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Abstract

In this paper we study the problem of assigning transmissionranges to the nodes of a static ad hoc wireless

network so as to minimize the total power consumed under the constraint that enough power is provided to the nodes

to ensure that the network is connected. We focus on the MIN-POWER SYMMETRIC CONNECTIVITY problem, in

which the bidirectional links established by the transmission ranges are required to form a connected graph.

Implicit in previous work on transmission range assignmentunder asymmetric connectivity requirements is the

proof that MIN-POWER SYMMETRIC CONNECTIVITY is NP-hard and that the MST algorithm has a performance

ratio of 2. In this paper we make the following contributions: (1) we show that the related MIN-POWERSYMMETRIC

UNICAST problem can be solved efficiently by a shortest-path computation in an appropriately constructed auxiliary

graph; (2) we give an exact branch and cut algorithm based on anew integer linear program formulation solving

instances with up to 35-40 nodes in 1 hour; (3) we establish the similarity between MIN-POWER SYMMETRIC

CONNECTIVITY and the classic STEINER TREEproblem in graphs, and use this similarity to give a polynomial-time

approximation scheme with performance ratio approaching5/3 as well as a more practical approximation algorithm

with approximation factor 11/6; and (4) we give the results of a comprehensive experimental study comparing new

and previously proposed heuristics with the above exact andapproximation algorithms.

This version has minor corrections compared to the WINET 2006 paper. One should also check out the improve-

ment of Grandoni in ESA 2012.
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1 Introduction

Ad hoc wireless networks have received significant attention in recent years due to their potential applications in

battlefield, emergency disaster relief, and other application scenarios (see, e.g., [3, 9, 10, 17, 19, 23, 27, 31, 30]).

Unlike wired networks or cellular networks, no wired backbone infrastructure is installed in ad hoc wireless networks.

A communication session is achieved either through single-hop transmission if the recipient is within the transmission

range of the source node, or by relaying through intermediate nodes otherwise. We assume that omnidirectional

antennas are used by all nodes to transmit and receive signals. Thus, a transmission made by a node can be received

by all nodes within its transmission range. This feature is extremely useful for energy-efficient multicast and broadcast

communications.

For the purpose of energy conservation, each node can (possibly dynamically) adjust its transmitting power, based

on the distance to the receiving node and the background noise. In the most common power-attenuation model [24], the

signal power falls as1
rκ

wherer is the distance from the transmitter antenna andκ is a realconstantdependent on the

wireless environment, typically between2 and4. Assume that all receivers have the same power threshold forsignal

detection, which is typically normalized to one. With this assumption, the power required to support a link between two

nodes separated by a distancer is rκ. A crucial issue is how to find a route with minimum total energy consumption

for a given communication session. This problem is referredto asMinimum-Energy Routingin [27, 31]. Having

every link established in both directions simplifies the one-hop transmission protocols by allowing acknowledgment

messages to be sent back for every packet (see, for example [28]). This motivates the study of the MIN-POWER

SYMMETRIC CONNECTIVITY problem, where a link is established only if both nodes have transmission range at least

as big as the distance between them, and we must ensure that established links form a connected network. Like in

[3], in this paper the objective is to minimize the total power assigned to the nodes; previous research on symmetric

connectivity has also addressed the objective of minimizing the maximum node power [19, 23].

Formally, given a set of pointsV (representing the nodes in the network) inE2 (the two-dimensional Euclidean

space) or inE3 (the three-dimensional Euclidean space), atransmission range assignment(or range assignment, for

short) is a functionr : V → R+. A unidirectional linkfrom nodeu to nodev is established under the range assignment

r if r(u) ≥ ‖uv‖, where‖uv‖ denotes the Euclidean distance betweenu andv. This model was first considered

by Chen and Huang [6]. Abidirectional linkuv is established under the range assignmentr if r(u) ≥ ‖uv‖ and

r(v) ≥ ‖uv‖. Let B(r) denote the set of all bidirectional links established between pairs of nodes inV under the

range assignmentr. In this paper we study the following problem:

M IN-POWER SYMMETRIC CONNECTIVITY: Given a set of nodesV andκ ≥ 1, find a transmission range assignment

r : V → R+ minimizing
∑

v∈V r(v)κ subject to the constraint that the graph(V,B(r)) is connected.

Implicit in the work of Clementi, Penna, and Silvestri [10] is a proof that MIN-POWER SYMMETRIC CONNEC-

TIVITY in E2 is NP-Hard (radio “bridges” in canonical form gadgets, see Definition 3 on page 10 of [10], can be

made to be bidirectional links). Also implicit in [10] is theproof that, inE3 and in the graph model, MIN-POWER
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SYMMETRIC CONNECTIVITY is APX-complete, and therefore, unlessP = NP , does not admit a polynomial-time

approximation scheme. Thus, we search for polynomial-timeconstant approximation factor algorithms for this prob-

lem. Theapproximation factor, or performance ratio, of approximation algorithmA for a minimization problem is

the supremum, over all possible instancesI, of the ratio between the cost of the output ofA when running onI and the

cost of an optimal solution forI (the smaller the performance ratio, the better). We say thatA is anα-approximation

algorithm if its performance ratio is at mostα. A fully polynomialα-approximation schemeis a family of algorithms

Aε such that, for everyε > 0, algorithmAε (1) has performance ratio at mostα+ ε, and (2) runs in time polynomial

in the size of the instance and1/ε.

Kirousis, Kranakis, Krizanc, and Pelc [17] Chen and Huang [6] give a minimum spanning tree (MST) based 2-

approximation algorithm for MIN-POWER SYMMETRIC CONNECTIVITY (their algorithm is actually designed for a

related problem, which we discuss in Section 2); this algorithm was rediscovered by Kirousis, Kranakis, Krizanc, and

Pelc [17]. In this paper we improve the performance ratio under 2 by exploiting similarities between MIN-POWER

SYMMETRIC CONNECTIVITY and the classic STEINER TREEproblem: given an edge-weighted graphG = (V,E,w)

and a setT ⊆ V of terminals, find a minimum weightSteiner treefor T , i.e., a minimum weight connected subgraph

of G which containsT . It is well known that computing an MST in the complete graph on T with edge-weights equal

to the minimum distance inG between corresponding terminals gives a 2-approximation algorithm for STEINER TREE

[7, 18]. Zelikovsky [32] gave the first algorithm with performance ratio less than 2: he used 3-restricted Steiner trees

and the concept ofgain to obtain a performance ratio of11/6. Promel and Steger [22] extend the results of Camerini,

Galbiati, and Maffioli [5] and give a polynomial time5/3-approximation scheme for STEINER TREE, by finding an

almost optimal 3-restricted Steiner tree.

