent (ifv has a parent), of = h if v does not have a parent; for every other edgee definenext(e) = ¢, where
e’ is the next edge (in the sorted order above) connectitagone of its children.

We now construct a rooted directed binary (with arcs goingpta the root) tree3 as follows. The vertices aB
are the edges d&f and the root ofB is h, the heaviest edge @f. The arcs ofB consist of arcge, next(e)) for each
edgee of T'. It is immediate that every vertex= uv of B has at most two incoming arcs. Indeedg if= rs, then
only the most costly edge af\ {e} incident tor and the most costly edge &f\ {e} incident tos havee as a parent.
For each other edge= wv of T', wherev is the parent ofi, there is at most one arc coming irtérom the vertex of

B representing the most costly edgeTof, {e} incident tou, and at most one arc coming intdrom the vertex ofB

12



representing the edge @fbetweerv and one of its children that precedem the sorted order above. Note that each
vertex of B has an associated cost since it represents an edfie of

Let B; be the set of vertices oB in distancei from the rooth. There is an intege® < [ < k such that
Yi izt (mod k) ¢(Bj) < ze(B) = 3¢(T), and letB = Uj | j=i (mod k)B;j. Decompose3 into subtreeg); as
follows: for everye, € B, remove fromB the edge (if any) connecting to its parent in3. EachQ; corresponds to
a subtredl; of T', and we note that since every vertexi®fappears in som@;, every edge of’ appears in SOme;.
The number of vertices ify; is at most2® — 1 since(; is a binary tree of height at mokt— 1. Therefore, eaclf;
has at mose* vertices. We denote b§ the2*-restricted decomposition @f into 7’s.

Lete; = (v;,u;) be the root of; (note thak; € B) and, ife; # (r, s), renamey; andu; such thatu; is the parent
of v; in T'. By the construction oB, we have thatnax, | 4., cg(r,) c(uu;) = c(e;). Then we have:

p(T;) < cle;) + Z max _ c(v,u).

veV (TO\{us} (vu)eB(T)

Fori # j, the sets/(T;) \ {w;} andV (T;) \ {u,} are disjoint, since: € V(T;) \ {u;} implies that the edge df
connecting: to its parentinl’ is in T;, and theE (T;) = V(Q;) is disjoint fromE(T;) = V(Q;). We conclude that

§Q) = Sp(T)

%

max c(v,u)+ cle;
Z (v,u)EE(T) ( ) ; ( )

veV(T)

IN

p(T) +¢(B)

P(T) + ()

IN

IN

A
=
_|_

|
=1
3

A subtree ofl" consisting of a pair of edges sharing a node is calléatla So a3-restricted decompositiof) of
T consists of forks and individual edges. The following theeoris the analogue of the Steiner tree theorem in [32],

but has a completely different proof.

Theorem 5 For every tre€T’, there is a 3-restricted decompositighof 7" such thap(Q) < 3p(T).

Proof: The proof proceeds in three steps. First we partition thesadd!" into disjoint components using structural
information derived from power requirements. Then we catsta weighted subgraph of the line graph of each
component, which we refer to as the “consecutive” line grapimally, we show that the consecutive line graph of
each component has a matching exceeding a certain weigrgpties in these matchings give the forks in the desired

3-restricted decomposition df.
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(b)
(a)

Figure 6: (a) Partitioned trég€. Each vertex has a single outgoing arc denoting its maxiimaidént edge, double
arcs are roots and dashed edges are bridges. (b) Consdinigtigeaphs for the components. Vertices represent edges

of T'; “consecutive” forks ofl" are represented by the solid edges, “parity” edges are dashe

To describe how we partition the edgesTof(see Figure 6(a)) we need to introduce some additional inoat
Letmax(u) be the maximum edge @f incident to a vertex..! For each vertex;, we direct the edgeaz(u) away
from w. An edgeuv is calledroot if it is directed both ways (i.emaz(u) = mazx(v) = wv), and calledoridgeif it
remains undirected (i.emax(u) # uv andmaz(v) # wv). In the power-cost of’, roots are counted twice (for both
endpoints), bridges are not counted at all, and all otheegdge counted exactly once. Thus, denotingelilie set of

roots and byB the set of bridges, we have:
p(T) = o(T) + c(R) — ¢(B) (6)

The edges of " are partitioned as follows. First, we start with the conedaomponents df' — B; note that each
such component contains exactly one root. Then we add e#delbrof B to one of the two adjacent components
of T — B, such that each component gets at most one bridge. A bridggnasent with this property is obtained
by selecting an arbitrary vertey and assigning to each componenflof- B not containingyy the unique adjacent
bridge on the path to,. We denote byD the resulting partition.