We show that similar concepts can be used for approximating MIN-POWER SYMMETRIC CONNECTIVITY. In

particular, we show that the algorithms of [22], [32], [2], and [33] can be modified to give similar performance ratios

for M IN-POWER SYMMETRIC CONNECTIVITY. Our main results are a fully polynomial5/3 approximation scheme

based on [22], and a more practical algorithm with approximation factor of 11/6 [32].

Our algorithms have the same approximation guarantees whennetwork nodes are located inE3. In fact, since

they work on a graph model of the network, our algorithms can be applied to more general problem formulations,

e.g., observing given upper-bounds on the transmission range of each node and/or taking into account obstacles that

completely block the communication between certain pair ofnodes.

The rest of the paper is organized as follows. In Section 2 we discuss several connectivity problems under both

symmetric and asymmetric connectivity models. In particular, we show that the MIN-POWER SYMMETRIC UNICAST

problem (which, for given source and destination nodes,s, t ∈ V , asks for a sequencev0 = s, v1, . . . , vk = t of

nodes and transmission rangesr(vi), i = 0, . . . , k, under which all bidirectional linksvivi+1 are established) can

be solved efficiently by a shortest-path computation in an appropriately constructed auxiliary graph. In Section 3 we

give a new integer program formulation for the MIN-POWER SYMMETRIC CONNECTIVITY problem, and describe an

exact branch and cut algorithm based on this formulation. Experimental results show that the branch and cut algorithm

3



solves instances with 25 nodes in less than one minute and instances with up to 35-40 nodes in 1 hour. In Section 4 we

show that the MST algorithm has a tight approximation factorof 2 for the MIN-POWER SYMMETRIC CONNECTIVITY

problem, and discuss modifications of the MST algorithm for handling given bounds on node transmission ranges. In

Section 5 we give a number of approximation algorithms for MIN-POWER SYMMETRIC CONNECTIVITY based on

the concept ofk-restricted decomposition and the similarity to computingk-restricted Steiner trees. In Section 6 we

present the results of a comprehensive experimental study comparing new and previously proposed heuristics with the

above exact and approximation algorithms. The results showthat best performing algorithms give an average of 5-6%

reduction in power consumption compared to the simple MST based solution. We conclude in Section 7 with open

problems and directions for future research.

2 Symmetric vs. Asymmetric Connectivity Problem Formulations

Several problems have been previously studied under the relatedasymmetricconnectivity model, in which unidirec-

tional links give raise to a directed graph onV . In this section we discuss these formulations and compare them with

the corresponding symmetric connectivity variants.

2.1 Complete Network Connectivity

In the MIN-POWER ASYMMETRIC CONNECTIVITY problem (also referred to as the complete range assignment

problem) the objective is establishing a strongly connected subgraph ofV . Kirousis, Kranakis, Krizanc, and Pelc [17]

prove that MIN-POWER ASYMMETRIC CONNECTIVITY in E3 is NP-Hard and, based on the minimum spanning tree,

give a 2-approximation algorithm. As opposed to the MIN-POWER ASYMMETRIC BROADCAST approximation of

[30], the MIN-POWER ASYMMETRIC CONNECTIVITY approximation of [17] is valid in arbitrary graphs (that is,the

distance between two points could be arbitrary, not necessarily Euclidean). Clementi, Penna, and Silvestri [10] give

an elaborate reduction proving that MIN-POWER ASYMMETRIC CONNECTIVITY in E2 is also NP-Hard.

The power for the MIN-POWER ASYMMETRIC CONNECTIVITY can be half the power for MIN-POWER SYM -

METRIC CONNECTIVITY as illustrated by the following example in whichκ = 2. The terminal set (see Figure 1)

consists ofn groups ofn + 1 points each, located on the sides of a regular2n-gon. Each group has 2 terminals in

distance 1 of each other (represented as thick circles in Figure 1) andn− 1 equally spaced points (dashes in Figure 1)

on the line segment between them. It is easy to see that the minimum range assignment ensuring asymmetric connec-

tivity assigns a power of 1 to the one thick terminal in each group and a power ofε2 = (1/n)2 to all other points in

the group. The total power then equalsn + 1. For symmetric connectivity it is necessary to assign powerof 1 to all

but two of the thick points, and ofε2 to the remaining points, which results in total power of2n− 1− 1/n+ 2/n2.
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Figure 1: Total power for the MIN-POWER ASYMMETRIC CONNECTIVITY can be half the total power for MIN-

POWER SYMMETRIC CONNECTIVITY (κ = 2). (a) Minimum range assignment ensuring asymmetric connectivity

has total powern+ n2ε2 = n+ n2 1
n2 = n+1. (b) Minimum range assignment ensuring symmetric connectivity has

the total power(2n− 2) + (n2 − n+ 2)ε2 = 2n− 1− 1
n
+ 2

n2 .

2.2 Unicast

The MIN-POWER ASYMMETRIC UNICAST problem requires establishing a minimum power directed path from a

sources to a destinationt, and is easily solved in polynomial time by shortest-path algorithms. Below we reformulate

M IN-POWER SYMMETRIC UNICAST as a graph problem, and then reduce the latter problem to a single-source single-

sink shortest-path computation in an appropriately constructed graph.

LetG = (V,E, c) be an edge-weighted graph anduv denote the undirected edge between nodesu andv. The cost

c(uv) of an edgeuv ∈ E corresponds to the (symmetric) power requirementp(u, v) = p(v, u). Thepower costof an

s–t pathP = (s = v0, v1, . . . , vk = t) is p(P ) = c(v0v1) + c(vk−1vk) +
∑k−1

i=1 max (c(vi−1vi), c(vi, vi+1)). The

M IN-POWER SYMMETRIC UNICAST can thus be reformulated as follows: Given a graphG = (V,E, c) with costs

on edges a sources ∈ V and a destinationt ∈ V , find ans–t path inG of the minimum power-cost.

The following example in the Euclidean plane shows that a straightforward application of Dijkstra’s algorithm does

not work, i.e., a minimum costs–t path does not always have minimum power-cost. Consider a network consisting of

three nodes,s = (0, 3), t = (4, 0), andx = (0, 0) (see Figure 2). Ifκ = 2, then the twos–t paths, namely,(s, t) and

(s, v, t), have the same cost of 25 but different power-costs: the power-cost of(s, t) is 25+25=50 while the power-cost

of (s, v, t) is 9+16+16=41.

Our solution of MIN-POWER SYMMETRIC UNICAST first constructs an auxiliary directed graphG′ = (V ′, E′, c′)

from the given graphG = (V,E, c) and then runs Dijkstra’s algorithm onG′. The construction ofG′ is as follows.

Put in V ′ all the vertices ofV . Also, for each edge(u, v) of G we add toG′ two vertices[u, v] and [v, u]

and connect them by the two arcs([u, v], [v, u]) and ([v, u], [v, u]), both of costc(u, v). Every vertexv of G

is also preserved inG′. For every suchv, we sort the vertices adjacent to it inG, say {u1, . . . , uk}, such that
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Figure 2: An example of two paths with the same cost and different power-costs. (a) The path(s, t) assigns powers

25 tos and tot. (b) The path(s, v, t) assigns powers 9 tos and 16 tov andt.
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c(v, ui) ≤ c(v, ui+1) for every1 ≤ i < k. Furthermore, we connect all vertices[v, ui]’s by two directed paths,

P1 = (v, [v, u1], . . . , [v, uk−1], [v, uk]) andP2 = ([v, uk], [v, uk−1], . . . , [v, u1], u), see Figure 3(a). The costs of the

arcs on pathP1 are set toc(v, u1), c(v, u2) − c(v, u1), . . ., c(v, uk) − c(v, uk−1), respectively, while the costs of all

arcs on pathP2 are set to zero. Figure 3(b) shows the graphG′ for the example in Figure 2.

We claim that every directeds–t pathP in G corresponds to ans–t pathP ′ in G′ whose cost is equal to the

power-cost ofP . Indeed, consider a directed pathP = (s = w1, w2, . . . , wl = t) in G. By construction, there exists

a directed pathP ′ of G′ visiting, in order, verticesw1, [w1, w2], [w2, w1], . . ., [wl−1, wl], [wl, wl−1], wl, such that

• The cost of the arc connectingw1 to [w1, w2] in P ′ is c(w1, w2);

• The cost of the arc connecting[wi−1, wi] to [wi, wi−1] in P ′ plus the cost of the subpath connecting[wi, wi−1]

to [wi, wi+1] in P ′ is equal tomax{c(wi−1, wi), c(wi, wi+1)} for every2 ≤ i < l;

• The cost of the arc connecting[wl−1, wl] to [wl, wl−1] is c(wl−1, wl); and

• The cost of the subpath connecting[wl, wl−1] towl is 0.

Therefore, the cost ofP ′ equals the power-cost ofP . It is not difficult to see that minimum power-cost paths inG

are necessarily mapped by this correspondence to shortest paths inG′ and thus MIN-POWER SYMMETRIC UNICAST

reduces to computing a shortest path inG′.

Using the Fibonacci heaps implementation of Dijkstra’s algorithm [11] to compute a shortests–t path inG′, and

observing that|V ′| = O(|V |+ |E|) = O(|E|) and|E′| = O(|E|), we obtain the following:

Theorem 1 M IN-POWER SYMMETRIC UNICAST is solvable in timeO(|E| log |V |).

Even inE2, we have example where the auxiliary graph is not planar, andwe do not know faster methods to

compute shortest paths in this auxiliary graph. When edge costs are integers we can use Thorup’s single-source

shortest path algorithm [29], reducing the runtime toO(|V ′|+ |E′|) = O(|E|).

2.3 Broadcast and Multicast

The MIN-POWER ASYMMETRIC BROADCAST problem [27, 31] requires establishing a minimum power arbores-

cence rooted at a given vertexs. Clementi et al. [9] prove that MIN-POWER ASYMMETRIC BROADCAST is NP-Hard

when the nodes are inE2. The best known approximation algorithm for MIN-POWER ASYMMETRIC BROADCAST

[30], based on computing a minimum spanning tree, has performance ratio of at most 12 when the nodes are in

E2. We remark that, due to the need of establishing bidirectional connections, MIN-POWER SYMMETRIC BROAD-

CAST and MIN-POWER SYMMETRIC CONNECTIVITY are the same problem. Implicit in the work of Kirousis,

Kranakis, Krizanc, and Pelc [17] is the result that computing an MST gives a 2-approximation for MIN-POWER

SYMMETRIC CONNECTIVITY, even in its graph formulation (see Theorem 2). In contrast,the graph version of
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M IN-POWER ASYMMETRIC BROADCAST cannot be approximated within a factor better than(1 − o(1)) lnn unless

NP⊆ TIME(nO(log logn)) [15].

In M IN-POWER ASYMMETRIC MULTICAST, one is given a roots and a set of terminalsT , and the goal is to

establish a minimum-power branching rooted ats which reaches all vertices ofT . As a generalization of MIN-POWER

ASYMMETRIC BROADCAST, M IN-POWER ASYMMETRIC MULTICAST is also NP-Hard, and the same method as in

[30] implies that an approximate minimum Steiner tree givesa performance ratio of12ρ, whereρ is the approximation

for Steiner tree in graphs (the best result known at this moment, given in [25], isρ = 1 + 1
2 ln 3 + ε).

No previous results have been published for the multicast problem under the symmetric connectivity model. An

immediate consequence of Theorem 2 is that aρ-approximate minimum Steiner tree gives a performance ratio of 2ρ

for M IN-POWER SYMMETRIC MULTICAST.

3 Integer Linear Program Formulation

In this section we give an integer linear program (ILP) formulation for MIN-POWER SYMMETRIC CONNECTIVITY

and describe a branch and cut algorithm based on it. The results in Section 6 show that the algorithm is practical for

instances with up to 35-40 nodes.

We begin by reformulating MIN-POWER SYMMETRIC CONNECTIVITY in graph theoretical terms. LetG =

(V,E, c) be an edge-weighted graph anduv denote the undirected edge between nodesu andv. The costc(uv) of an

edgeuv ∈ E corresponds to the (symmetric) power requirementp(u, v) = p(v, u). For a nodeu ∈ V and a spanning

treeT of G, letuuT be the maximum cost edge incident tou in T , i.e.,uuT ∈ T andc(uuT ) ≥ c(uv) for all uv ∈ T .