Afork (e; = uv,es = u'v) is calledconsecutivéf c¢(e;) < c(e2) and there is no edgeseD incident tov such
thatc(e;) < c(e) < c(ez). For each componer® € D, theconsecutive line grapl p is defined as follows (see
Figure 6(b)):

— vertices ofLp are the edges ab

— Lp has “consecutive” edges connecting each consecutive dbiks and at most two “parity” edges connecting

the root of D and the second most expensive non-root edge incident toesakbf the root
— for every edgée;, e3) of Lp, w(ey, ea) = min{c(e1), c(e2)}

By construction, each edge afp corresponds to a fork ab. Therefore, each matching§ of L corresponds to a
3-restricted decomposition @ (edges ofX correspond to forks and isolated vertices correspond tatesh edges)
which we denoté) x . Itis easy to see that Q x ) = 2¢(D) — w(X).

1W.l.o.g., we assume that no two edgesTohave the same cost.
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The theorem follows if, for each € D, we find a matchind(p in Lp such that

(D) = c(rp) + ¢(bp)

; ™

w(XD) Z

wherec(D) is the total cost of the edges i, rp is the single root inD, andbp, is the single bridge irD, if one

exists. Indeed,

p(lJ @xp) = D (2¢(D) —w(Xp))

DeD DeD

IN
AN
w| o
o
—_ A=
3
+

|
PEN
=

o)

\

|
2
=
S
~—

< Zp(T)

where the last inequality comes from (6) and the fact #&) < p(T), as in the proof of Theorem 2.
By Edmonds’ theorem [20] it is sufficient to construct a fractl matchingXp satisfying (7). Afractional

matchingof L is an assignment of nonnegative fractiaris; , e2) to every edgées, es) € Lp such that
(i) the sum of fractions assigned to the edges incident tatexe of L is at most 1, and
(i) the sum of fractions assigned to all edges with both emals in a set oRk + 1 vertices ofL is at mostk.

The weight of a fractional matching p is given by

w(Xp) = Z z(e,eNw(e,e’)

(e,e’)EE(D)

We construct a fractional matchingp by assigning /3 to each consecutive edde, e2) of L. This fractional
matching satisfies (i) since eaete D is incident to at most 3 consecutive edged.¢f (if e is not the root p, then it
participates to one consecutive edgd.gf ase;, and to at most two edges as the root participates as the heaviest
end in up to two edges). Condition (ii) follows from the faleat consecutive edges form a tree. Since every vertex
of L except the root participates in exactly one consecutide(feor, e2) ase;, we get that the weight aX'/, is equal
to (¢(D) — ¢(rp))/3.

If D has no bridge then (7) follows. Otherwise we modHiy, such that the weight increases by)/3 as
follows. LetP = (bp = ey, fo,€1, f1,---, €k, [k, €k+1 = Tp) be the unique path of consecutive edge< gf,
wheref; = (e;,ei+1), 4 = 1,..., k are edges of. , corresponding to consecutive forksih We add 1/3 tox(f;),
1=0,2,4,..., and subtract 1/3 from(f;), i = 1,3, . ... Since bottb, andrp, participate in at most two consecutive
forks, the above change leads to a feasible fractional rimgj¢the sum of fractions assigned to the edges incident to
each intermediate vertex &fremains the same). kfis even then the total weight &f , increases by at leastb) /3

sincew(fai—1) = c(eg—1) < cley) =w(fay),l =1,...,k/2 and we are done.
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Figure 7: (a) Tight example for Theorem 5: a single node iected via cost-2 edges tonodes, each of which is
in turn connected via a cost-1 edge to a leaf. The total pawst-of this tree i + 2k + & = 3k + 2. (b-c) Two

minimum 3-restricted decompositions: the power-cost ¢figlsk since each ok forks has power-cost 5; and the
power-cost of (c) i§§ + 2k = 5k since each og upper forks has power-cost 6 and eacl single-edge components

has power-cost 2.