Thepower costof a spanning treeT is

p(T ) =
∑

u∈V

c(uuT )

Since every connected graph contains a spanning tree, an equivalent formulation of MIN-POWER SYMMETRIC CON-

NECTIVITY is to ask for a spanning tree with minimum power-cost in the complete graph onV with edge costs given

by c(uv) = ‖uv‖
κ. Thus, MIN-POWER SYMMETRIC CONNECTIVITY can be reformulated as follows: Given a

connected edge-weighted graphG = (V,E, c), find a spanning treeT of G with minimum power-cost.

To formulate the problem as a linear integer program, we use two types of binary decision variables:

• xuv for all uv ∈ E; xuv is set to 1 ifuv belongs to the selected spanning treeT and to 0 otherwise. We call

these variables thetree variables; and

• yuv for all uv ∈ E := {uv, vu | uv ∈ E}; yuv is set to 1 ifuT = v (i.e., if uv ∈ T andc(uv) ≥ c(uw) for all

uw ∈ T ) and to 0 otherwise. We call these variables therange variables.

Note that there are|E| tree variables and|E| = 2|E| range variables. LetST be set of the incidence vectors of all

spanning trees ofG (viewed as subsets ofE). Our ILP formulation is as follows.
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min
∑

uv∈E

c(uv)yuv

s.t.
∑

v∈V |uv∈E

yuv = 1, ∀u ∈ V (1)

xuv ≤
∑

uw∈E|c(uw)≥c(uv)

yuw, ∀uv ∈ E (2)

x ∈ conv(ST ) (3)

x ∈ {0, 1}|E|

y ∈ {0, 1}|E|

The constraints (1) enforce that we select exactly one rangevariable for every nodev ∈ V , i.e., we properly define

the range of each node. The constraints (2) enforce that an edgeuv is included in the tree only if the range of each

endpoint is at least the cost of the edge. The constraints (3)enforce that the tree variables indeed form a spanning

tree. There are several well known linear descriptions for (3). We use the following, most famous formulation:

x ∈ conv(ST ) ⇔ x ≥ 0,
∑

e∈E xe = |V | − 1 and
∑

e∈γ(S) xe ≤ |S| − 1 for all S ⊆ E, whereγ(S) is the set of

edges ofE with both ends inS.

To solve the ILP we use branch and cut, i.e., we drop the integrality constraints and solve the corresponding LP

relaxation. If the solution of the LP is integral, we have found the optimal solution, otherwise we select a variable with

a fractional value and split the problem into two subproblems by setting the variable to0 and1 in the subproblems. We

solve the subproblems recursively and disregard a subproblem if its LP bound is worse than the best known solution.

Since there are an exponential number of inequalities in this formulation of spanning trees, we can not solve the

LP directly. Instead, we start with a small subset of these inequalities and algorithmically test whether the LP solution

violates an inequality which is not in the current LP. If so, we add the inequality to the LP, otherwise we have found

the solution of the LP with the exponential number of inequalities. The inequalities added to the LP if needed are

calledcutting planes, algorithms that find violated cutting planes are calledseparation algorithms.

In our case, the initial LP consists of the constraints (1) and (2), the constraint
∑

e∈E xe = |V | − 1, and the bound

constraints, i.e., the constraints0 ≤ x ≤ 1 and0 ≤ y ≤ 1. The only constraints added on demand are the constraints
∑

e∈γ(S) xe ≤ |S|− 1 for all S ⊆ E. A separation algorithm for these inequalities is due to Padberg and Wolsey [21].

The running time of a branch and cut algorithm can be improvedby tightening the LP relaxation, i.e., by finding

additional inequalities which are valid for all integer points, but may be violated by solutions to the LP relaxation

(Figure 4 shows an example). We use the following class of valid inequalities. LetS ⊂ V . For everyu ∈ S let

uS ∈ V \ S so thatc(uus) ≤ c(uv) for all v ∈ V \ S. The inequality

∑

u∈S

∑

v∈V |c(uv)≥c(uuS)

yuv ≥ 1 (4)
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(4) is violated forS = {u1, u2}.

is valid for the problem above. We can argue as follows. Thereis at least one edge in the spanning treeT crossing

the cutS. Let uv be such an edge andu ∈ S. Thenc(uv) ≥ c(uuS) and the range ofu is at leastc(uv). Thus
∑

v∈V |c(uv)≥c(uuS) yuv is one and the inequality is valid.

Since we do not have a separation algorithm for these inequalities, we use the following heuristic to separate some

of them. We chose an arbitrary nodeu. For every nodev ∈ V \ {u}, we compute the minimal directed cut fromu to

v and fromv to u, where the capacity of an edgexy is given by
∑

xw|c(xw)≥c(xy) yxw. For all computed cuts, we test

whether the corresponding inequality is violated.

4 Analysis of the MST Algorithm

In this section we show that computing an MST gives a 2-approximation for MIN-POWER SYMMETRIC CONNEC-

TIVITY ; this result is implicit in the work of Kirousis, Kranakis, Krizanc, and Pelc [17]. Then we give an example

showing that the approximation factor of 2 is tight, and discuss modifications of the MST algorithm for handling given

bounds on node transmission ranges.

Theorem 2 LetG = (V,E, c) be an edge-weighted graph. Computing an MST with respect toc gives a 2-approximation

for M IN-POWER SYMMETRIC CONNECTIVITY.

Proof: Let c(T ) =
∑

uv∈F c(uv). Claim 2 of Theorem 3.2 in [17] is equivalent to

p(T ) =
∑

v∈V

max
u|uv∈F

c(uv) ≤
∑

v∈V

∑

u|uv∈F

c(uv) = 2c(T ) (5)

Let u be a vertex incident to an edge of maximum cost. If we root the treeT atu, and usev′ to denote the parent ofv

in T , sincemaxu|uv∈F c(uv) ≥ c(vv′) we conclude thatp(T ) ≥ c(T ). Therefore, ifMST is the minimum spanning

tree with respect toc andOPT is the tree with minimum power-cost, we have

p(MST ) ≤ 2c(MST ) ≤ 2c(OPT ) ≤ 2p(OPT )

10



2
2

2
2 2

2 2
ε

1+ε

ε

ε
(1+  )εε (1+  )ε(1+  )ε ε (1+  )ε

(b)

ε
1+ε 1

1 1 1ε ε

1 1 1 1 1 1 1 1

(a)

1

ε

Figure 5: Tight example for the performance ratio of the MST algorithm (κ = 2). (a) The MST-based range assignment

needs total power2n. (b) Optimum range assignment has total powern(1 + ε)2 + (n− 1)ε2 + 1 → n+ 1.

The following example shows that the ratio of 2 given in Theorem 2 is tight. Consider2n points located on a

single line such that the distance between consecutive points alternates between 1 andε < 1 (see Figure 5) and let

κ = 2. Then the minimum spanning tree MST connects consecutive neighbors and has power-costp(MST ) = 2n.

On the other hand, the treeT with edges connecting each other node (see Figure 5(b)) has power-cost equalp(T ) =

n(1 + ε)2 + (n− 1)ε2 + 1. Whenn → ∞ andε → 0, we obtain thatp(MST )/p(T ) → 2.

Our MIN-POWER SYMMETRIC CONNECTIVITY formulation assumes that node transmission ranges can be ar-

bitrary non-negative numbers. In practice node specific lower- and upper-bounds on the transmission ranges may be

required. All the algorithms in this paper (including the MST algorithm) apply to the graph version of MIN-POWER

SYMMETRIC CONNECTIVITY. Hence, they can easily handle upper-bounds on transmission ranges by assigning

infinity cost to edges that cannot be established as bidirected links due to the imposed upper-bounds.

Handling the lower-bounds on transmission ranges is not straightforward. We propose the following modification

of the MST algorithm.

1. Assign to each node the minimum allowed transmission range.

2. Compute the connected components in the graph induced by the biconnected links established by the assignment

in Step 1.

3. For each two componentsC andC′, compute a connection cost which is the minimum increase in power

necessary to establish a bidirectional link between some vertex inC and some vertex inC′.

4. Construct a complete graphG′ with the connected components as vertices and connection costs as edge costs.

5. Increase power ranges according to the MST in the graphG′.

11



Theorem 3 The MST algorithm modified as above has an approximation factor of 2 for M IN-POWER SYMMETRIC

CONNECTIVITY problem with lower-bounds on transmission ranges.

5 k-Restricted Approach to Symmetric Min-Power Connectivity Approxi-

mation

We first give definitions ofk-restricted decompositions and prove an upper bound on the power-cost of such decom-

positions. Then we will describe approximation algorithmswhose approximation ratios follow from the performance

ratios of Steiner tree algorithms in graphs.

5.1 k-Restricted Decompositions

A k-restricted decompositionQ of an undirected treeT is a partition ofT into subtreesT1, T2, . . . , Tp each containing

at mostk vertices such that each edge ofT belongs to exactly one subtreeTi. The power-costp(Q) of Q is defined to

be the sum of the power-costs of all of its elements, i.e.,p(Q) =
∑

Ti∈Q p(Ti). The tight example for Theorem 5 in

Figure 7 gives examples of3-restricted decompositions.

The following theorem and its proof are similar to the results of [14, 4] on thek-restricted Steiner ratio. Our current

theoretically best approximation algorithm does not make use of this theorem, but we use the theorem to establish the

performance ratio of more practical algorithms derived from [2, 33].

Theorem 4 For every weighted treeT and everyk ≥ 1, there is a2k-restricted decompositionQ of T such that

p(Q) ≤ (1 + 1/k)p(T ).

Proof: Without loss of generality we can assume that all edge costs are different. Let the endpointsr ands of the

heaviest edgeh of T be therootsof T , which means that two subtrees ofT − {h} are rooted atr ands, respectively.

Then each vertexv of T , exceptr ands, has a unique parent. We call the vertices adjacent tov, other than the parent

of v (if defined), the children ofv. For each vertexv of T , we sort the edges connectingv to its children in increasing

order of their cost. For the most costly such edgee we definenext(e) = f , wheref is the edge connectingv to its

parent (ifv has a parent), orf = h if v does not have a parent; for every other edgee we definenext(e) = e′, where

e′ is the next edge (in the sorted order above) connectingv to one of its children.

We now construct a rooted directed binary (with arcs going toward the root) treeB as follows. The vertices ofB

are the edges ofT and the root ofB is h, the heaviest edge ofT . The arcs ofB consist of arcs(e, next(e)) for each

edgee of T . It is immediate that every vertexe = uv of B has at most two incoming arcs. Indeed, ife = rs, then

only the most costly edge ofT \ {e} incident tor and the most costly edge ofT \ {e} incident tos havee as a parent.

For each other edgee = uv of T , wherev is the parent ofu, there is at most one arc coming intoe from the vertex of

B representing the most costly edge ofT \ {e} incident tou, and at most one arc coming intoe from the vertex ofB

12



representing the edge ofT betweenv and one of its children that precedese in the sorted order above. Note that each

vertex ofB has an associated cost since it represents an edge ofT .

Let Bi be the set of vertices ofB in distancei from the rooth. There is an integer0 ≤ l < k such that
∑

j | j≡l (mod k) c(Bj) ≤ 1
k
c(B) = 1

k
c(T ), and letB = ∪j | j≡l (mod k)Bj . DecomposeB into subtreesQi as

follows: for everyei ∈ B, remove fromB the edge (if any) connectingei to its parent inB. EachQi corresponds to

a subtreeTi of T , and we note that since every vertex ofB appears in someQi, every edge ofT appears in someTi.

The number of vertices inQi is at most2k − 1 sinceQi is a binary tree of height at mostk − 1. Therefore, eachTi

has at most2k vertices. We denote byQ the2k-restricted decomposition ofT into Ti’s.

Let ei = (vi, ui) be the root ofQi (note thatei ∈ B) and, ifei 6= (r, s), renamevi andui such thatui is the parent

of vi in T . By the construction ofB, we have thatmaxu | uui∈E(Ti) c(uui) = c(ei). Then we have:

p(Ti) ≤ c(ei) +
∑

v∈V (Ti)\{ui}

max
(v,u)∈E(T )

c(v, u).

For i 6= j, the setsV (Ti) \ {ui} andV (Tj) \ {uj} are disjoint, sinceu ∈ V (Ti) \ {ui} implies that the edge ofT

connectingu to its parent inT is in Ti, and theE(Ti) = V (Qi) is disjoint fromE(Tj) = V (Qj). We conclude that

p(Q) =
∑

i

p(Ti)

≤
∑

v∈V (T )

max
(v,u)∈E(T )

c(v, u) +
∑

i

c(ei)

≤ p(T ) + c(B)

≤ p(T ) +
1

k
c(T )

≤ (1 +
1

k
)p(T ).