If k& is odd we add back 1/3 to( fi) to guarantee increasing(Xp) by at leastc(bp)/3. If e, has degree 2 in
Lp then we are done, since the sum of all fractions assignecetedies incident te, equals to 1. Otherwisey,
has degree 3 and we need to further modify in order to make it a feasible fractional matching. Ldde the vertex
of T common toe;, andrp. Sincefi = (ex,ex+1 = rp) iS a consecutive forke,, is the most expensive non-root
edge ofD incident tov. Lete be the second most expensive non-root edgP afcident tov. Sincee andey, form a
consecutive forkLL, contains the edgg, e, ). Recall thatl ;, also contains a parity edde, rp). We modify X, as

follows:
(1) Ifer—1 # e (i.e.,ex—1 is not adjacent to the root), then we subtract 1/3 frgm e;,) and set:(e, rp) to 1/3.

(2) If ex—1 = e (i.e.,ex—1 is adjacent to the root), then we subtract 1/3 frofrfi.—1) and setc(e = e;_1,7p) to
1/3.

In both cases, the resulting sums of fractions assignecetedies incident tey,, respectively to-p, are equal to 1,
and henceXp satisfies (i). In case (1), the condition (ii) is valid sin@ges with non-zero fraction iX, continue

to form a tree. In case (2), the condition (ii) is still valithe graph given by the edges with non-zero fraction has only
one cycle, and therefore any set2éf+ 1 vertices ofL p induces a subgraph with at madt + 1 edges with non-zero

fraction (each of them having fractidn'3). ]

Remark: The bound of Theorem 5 is tight (see Figure 7).

5.2 Approximation Algorithms

All approximation algorithms described below have appmedion ratios defined in terms @f,, wherep, is the

supremum, over all tre€s, of the ratio of the power-cost of the minimum power-clesestricted decompositions to
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Input: Edge-weighted grap&'o = (V, E, ¢)
Output: Spanning tree of+

G+ Go,H«+ 0

Repeat forever
Find a fork K from G with maximumg = gaing(K)
If g < 0then exit repeat
H+ HUK,G+ G/Va(K)

Output MST(G)U H

Figure 8: The Greedy Fork-Contraction algorithm.

the power-cost of. Theorem 4 implies that, < 1 + ﬁ, in particularpy < % Theorem 5 together with the
example in Figure 7 imply that; = 5/3, while Theorem 2 together with the example in Figure 5 impbtp, = 2.

The following Greedy Fork-ContractiofiGFC) algorithm, originally formulated for Steiner treéspased on the
notion ofgain, defined below. For a grapfi, denote bymst(G) the minimum cost of a spanning tree. For a set of
verticesV’ C V(G), we denote by7/V’ the graph obtained after contractifd, i.e., collapsing all vertices df”’
into a single vertex. Let be obtained frondz, after contracting some subsets of verticeshe a subtree afry, and
Ve (H) be the set of vertices @f which, seen as subsetsW6{G), intersect’ (H). Thegainof H with respect ta7
is:

gaing(H) = 2mst(G) — 2mst(G/Va(H)) — p(H)

wherep(H) is the power-cost off in the original graphGy. It has been proved in [32] that the GFC algorithm

described in Figure 8 has a performance ratio no larger tiaarithmetic mean gf, andps. Thus we have:
Theorem 6 The GFC algorithm foMIN-POWER SYMMETRIC CONNECTIVITY has performance ratio af1/6.

A fully polynomial approximation scheme for finding optintrestricted Steiner trees is given in [22], building

on [5]. Theorem 5 implies our main result:
Theorem 7 The algorithm of [22] has a performance ratio §f+ ¢ for MIN-POWER SYMMETRIC CONNECTIVITY.