A subtree ofT consisting of a pair of edges sharing a node is called afork. So a3-restricted decompositionQ of

T consists of forks and individual edges. The following theorem is the analogue of the Steiner tree theorem in [32],

but has a completely different proof.

Theorem 5 For every treeT , there is a 3-restricted decompositionQ of T such thatp(Q) ≤ 5
3p(T ).

Proof: The proof proceeds in three steps. First we partition the edges ofT into disjoint components using structural

information derived from power requirements. Then we construct a weighted subgraph of the line graph of each

component, which we refer to as the “consecutive” line graph. Finally, we show that the consecutive line graph of

each component has a matching exceeding a certain weight; the edges in these matchings give the forks in the desired

3-restricted decomposition ofT .
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Figure 6: (a) Partitioned treeT . Each vertex has a single outgoing arc denoting its maximum incident edge, double

arcs are roots and dashed edges are bridges. (b) Consecutiveline graphs for the components. Vertices represent edges

of T ; “consecutive” forks ofT are represented by the solid edges, “parity” edges are dashed.

To describe how we partition the edges ofT (see Figure 6(a)) we need to introduce some additional notations.

Let max(u) be the maximum edge ofT incident to a vertexu.1 For each vertexu, we direct the edgemax(u) away

from u. An edgeuv is calledroot if it is directed both ways (i.e.,max(u) = max(v) = uv), and calledbridge if it

remains undirected (i.e.,max(u) 6= uv andmax(v) 6= uv). In the power-cost ofT , roots are counted twice (for both

endpoints), bridges are not counted at all, and all other edges are counted exactly once. Thus, denoting byR the set of

roots and byB the set of bridges, we have:

p(T ) = c(T ) + c(R)− c(B) (6)

The edges ofT are partitioned as follows. First, we start with the connected components ofT −B; note that each

such component contains exactly one root. Then we add each bridgeb of B to one of the two adjacent components

of T − B, such that each component gets at most one bridge. A bridge assignment with this property is obtained

by selecting an arbitrary vertexv0 and assigning to each component ofT − B not containingv0 the unique adjacent

bridge on the path tov0. We denote byD the resulting partition.

A fork (e1 = uv, e2 = u′v) is calledconsecutiveif c(e1) < c(e2) and there is no edge e∈ D incident tov such

that c(e1) < c(e) < c(e2). For each componentD ∈ D, theconsecutive line graphLD is defined as follows (see

Figure 6(b)):

– vertices ofLD are the edges ofD

– LD has “consecutive” edges connecting each consecutive forksof D, and at most two “parity” edges connecting

the root ofD and the second most expensive non-root edge incident to eachend of the root

– for every edge(e1, e2) of LD, w(e1, e2) = min{c(e1), c(e2)}

By construction, each edge ofLD corresponds to a fork ofD. Therefore, each matchingX of LD corresponds to a

3-restricted decomposition ofD (edges ofX correspond to forks and isolated vertices correspond to isolated edges)

which we denoteQX . It is easy to see thatp(QX) = 2c(D)− w(X).

1W.l.o.g., we assume that no two edges ofT have the same cost.

14



The theorem follows if, for eachD ∈ D, we find a matchingXD in LD such that

w(XD) ≥
c(D)− c(rD) + c(bD)

3
(7)

wherec(D) is the total cost of the edges inD, rD is the single root inD, andbD is the single bridge inD, if one

exists. Indeed,

p(
⋃

D∈D

QXD
) =

∑

D∈D

(2c(D)− w(XD))

≤
∑

D∈D

(

5

3
c(D) +

1

3
c(rD)−

1

3
c(bD)

)

=
5

3
c(T ) +

1

3
c(R)−

1

3
c(B)

≤
5

3
p(T )

where the last inequality comes from (6) and the fact thatc(T ) ≤ p(T ), as in the proof of Theorem 2.

By Edmonds’ theorem [20] it is sufficient to construct a fractional matchingXD satisfying (7). Afractional

matchingof LD is an assignment of nonnegative fractionsx(e1, e2) to every edge(e1, e2) ∈ LD such that

(i) the sum of fractions assigned to the edges incident to a vertexe of LD is at most 1, and

(ii) the sum of fractions assigned to all edges with both endpoints in a set of2k + 1 vertices ofLD is at mostk.

The weight of a fractional matchingXD is given by

w(XD) =
∑

(e,e′)∈E(D)

x(e, e′)w(e, e′)

We construct a fractional matchingXD by assigning1/3 to each consecutive edge(e1, e2) of LD. This fractional

matching satisfies (i) since eache ∈ D is incident to at most 3 consecutive edges ofLD (if e is not the rootrD, then it

participates to one consecutive edge ofLD ase1, and to at most two edges ase2; the root participates as the heaviest

end in up to two edges). Condition (ii) follows from the fact that consecutive edges form a tree. Since every vertexe

of LD except the root participates in exactly one consecutive fork (e1, e2) ase1, we get that the weight ofX ′
D is equal

to (c(D) − c(rD))/3.

If D has no bridge then (7) follows. Otherwise we modifyXD such that the weight increases byc(bD)/3 as

follows. Let P = (bD = e0, f0, e1, f1, ..., ek, fk, ek+1 = rD) be the unique path of consecutive edges ofLD,

wherefi = (ei, ei+1), i = 1, . . . , k are edges ofLD corresponding to consecutive forks inD. We add 1/3 tox(fi),

i = 0, 2, 4, . . ., and subtract 1/3 fromx(fi), i = 1, 3, . . .. Since bothbD andrD participate in at most two consecutive

forks, the above change leads to a feasible fractional matching (the sum of fractions assigned to the edges incident to

each intermediate vertex ofP remains the same). Ifk is even then the total weight ofXD increases by at leastc(bD)/3

sincew(f2l−1) = c(e2l−1) < c(e2l) = w(f2l), l = 1, . . . , k/2 and we are done.
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Figure 7: (a) Tight example for Theorem 5: a single node is connected via cost-2 edges tok nodes, each of which is

in turn connected via a cost-1 edge to a leaf. The total power-cost of this tree is2 + 2k + k = 3k + 2. (b-c) Two

minimum 3-restricted decompositions: the power-cost of (b) is 5k since each ofk forks has power-cost 5; and the

power-cost of (c) is6k
2 +2k = 5k since each ofk2 upper forks has power-cost 6 and each ofk single-edge components

has power-cost 2.

If k is odd we add back 1/3 tox(fk) to guarantee increasingw(XD) by at leastc(bD)/3. If ek has degree 2 in

LD then we are done, since the sum of all fractions assigned to the edges incident toek equals to 1. Otherwise,ek

has degree 3 and we need to further modifyXD in order to make it a feasible fractional matching. Letv be the vertex

of T common toek andrD. Sincefk = (ek, ek+1 = rD) is a consecutive fork,ek is the most expensive non-root

edge ofD incident tov. Let e be the second most expensive non-root edge ofD incident tov. Sincee andek form a

consecutive fork,LD contains the edge(e, ek). Recall thatLD also contains a parity edge(e, rD). We modifyXD as

follows:

(1) If ek−1 6= e (i.e.,ek−1 is not adjacent to the root), then we subtract 1/3 fromx(e, ek) and setx(e, rD) to 1/3.

(2) If ek−1 = e (i.e., ek−1 is adjacent to the root), then we subtract 1/3 fromx(fk−1) and setx(e = ek−1, rD) to

1/3.

In both cases, the resulting sums of fractions assigned to the edges incident toek, respectively torD, are equal to 1,

and henceXD satisfies (i). In case (1), the condition (ii) is valid since edges with non-zero fraction inXD continue

to form a tree. In case (2), the condition (ii) is still valid:the graph given by the edges with non-zero fraction has only

one cycle, and therefore any set of2k+1 vertices ofLD induces a subgraph with at most2k+1 edges with non-zero

fraction (each of them having fraction1/3).

Remark: The bound of Theorem 5 is tight (see Figure 7).

5.2 Approximation Algorithms

All approximation algorithms described below have approximation ratios defined in terms ofρk, whereρk is the

supremum, over all treesT , of the ratio of the power-cost of the minimum power-costk-restricted decompositions to
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Input: Edge-weighted graphG0 = (V,E, c)

Output: Spanning tree ofG0

G← G0, H ← ∅

Repeat forever

Find a forkK from G0 with maximumg = gainG(K)

If g ≤ 0 then exit repeat

H ← H ∪K, G← G/VG(K)

Output MST (G) ∪H

Figure 8: The Greedy Fork-Contraction algorithm.

the power-cost ofT . Theorem 4 implies thatρk ≤ 1 + 1
⌊lg k⌋ , in particularρ4 ≤ 3

2 . Theorem 5 together with the

example in Figure 7 imply thatρ3 = 5/3, while Theorem 2 together with the example in Figure 5 imply thatρ2 = 2.

The followingGreedy Fork-Contraction(GFC) algorithm, originally formulated for Steiner trees,is based on the

notion ofgain, defined below. For a graphG, denote bymst(G) the minimum cost of a spanning tree. For a set of

verticesV ′ ⊆ V (G), we denote byG/V ′ the graph obtained after contractingV ′, i.e., collapsing all vertices ofV ′

into a single vertex. LetG be obtained fromG0 after contracting some subsets of vertices,H be a subtree ofG0, and

VG(H) be the set of vertices ofG which, seen as subsets ofV (G0), intersectV (H). Thegainof H with respect toG

is:

gainG(H) = 2mst(G)− 2mst(G/VG(H))− p(H)

wherep(H) is the power-cost ofH in the original graphG0. It has been proved in [32] that the GFC algorithm

described in Figure 8 has a performance ratio no larger than the arithmetic mean ofρ2 andρ3. Thus we have:

Theorem 6 The GFC algorithm forM IN-POWER SYMMETRIC CONNECTIVITY has performance ratio of11/6.

A fully polynomial approximation scheme for finding optimal3-restricted Steiner trees is given in [22], building

on [5]. Theorem 5 implies our main result:

Theorem 7 The algorithm of [22] has a performance ratio of5
3 + ǫ for M IN-POWER SYMMETRIC CONNECTIVITY.

Unfortunately, this algorithm is impractical. It is also possible to apply other Steiner tree algorithms, e.g., the algorithm

in [2] gives an approximation factor ofρ2

2 + ρ3

6 + ρ4

3 ≤ 16
9 , while thek-restricted Relative Greedy Algorithm in [33]

gives a factor of1 + ln 2 + ǫ.
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6 Experimental Study

We have implemented the exact branch and cut algorithm described in Section 3 (OPT), the greedy fork-contraction

algorithm in Figure 8 (GFC), and three new heuristics:

• A simple edge-switching (ES) heuristic that starts from theMST, and repeatedly replaces a tree edge with a

non-tree edge re-establishing connectivity. At every step, the algorithm chooses the pair of edges that results

in the largest reduction in power cost; the process is repeated as long as improvement is still possible. We

simulated a distributed implementation of the algorithm inwhich only non-tree edges that connect nodes within

10 tree-hops from each other are considered for switching.

• A heuristic performing both edge and fork switching (EFS). At every step the algorithm chooses an edge or fork

whose addition to the tree leads to the largest reduction in power cost. Unlike GFC, forks are not contracted,

which means that an edge of an added fork can be later removed from the tree by other edge or fork switches.

• A Kruskal-like heuristic (KR) that starts with isolated nodes and iteratively adds an edge connecting two dif-

ferent components withminimum increasein power cost. A similar heuristic (called incremental search) was

studied by Chu and Nikolaidis for computing low-power MIN-POWER ASYMMETRIC BROADCAST trees in a

mobile environment [8].

We included in our comparison faster versions of OPT and GFC,OPT-D and GFC-D, which speed-up the computation

by working on the Delaunay graph (see, e.g., [13]) defined by the nodes instead of the complete graph. We also

implemented a faster version of EFS, EFS-D, in which only forks consisting of Delaunay edges (but still all non-tree

edges) are considered as switching candidates.