Unfortunately, this algorithm is impractical. Itis alsogsible to apply other Steiner tree algorithms, e.g., therélgm
in [2] gives an approximation factor &g + £2 + £¢ < 18 while thek-restricted Relative Greedy Algorithm in [33]

gives afactorofl +1n2 +e.
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6 Experimental Study

We have implemented the exact branch and cut algorithm itbestcin Section 3 (OPT), the greedy fork-contraction

algorithm in Figure 8 (GFC), and three new heuristics:

e A simple edge-switching (ES) heuristic that starts from Mh®T, and repeatedly replaces a tree edge with a
non-tree edge re-establishing connectivity. At every stiep algorithm chooses the pair of edges that results
in the largest reduction in power cost; the process is repgeas long as improvement is still possible. We
simulated a distributed implementation of the algorithravlrich only non-tree edges that connect nodes within

10 tree-hops from each other are considered for switching.

e A heuristic performing both edge and fork switching (EFS)esery step the algorithm chooses an edge or fork
whose addition to the tree leads to the largest reductiomiep cost. Unlike GFC, forks are not contracted,

which means that an edge of an added fork can be later remoyedlie tree by other edge or fork switches.

e A Kruskal-like heuristic (KR) that starts with isolated rexdand iteratively adds an edge connecting two dif-
ferent components witminimum increasé power cost. A similar heuristic (called incremental sbwas
studied by Chu and Nikolaidis for computing low-powerNMPOWER ASYMMETRIC BROADCAST trees in a

mobile environment [8].

We included in our comparison faster versions of OPT and @H&I-D and GFC-D, which speed-up the computation
by working on the Delaunay graph (see, e.g., [13]) definednieyriodes instead of the complete graph. We also
implemented a faster version of EFS, EFS-D, in which onlk$aronsisting of Delaunay edges (but still all non-tree
edges) are considered as switching candidates.

Note that, by Theorem 2, both ES and EFS produce solutiosnatfactor of 2 of optimum since they improve
upon an MST for the nodes. A performance of ratio of 2 can begrdor KR as well. Define a new cost function
¢(e) as follows: ife is not picked by the KR, then(e) = c¢(e), elsec(e) is the increase in power cost used by KR
to pick e. It can be proven that the minimum spanning tre¢WnE, ¢) is the same as the tree picked by KRGh
and since for every € E we havec(e) < c(e), the optimum solution i{V, E,¢) has power at most the optimum
power inG. An example showing that the performance rati@a$ tight for KR in the graph model is given below;
the exact performance ratio i is not known. They + 3 vertices arey, vy, vs, . . ., v442, and the edges have cost:
fori =0,1,...,¢ c(vivgr1) = 1 ande(v;vg42) = 2 — 3 — &, ande(vg41v442) = €. KR builds a star centered at
vg+2 With a power-cost of abolyg, while the optimum solution is a star centeredat; with a power-cost of about
q.

All algorithms were implemented in C++, including the brhrand bound algorithm whose implementation is
built on SCIL [26]. The heuristics were compiled usiggp with - Q2 optimization, and run on an AMD Duron

600MHz PC. The experiments were run on randomly generagtchtges. For each instance sizbetween 10 and
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n OPT OPT-D ES EFS EFS-D KR GFC GFC-D
% CPU % CPU % CPU % CPU % CPU % CPU % CPU % CPU

10 4.01 0.67| 3.66 0.10| 3.81 0.00| 4.00 0.00| 394 0.00| 049 000( 139 0.00| 1.19 0.00
15 4.77 5.68| 4.26 0.43| 448 0.00| 4.70 0.02| 451 0.00| 1.72 0.00| 1.56 0.00| 0.48 0.00
20 5.84 22.2| 5.17 1.19| 546 0.00| 5.75 0.10| 547 0.00| 254 0.00| 2.01 0.00| 1.40 0.00
25 5.63 58.9| 472 3.46| 478 0.00| 5.53 0.26| 5.12 0.00| 219 0.00| 156 0.00| 0.72 0.00
30 5.46 201| 490 6.49| 487 0.00| 5.36 0.61| 503 0.00| 1.77 0.00| 1.65 0.00| 0.24 0.00
35 5.68 712| 511 11.2| 5.04 0.00| 5.60 1.16| 540 0.02| 213 0.01| 1.93 0.00| 0.96 0.00
40 | 541 4725 4.82 52.1| 5.01 0.00| 551 2.13| 525 0.03| 1.82 0.01| 137 0.00| 0.26 0.00