Note that, by Theorem 2, both ES and EFS produce solutions within a factor of 2 of optimum since they improve

upon an MST for the nodes. A performance of ratio of 2 can be proven for KR as well. Define a new cost function

c(e) as follows: ife is not picked by the KR, thenc(e) = c(e), elsec(e) is the increase in power cost used by KR

to pick e. It can be proven that the minimum spanning tree in(V,E, c) is the same as the tree picked by KR inG,

and since for everye ∈ E we havec(e) ≤ c(e), the optimum solution in(V,E, c) has power at most the optimum

power inG. An example showing that the performance ratio of2 is tight for KR in the graph model is given below;

the exact performance ratio inE2 is not known. Theq + 3 vertices arev0, v1, v2, . . . , vq+2, and the edges have cost:

for i = 0, 1, . . . , q, c(vivq+1) = 1 andc(vivq+2) = 2 − 1
2i − ε, andc(vq+1vq+2) = ǫ. KR builds a star centered at

vq+2 with a power-cost of about2q, while the optimum solution is a star centered atvq+1 with a power-cost of about

q.

All algorithms were implemented in C++, including the branch and bound algorithm whose implementation is

built on SCIL [26]. The heuristics were compiled usinggpp with -O2 optimization, and run on an AMD Duron

600MHz PC. The experiments were run on randomly generated testcases. For each instance sizen between 10 and
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n OPT OPT-D ES EFS EFS-D KR GFC GFC-D

% CPU % CPU % CPU % CPU % CPU % CPU % CPU % CPU

10 4.01 0.67 3.66 0.10 3.81 0.00 4.00 0.00 3.94 0.00 0.49 0.00 1.39 0.00 1.19 0.00

15 4.77 5.68 4.26 0.43 4.48 0.00 4.70 0.02 4.51 0.00 1.72 0.00 1.56 0.00 0.48 0.00

20 5.84 22.2 5.17 1.19 5.46 0.00 5.75 0.10 5.47 0.00 2.54 0.00 2.01 0.00 1.40 0.00

25 5.63 58.9 4.72 3.46 4.78 0.00 5.53 0.26 5.12 0.00 2.19 0.00 1.56 0.00 0.72 0.00

30 5.46 201 4.90 6.49 4.87 0.00 5.36 0.61 5.03 0.00 1.77 0.00 1.65 0.00 0.24 0.00

35 5.68 712 5.11 11.2 5.04 0.00 5.60 1.16 5.40 0.02 2.13 0.01 1.93 0.00 0.96 0.00

40 5.41∗ 4725∗ 4.82 52.1 5.01 0.00 5.51 2.13 5.25 0.03 1.82 0.01 1.37 0.00 0.26 0.00

45 — — 5.37 109 5.13 0.00 5.77 3.71 5.47 0.05 2.17 0.00 2.22 0.03 0.67 0.03

50 — — 5.36 181 5.55 0.02 5.90 5.50 5.62 0.05 2.45 0.00 2.03 0.02 0.33 0.02

55 — — 6.09 653 5.61 0.05 6.54 9.03 6.21 0.05 2.65 0.00 2.60 0.03 1.19 0.03

60 — — 5.46∗ 573∗ 5.25 0.05 6.06 12.48 5.73 0.06 2.31 0.00 2.15 0.05 0.50 0.05

65 — — — — 5.01 0.05 5.80 17.9 5.56 0.09 2.30 0.04 1.65 0.03 0.38 0.03

70 — — — — 5.12 0.03 6.01 25.5 5.60 0.10 2.41 0.04 1.94 0.01 0.24 0.01

75 — — — — 5.10 0.02 5.78 33.4 5.50 0.09 2.46 0.02 1.69 0.00 0.48 0.00

80 — — — — 5.14 0.05 6.03 44.9 5.77 0.12 2.88 0.00 2.00 0.00 0.64 0.00

85 — — — — 4.73 0.06 5.69 55.0 5.37 0.16 2.52 0.00 1.82 0.00 0.39 0.00

90 — — — — 5.42 0.09 6.30 75.5 6.01 0.21 2.84 0.00 2.18 0.00 0.38 0.00

95 — — — — 5.29 0.11 6.08 101 5.81 0.26 2.35 0.00 1.73 0.05 0.19 0.05

100 — — — — 5.45 0.14 6.25 123 6.09 0.32 2.56 0.00 2.30 0.05 0.99 0.05

Table 1: Average percent improvement over the MST (%) and runtime in seconds (CPU) for the compared algorithms.

100, in increments of 5, 50 different instances were generated by choosingn points uniformly at random from a grid

of size10, 000× 10, 000.

Table 1 gives the percent improvement over MST and the runtimes for the compared algorithms; solution quality

is also presented in graphical form in Figure 9. We report averages over 50 instances of each size; averages marked

with an asterisk do not include two instances not solved within one day. The results show that OPT has a practical

running time up to 35 nodes, and produces an average improvement over MST of 5-6%. The Delaunay version of

OPT has practical runtime up to 60 nodes, but gives slightly worse solutions.

The GFC algorithm, its faster Delaunay version, GFC-D, as well as the natural Kruskal-like heuristic KR are all

very fast, but give less than half of the optimum improvement. KR consistently outperforms GFC, while the latter

consistently outperforms GFC-D (the runtime of GFC-D is identical to that of GFC in our experiments). The EFS,

EFS-D, and and even the distributed ES heuristic give significantly better solution quality, coming on the average

within a fraction of a percent of the optimal improvement, still with a very well scaling runtime.
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Figure 9: Average percent improvement over the MST for the compared algorithms.

7 Conclusions

In a more realistic power-attenuation model, the power requirement for supporting a link from nodeu to nodev

separated by a distancer is given by

p(u, v) =
rκuv

χuσv

(8)

whereχu > 0 is the transmission efficiency of nodeu, σv > 0 is the signal detection sensitivity threshold of nodev,

andκuv is the signal attenuation exponent for the link fromu to v. In [1] we show that the corresponding MIN-POWER

SYMMETRIC CONNECTIVITY WITH ASYMMETRIC POWER REQUIREMENTS is inapproximable within factor(1 −

ǫ) ln |V | for anyǫ > 0 unlessP = NP . The proof in [1] relies on using non-uniform signal attenuation exponentsκuv.

An interesting open problem is to settle the approximability status of MIN-POWERSYMMETRIC CONNECTIVITY with

uniform exponents.

It is also an open question whether MIN-POWER SYMMETRIC CONNECTIVITY can be reduced to the classical

STEINER TREE problem in an approximation preserving manner. Such a reduction would allow other well-known

STEINER TREE heuristics, such as the 1-Steiner algorithm [16], to be applied to MIN-POWER SYMMETRIC CON-

NECTIVITY .
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