45 — — 5.37 109| 5.13 0.00| 5.77 3.71| 547 0.05| 217 0.00| 222 0.03| 0.67 0.03
50 — — 5.36 181| 555 0.02| 5.90 550| 5.62 0.05| 245 0.00| 203 0.02| 0.33 0.02
55 — — 6.09 653 | 561 0.05| 6.54 9.03| 6.21 0.05| 265 0.00 260 0.03| 1.19 0.03
60 — — | 546 573 | 525 0.05| 6.06 12.48| 573 0.06| 231 0.00| 2.15 0.05| 0.50 0.05
65 — — — — | 5.01 0.05| 5.80 179| 556 0.09| 230 0.04| 1.65 0.03| 0.38 0.03
70 — — — — | 512 0.03| 6.01 255| 560 0.10| 241 0.04| 194 0.01| 0.24 0.01
75 — — — — | 510 0.02| 5.78 334| 550 0.09| 246 002 169 0.00| 048 0.00
80 — — — — | 5.14 0.05| 6.03 449| 577 0.12| 288 0.00( 200 0.00| 0.64 0.00
85 — — — — | 473 0.06| 5.69 55.0( 537 0.16| 252 0.00| 1.82 0.00| 0.39 0.00
90 — — — — | 542 0.09| 6.30 755| 6.01 0.21| 284 0.00| 218 0.00| 0.38 0.00
95 — — — — | 529 0.11| 6.08 101| 581 0.26| 235 0.00( 1.73 0.05| 0.19 0.05
100 — — — — | 545 0.14| 6.25 123| 6.09 0.32| 256 0.00 230 0.05| 0.99 0.05

Table 1: Average percent improvement over the MST (%) antimanin seconds (CPU) for the compared algorithms.

100, in increments of 5, 50 different instances were geadray choosing: points uniformly at random from a grid
of size10, 000 x 10, 000.

Table 1 gives the percent improvement over MST and the r@#tifor the compared algorithms; solution quality
is also presented in graphical form in Figure 9. We reportayes over 50 instances of each size; averages marked
with an asterisk do not include two instances not solvediwitime day. The results show that OPT has a practical
running time up to 35 nodes, and produces an average impeesner MST of 5-6%. The Delaunay version of
OPT has practical runtime up to 60 nodes, but gives slightiyse solutions.

The GFC algorithm, its faster Delaunay version, GFC-D, al agethe natural Kruskal-like heuristic KR are all
very fast, but give less than half of the optimum improvemeiR consistently outperforms GFC, while the latter
consistently outperforms GFC-D (the runtime of GFC-D isnitigal to that of GFC in our experiments). The EFS,
EFS-D, and and even the distributed ES heuristic give saaifly better solution quality, coming on the average

within a fraction of a percent of the optimal improvemerit| gtith a very well scaling runtime.
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nodes

Figure 9: Average percent improvement over the MST for thramared algorithms.

7 Conclusions

In a more realistic power-attenuation model, the power irequent for supporting a link from node to nodev

separated by a distaneés given by

ruv

p(u,v) = (8)
XuOv
wherey, > 0 is the transmission efficiency of nodeo, > 0 is the signal detection sensitivity threshold of nade
andk,,, is the signal attenuation exponent for the link froro v. In [1] we show that the corresponding M POWER
SYMMETRIC CONNECTIVITY WITH ASYMMETRIC POWER REQUIREMENTSIs inapproximable within factofl —
€)In |V |foranye > 0 unlessP = N P. The proofin [1] relies on using non-uniform signal attetieraexponents, .
An interesting open problem is to settle the approximapsliatus of MN-POWER SYMMETRIC CONNECTIVITY with
uniform exponents.
It is also an open question whethenMPOWER SYMMETRIC CONNECTIVITY can be reduced to the classical

STEINER TREE problem in an approximation preserving manner. Such a temuwould allow other well-known

STEINER TREE heuristics, such as the 1-Steiner algorithm [16], to beiaggb MIN-POWER SYMMETRIC CON-

NECTIVITY.
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